
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7030754/publications.pdf Version: 2024-02-01

Ριρίο Η Μάττιι Α

#	Article	IF	CITATIONS
1	Contents of Vitamins, Mineral Elements, and Some Phenolic Compounds in Cultivated Mushrooms. Journal of Agricultural and Food Chemistry, 2001, 49, 2343-2348.	5.2	528
2	Contents of Phenolic Acids, Alkyl- and Alkenylresorcinols, and Avenanthramides in Commercial Grain Products. Journal of Agricultural and Food Chemistry, 2005, 53, 8290-8295.	5.2	472
3	Determination of Free and Total Phenolic Acids in Plant-Derived Foods by HPLC with Diode-Array Detection. Journal of Agricultural and Food Chemistry, 2002, 50, 3660-3667.	5.2	376
4	Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. American Journal of Clinical Nutrition, 2008, 87, 323-331.	4.7	369
5	Phenolic Acids in Berries, Fruits, and Beverages. Journal of Agricultural and Food Chemistry, 2006, 54, 7193-7199.	5.2	368
6	Phenolic acids in potatoes, vegetables, and some of their products. Journal of Food Composition and Analysis, 2007, 20, 152-160.	3.9	367
7	Dietary Intake and Major Food Sources of Polyphenols in Finnish Adults3. Journal of Nutrition, 2008, 138, 562-566.	2.9	346
8	Contents of Anthocyanins and Ellagitannins in Selected Foods Consumed in Finland. Journal of Agricultural and Food Chemistry, 2007, 55, 1612-1619.	5.2	342
9	Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium) Tj ETQq1 1 0.784 2010, 120, 128-133.	314 rgBT 8.2	/Overlock 1 312
10	Distribution and Contents of Phenolic Compounds in Eighteen Scandinavian Berry Species. Journal of Agricultural and Food Chemistry, 2004, 52, 4477-4486.	5.2	310
11	Determination of Flavonoids in Plant Material by HPLC with Diode-Array and Electro-Array Detections. Journal of Agricultural and Food Chemistry, 2000, 48, 5834-5841.	5.2	275
12	Basic Composition and Amino Acid Contents of Mushrooms Cultivated in Finland. Journal of Agricultural and Food Chemistry, 2002, 50, 6419-6422.	5.2	235
13	Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. Journal of Food Composition and Analysis, 2007, 20, 487-495.	3.9	225
14	Functional properties of edible mushrooms. Nutrition, 2000, 16, 694-696.	2.4	206
15	Proanthocyanidins in Common Food Products of Plant Origin. Journal of Agricultural and Food Chemistry, 2009, 57, 7899-7906.	5.2	195
16	Sterol and vitamin D2 contents in some wild and cultivated mushrooms. Food Chemistry, 2002, 76, 293-298.	8.2	162
17	Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Aquaculture, 1998, 163, 309-323.	3.5	139
18	Vitamin D Contents in Edible Mushrooms. Journal of Agricultural and Food Chemistry, 1994, 42, 2449-2453.	5.2	138

#	Article	IF	CITATIONS
19	Nutritional Value of Commercial Protein-Rich Plant Products. Plant Foods for Human Nutrition, 2018, 73, 108-115.	3.2	131
20	HPLC Determination of Extractable and Unextractable Proanthocyanidins in Plant Materials. Journal of Agricultural and Food Chemistry, 2008, 56, 7617-7624.	5.2	122
21	Coenzymes Q9and Q10: Contents in Foods and Dietary Intake. Journal of Food Composition and Analysis, 2001, 14, 409-417.	3.9	101
22	Isolation and Structure Elucidation of Procyanidin Oligomers from Saskatoon Berries (Amelanchier) Tj ETQq0 0 0	rgBT /Ove 5.2	rlock 10 Tf 50 101
23	Contents of Cholecalciferol, Ergocalciferol, and Their 25-Hydroxylated Metabolites in Milk Products and Raw Meat and Liver As Determined by HPLC. Journal of Agricultural and Food Chemistry, 1995, 43, 2394-2399.	5.2	91
24	Stability of anthocyanins in berry juices stored at different temperatures. Journal of Food Composition and Analysis, 2013, 31, 12-19.	3.9	91
25	Cholecalciferol and 25-Hydroxycholecalciferol Content of Chicken Egg Yolk As Affected by the Cholecalciferol Content of Feed. Journal of Agricultural and Food Chemistry, 1999, 47, 4089-4092.	5.2	89
26	Bioavailability of Various Polyphenols from a Diet Containing Moderate Amounts of Berries. Journal of Agricultural and Food Chemistry, 2010, 58, 3927-3932.	5.2	88
27	Simultaneous HPLC analysis of fat-soluble vitamins in selected animal products after small-scale extraction. Food Chemistry, 2000, 71, 535-543.	8.2	87
28	Cholecalciferol and 25-Hydroxycholecalciferol Contents in Fish and Fish Products. Journal of Food Composition and Analysis, 1995, 8, 232-243.	3.9	71
29	Determination of phylloquinone in oils, margarines and butter by high-performance liquid chromatography with electrochemical detection. Food Chemistry, 1997, 59, 473-480.	8.2	71
30	Effect of Household Cooking on the Vitamin D content in Fish, Eggs, and Wild Mushrooms. Journal of Food Composition and Analysis, 1999, 12, 153-160.	3.9	70

31	Effect of Different Vitamin D Supplementations in Poultry Feed on Vitamin D Content of Eggs and Chicken Meat. Journal of Agricultural and Food Chemistry, 2011, 59, 8298-8303.	5.2	69
32	Bioavailability of vitamin D from wild edible mushrooms (Cantharellus tubaeformis) as measured with a human bioassay. American Journal of Clinical Nutrition, 1999, 69, 95-98.	4.7	68
33	Consumption of chokeberry (Aronia mitschurinii) products modestly lowered blood pressure and reduced low-grade inflammation in patients with mildly elevated blood pressure. Nutrition Research, 2016, 36, 1222-1230.	2.9	62
34	Determination of Phylloquinone in Vegetables, Fruits, and Berries by High-Performance Liquid Chromatography with Electrochemical Detection. Journal of Agricultural and Food Chemistry, 1997, 45, 4644-4649.	5.2	61
35	Blood pressure-lowering properties of chokeberry (Aronia mitchurinii, var. Viking). Journal of Functional Foods, 2010, 2, 163-169.	3.4	60
36	High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chemistry, 2016, 204, 14-20.	8.2	60

3

#	Article	IF	CITATIONS
37	Polyphenol and vitamin C contents in European commercial blackcurrant juice products. Food Chemistry, 2011, 127, 1216-1223.	8.2	58
38	Determination of vitamin D3 in egg yolk by high-performance liquid chromatography with diode array detection. Journal of Food Composition and Analysis, 1992, 5, 281-290.	3.9	52
39	Fortification of blackcurrant juice with crowberry: Impact on polyphenol composition, urinary phenolic metabolites, and postprandial glycemic response in healthy subjects. Journal of Functional Foods, 2012, 4, 746-756.	3.4	52
40	Effect of Cholecalciferol-Enriched Hen Feed on Egg Quality. Journal of Agricultural and Food Chemistry, 2003, 51, 283-287.	5.2	44
41	Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale) Tj ETQq1 1	0.784314 3.7	rgBT /Over <mark>l</mark> o
42	Possible Factors Responsible for the High Variation in the Cholecalciferol Contents of Fish. Journal of Agricultural and Food Chemistry, 1997, 45, 3891-3896.	5.2	36
43	Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Quality and Safety, 2018, , .	1.8	36
44	Fish and fish side streams are valuable sources of high-value components. Food Quality and Safety, 2019, 3, 209-226.	1.8	36
45	Determination of 25-Hydroxycholecalciferol Content in Egg Yolk by HPLC. Journal of Food Composition and Analysis, 1993, 6, 250-255.	3.9	31
46	Comparison of In-Line Connected Diode Array and Electrochemical Detectors in the High-Performance Liquid Chromatographic Analysis of Coenzymes Q9and Q10in Food Materials. Journal of Agricultural and Food Chemistry, 2000, 48, 1229-1233.	5.2	29
47	Lipid oxidation inhibition capacity of plant extracts and powders in a processed meat model system. Meat Science, 2020, 162, 108033.	5.5	29
48	Influence of low dietary cholecalciferol intake on phosphorus and trace element metabolism by rainbow trout (Oncorhynchus mykiss, Walbaum). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 122, 117-125.	1.8	27
49	Toxicological and bioactivity evaluation of blackcurrant press cake, sea buckthorn leaves and bark from Scots pine and Norway spruce extracts under a green integrated approach. Food and Chemical Toxicology, 2021, 153, 112284.	3.6	26
50	Bilberry and Sea Buckthorn Leaves and Their Subcritical Water Extracts Prevent Lipid Oxidation in Meat Products. Foods, 2020, 9, 265.	4.3	21
51	Impact of enzymatic hydrolysis on the nutrients, phytochemicals and sensory properties of oil hemp seed cake (Cannabis sativa L. FINOLA variety). Food Chemistry, 2020, 320, 126530.	8.2	21
52	New analytical aspects of vitamin D in foods. Food Chemistry, 1996, 57, 95-99.	8.2	19
53	Possibilities to raise vitamin D content of rainbow trout (Oncorhynchus mykiss) by elevated feed cholecalciferol contents. , 1999, 79, 195-198.		16
54	Dihydrovitamin K1 in oils and margarines. Food Chemistry, 1999, 64, 411-414.	8.2	14

#	Article	IF	CITATIONS
55	Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots. Foods, 2020, 9, 1515.	4.3	11
56	Phylloquinone (Vitamin K1) in Cereal Products. Cereal Chemistry, 1998, 75, 113-116.	2.2	9
57	Inoculation success of Inonotus obliquus in living birch (Betula spp.). Forest Ecology and Management, 2021, 492, 119244.	3.2	7
58	Postprandial glycaemic response to berry nectars containing inverted sucrose. Journal of Nutritional Science, 2017, 6, e4.	1.9	6
59	The effect of gradual addition of camelina seeds in the diet of rainbow trout (<i>Oncorhynchus) Tj ETQq1 1 0.78</i>	4314 rgBT 1.8	- /Qverlock 1
60	Effects of Weak Acids on the Microbiological, Nutritional and Sensory Quality of Baltic Herring (Clupea harengus membras). Foods, 2022, 11, 1717.	4.3	4
61	Intake of vitamins B1, B2, C, A and E estimated on the basis of analysis of weekly diets of 19 Finnish hospitals. Journal of Human Nutrition and Dietetics, 1999, 12, 293-300.	2.5	2
62	Underutilized Northern plant sources and technological aspects for recovering their polyphenols. Advances in Food and Nutrition Research, 2021, 98, 125-169.	3.0	2