Andrea Rau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703047/publications.pdf

Version: 2024-02-01

37 papers 2,142 citations

430874 18 h-index 395702 33 g-index

47 all docs

47 docs citations

47 times ranked

4552 citing authors

#	Article	IF	CITATIONS
1	A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Briefings in Bioinformatics, 2013, 14, 671-683.	6.5	1,064
2	Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics, 2013, 29, 2146-2152.	4.1	193
3	Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biology, 2019, 17, 108.	3.8	109
4	Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics, 2014, 15, 91.	2.6	99
5	Contribution of mammary epithelial cells to the immune response during early stages of a bacterial infection to Staphylococcus aureus. Veterinary Research, 2014, 45, 16.	3.0	65
6	Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 2015, 31, 1420-1427.	4.1	64
7	Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. Journal of Animal Breeding and Genetics, 2020, 137, 49-59.	2.0	51
8	Transformation and model choice for RNA-seq co-expression analysis. Briefings in Bioinformatics, 2018, 19, bbw128.	6.5	48
9	An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data. Statistical Applications in Genetics and Molecular Biology, 2010, 9, Article 9.	0.6	46
10	Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis. Briefings in Bioinformatics, 2018, 19, bbw092.	6.5	40
11	Domestication rewired gene expression and nucleotide diversity patterns in tomato. Plant Journal, 2017, 91, 631-645.	5.7	34
12	Clustering transformed compositional data using <i>K</i> -means, with applications in gene expression and bicycle sharing system data. Journal of Applied Statistics, 2019, 46, 47-65.	1.3	34
13	Transcriptome profiling of the honeybee parasite Varroa destructor provides new biological insights into the mite adult life cycle. BMC Genomics, 2018, 19, 328.	2.8	33
14	A comprehensive overview of bull sperm-borne small non-coding RNAs and their diversity across breeds. Epigenetics and Chromatin, 2020, 13, 19.	3.9	31
15	Compositional Bias in Naìve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing. Scientific Reports, 2018, 8, 1214.	3.3	28
16	Cellular reprogramming for successful CNS axon regeneration is driven by a temporally changing cast of transcription factors. Scientific Reports, 2019, 9, 14198.	3.3	28
17	A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data. PLoS ONE, 2013, 8, e77503.	2.5	24
18	Joint estimation of causal effects from observational and intervention gene expression data. BMC Systems Biology, 2013, 7, 111.	3.0	22

#	Article	IF	CITATIONS
19	Exploring drivers of gene expression in the Cancer Genome Atlas. Bioinformatics, 2019, 35, 62-68.	4.1	21
20	Impact of the Genetic Background on the Composition of the Chicken Plasma MiRNome in Response to a Stress. PLoS ONE, 2014, 9, e114598.	2.5	19
21	Genetic and transcriptomic analyses provide new insights on the early antiviral response to VHSV in resistant and susceptible rainbow trout. BMC Genomics, 2018, 19, 482.	2.8	17
22	Reverse engineering gene regulatory networks using approximate Bayesian computation. Statistics and Computing, 2012, 22, 1257-1271.	1.5	15
23	An evaluation of the predictive performance and mapping power of the BayesR model for genomic prediction. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	9
24	Mendelian randomization analysis with survival outcomes. Genetic Epidemiology, 2021, 45, 16-23.	1.3	6
25	Identification of a Rat Mammary Tumor Risk Locus That Is Syntenic with the Commonly Amplified 8q12.1 and 8q22.1 Regions in Human Breast Cancer Patients. G3: Genes, Genomes, Genetics, 2019, 9, 1739-1743.	1.8	5
26	Integrated sRNA-seq and RNA-seq Analyses Reveal a microRNA Regulation Network Involved in Cold Response in Pisum sativum L Genes, 2022, 13, 1119.	2.4	4
27	Regeneration Rosetta: An Interactive Web Application To Explore Regeneration-Associated Gene Expression and Chromatin Accessibility. G3: Genes, Genomes, Genetics, 2019, 9, 3953-3959.	1.8	3
28	Individualized multi-omic pathway deviation scores using multiple factor analysis. Biostatistics, 2020,	1.5	3
29	A limited sample model to predict area under the drug concentration curve for 17-(allylamino)-17-demethoxygeldanamycin and its active metabolite 17-(amino)-17-demethoxygeldanomycin. Cancer Chemotherapy and Pharmacology, 2007, 61, 39-45.	2.3	2
30	A unified linear mixed model for familial relatedness and population structure in genetic association studies. Genetic Epidemiology, 2021, 45, 305-315.	1.3	1
31	Identification of marginal causal relationships in gene networks from observational and interventional expression data. PLoS ONE, 2017, 12, e0171142.	2.5	1
32	Multiview cluster aggregation and splitting, with an application to multiomic breast cancer data. Annals of Applied Statistics, 2020, 14 , .	1.1	1
33	Potential genetic robustness of Prnp and Sprn double knockout mouse embryos towards ShRNA-lentiviral inoculation. Veterinary Research, 2022, 53, .	3.0	1
34	A model selection criterion for model-based clustering of annotated gene expression data. Statistical Applications in Genetics and Molecular Biology, 2015, 14, 413-28.	0.6	0
35	32 Functional annotation of livestock genomes: chromatin structure and regulation of gene expression. Journal of Animal Science, 2019, 97, 15-16.	0.5	0
36	APPROXIMATE BAYESIAN APPROACHES FOR REVERSE ENGINEERING BIOLOGICAL NETWORKS. Conference on Applied Statistics in Agriculture, 0, , .	0.0	0

#	Article	IF	CITATIONS
37	Estimation d'effets causaux dans les réseaux de régulation génique. Vers la grande dimension. Revue D'Intelligence Artificielle, 2015, 29, 205-227.	0.6	0