Joel N Blankson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7029362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The BNT162b2 mRNA Vaccine Elicits Robust Humoral and Cellular Immune Responses in People Living With Human Immunodeficiency Virus (HIV). Clinical Infectious Diseases, 2022, 74, 1268-1270.	5.8	118
2	mRNA Vaccine-Elicited Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)–Specific T Cells Persist at 6 Months and Recognize the Delta Variant. Clinical Infectious Diseases, 2022, 75, e898-e901.	5.8	25
3	CD4+ T cells from COVID-19 mRNA vaccine recipients recognize a conserved epitope present in diverse coronaviruses. Journal of Clinical Investigation, 2022, 132, .	8.2	16
4	A third dose of SARS-CoV-2 vaccine increases neutralizing antibodies against variants of concern in solid organ transplant recipients. American Journal of Transplantation, 2022, 22, 1253-1260.	4.7	73
5	Differentiation of Individuals Previously Infected with and Vaccinated for SARS-CoV-2 in an Inner-City Emergency Department. Journal of Clinical Microbiology, 2022, 60, jcm0239021.	3.9	5
6	Adaptive immune responses in vaccinated patients with symptomatic SARS-CoV-2 Alpha infection. JCI Insight, 2022, 7, .	5.0	12
7	Boosting of cross-reactive antibodies to endemic coronaviruses by SARS-CoV-2 infection but not vaccination with stabilized spike. ELife, 2022, 11, .	6.0	26
8	A Fourth Dose of COVID-19 Vaccine Does Not Induce Neutralization of the Omicron Variant Among Solid Organ Transplant Recipients With Suboptimal Vaccine Response. Transplantation, 2022, 106, 1440-1444.	1.0	49
9	SARS-CoV-2–specific immune responses in boosted vaccine recipients with breakthrough infections during the Omicron variant surge. JCI Insight, 2022, 7, .	5.0	15
10	SARS-CoV-2 vaccination diversifies the CD4+ spike-reactive T cell repertoire in patients with prior SARS-CoV-2 infection. EBioMedicine, 2022, 80, 104048.	6.1	12
11	Decay of coronavirus disease 2019 mRNA vaccine-induced immunity in people with HIV. Aids, 2022, 36, 1315-1317.	2.2	7
12	People with HIV-1 Demonstrate Type 1 Interferon Refractoriness Associated with Upregulated USP18. Journal of Virology, 2021, 95, .	3.4	4
13	Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. Journal of Clinical Investigation, 2021, 131, .	8.2	72
14	SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. Journal of Clinical Investigation, 2021, 131, .	8.2	154
15	How elite controllers and posttreatment controllers inform our search for an HIV-1 cure. Journal of Clinical Investigation, 2021, 131, .	8.2	25
16	CD8 Effector T Cells Function Synergistically With Broadly Neutralizing Antibodies to Enhance Suppression of HIV Infection. Frontiers in Immunology, 2021, 12, 708355.	4.8	5
17	HIV Antibody Profiles in HIV Controllers and Persons With Treatment-Induced Viral Suppression. Frontiers in Immunology, 2021, 12, 740395.	4.8	6
18	The Esperanza Patient: More Hope for a Sterilizing HIV-1 Cure. Annals of Internal Medicine, 2021, , .	3.9	3

#	Article	IF	CITATIONS
19	Elite suppressors have low frequencies of intact HIV-1 proviral DNA. Aids, 2020, 34, 641-643.	2.2	20
20	Intact proviral DNA assay analysis of large cohorts of people with HIV provides a benchmark for the frequency and composition of persistent proviral DNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18692-18700.	7.1	67
21	Viral reservoirs in elite controllers of HIV-1 infection: Implications for HIV cure strategies. EBioMedicine, 2020, 62, 103118.	6.1	28
22	A Comparison of Different Immune Activation Strategies to Reverse HIV-1 Latency. Open Forum Infectious Diseases, 2020, 7, ofaa082.	0.9	4
23	Combined Effects of HLA-B*57/5801 Elite Suppressor CD8+ T Cells and NK Cells on HIV-1 Replication. Frontiers in Cellular and Infection Microbiology, 2020, 10, 113.	3.9	9
24	A T Cell Receptor Sequencing-Based Assay Identifies Cross-Reactive Recall CD8+ T Cell Clonotypes Against Autologous HIV-1 Epitope Variants. Frontiers in Immunology, 2020, 11, 591.	4.8	15
25	Replacing cART with CAR-T Cells: Using Immunotherapy to Cure HIV. Molecular Therapy, 2020, 28, 1561-1562.	8.2	3
26	Healthy donor T cell responses to common cold coronaviruses and SARS-CoV-2. Journal of Clinical Investigation, 2020, 130, 6631-6638.	8.2	75
27	Does B Cell Follicle Exclusion of CD8+ T Cells Make Lymph Nodes Sanctuaries of HIV Replication?. Frontiers in Immunology, 2019, 10, 2362.	4.8	10
28	A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature, 2019, 566, 120-125.	27.8	471
29	Interferon Alpha Enhances NK Cell Function and the Suppressive Capacity of HIV-Specific CD8 ⁺ T Cells. Journal of Virology, 2019, 93, .	3.4	48
30	Long-term remission despite clonal expansion of replication-competent HIV-1 isolates. JCI Insight, 2018, 3, .	5.0	39
31	Natural control of HIV infection in young women in South Africa: HPTN 068. HIV Clinical Trials, 2018, 19, 202-208.	2.0	4
32	CMPK2 and BCL-G are associated with type 1 interferon–induced HIV restriction in humans. Science Advances, 2018, 4, eaat0843.	10.3	64
33	Highly Attenuated Infection With a Vpr-Deleted Molecular Clone of Human Immunodeficiency Virus-1. Journal of Infectious Diseases, 2018, 218, 1447-1452.	4.0	10
34	Cross-reactive microbial peptides can modulate HIV-specific CD8+ T cell responses. PLoS ONE, 2018, 13, e0192098.	2.5	14
35	Immunology of Latent HIV Infection. , 2018, , 1077-1083.		0
36	Short Communication: The Impact of Viral Suppression and Viral Breakthrough on Limited-Antigen Avidity Assay Results in Individuals with Clade B HIV Infection. AIDS Research and Human Retroviruses, 2017, 33, 325-327.	1.1	7

#	Article	IF	CITATIONS
37	Factors Associated With the Control of Viral Replication and Virologic Breakthrough in a Recently Infected HIV-1 Controller. EBioMedicine, 2017, 16, 141-149.	6.1	27
38	The Antiviral Immune Response and Its Impact on the HIV-1 Reservoir. Current Topics in Microbiology and Immunology, 2017, 417, 43-67.	1.1	3
39	HIV-1 reservoirs in elite controllers: clues for developing a functional cure?. Future Microbiology, 2017, 12, 1019-1022.	2.0	3
40	Diversity in the US Infectious Diseases Workforce: Challenges for Women and Underrepresented Minorities. Journal of Infectious Diseases, 2017, 216, S606-S610.	4.0	21
41	A CD3/CD28 microbead-based HIV-1 viral outgrowth assay. Journal of Virus Eradication, 2017, 3, 85-89.	0.5	12
42	The mouse viral outgrowth assay: avatars for the detection of HIV-1 reservoirs. Retrovirology, 2017, 14, 52.	2.0	9
43	HIV-antibody complexes enhance production of type I interferon by plasmacytoid dendritic cells. Journal of Clinical Investigation, 2017, 127, 4352-4364.	8.2	17
44	HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study. PLoS Medicine, 2017, 14, e1002417.	8.4	186
45	The effect of Ingenol-B on the suppressive capacity of elite suppressor HIV-specific CD8+ T cells. PLoS ONE, 2017, 12, e0174516.	2.5	14
46	A CD3/CD28 microbead-based HIV-1 viral outgrowth assay. Journal of Virus Eradication, 2017, 3, 85-89.	0.5	9
47	Characterization of Elite Suppressors Cell-Associated HIV-1 mRNA at Baseline and with T Cell Activation . Yale Journal of Biology and Medicine, 2017, 90, 331-336.	0.2	2
48	Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts―2015 Workshop Summary. AIDS Research and Human Retroviruses, 2016, 32, 109-119.	1.1	57
49	Development and Evaluation of a Modified Fourth-Generation Human Immunodeficiency Virus Enzyme Immunoassay for Cross-Sectional Incidence Estimation in Clade B Populations. AIDS Research and Human Retroviruses, 2016, 32, 756-762.	1.1	7
50	Short Communication: HIV Controller T Cells Effectively Inhibit Viral Replication in Alveolar Macrophages. AIDS Research and Human Retroviruses, 2016, 32, 1097-1099.	1.1	2
51	What can we do to reduce the viral reservoir in HIV-1-infected individuals?. Future Microbiology, 2016, 11, 839-842.	2.0	1
52	The Effect of Latency Reversal Agents on Primary CD8 + T Cells: Implications for Shock and Kill Strategies for Human Immunodeficiency Virus Eradication. EBioMedicine, 2016, 8, 217-229.	6.1	81
53	Immune Control Despite Protracted Lymphopenia After Chemoradiation in an Elite Controller. Open Forum Infectious Diseases, 2016, 3, ofw016.	0.9	0
54	Reactivation Kinetics of HIV-1 and Susceptibility of Reactivated Latently Infected CD4+T Cells to HIV-1-Specific CD8+T Cells. Journal of Virology, 2015, 89, 9631-9638.	3.4	19

#	Article	IF	CITATIONS
55	A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads. Journal of Infectious Diseases, 2015, 212, 1387-1396.	4.0	63
56	Hospitalization Rates and Reasons Among HIV Elite Controllers and Persons With Medically Controlled HIV Infection. Journal of Infectious Diseases, 2015, 211, 1692-1702.	4.0	105
57	Long-Term Control of Viral Replication in a Group O, Human Immunodeficiency Virus Type 1-Infected Individual. AIDS Research and Human Retroviruses, 2014, 30, 511-513.	1.1	2
58	Evolution of an Attenuated HIV-1 Isolate in an Elite Suppressor. AIDS Research and Human Retroviruses, 2014, 30, 284-288.	1.1	2
59	HIV and HCV Activate the Inflammasome in Monocytes and Macrophages via Endosomal Toll-Like Receptors without Induction of Type 1 Interferon. PLoS Pathogens, 2014, 10, e1004082.	4.7	159
60	Candida Esophagitis in a Human Immunodeficiency Virus-1-Positive Elite Controller With Hepatitis C Virus Cirrhosis. Open Forum Infectious Diseases, 2014, 1, ofu111.	0.9	3
61	Failure to Identify HIV-Infected Individuals in a Clinical Trial Using a Single HIV Rapid Test for Screening. HIV Clinical Trials, 2014, 15, 62-68.	2.0	17
62	Finding a Cure for Human Immunodeficiency Virus-1 Infection. Infectious Disease Clinics of North America, 2014, 28, 633-650.	5.1	22
63	HLA-B*57 Elite Suppressor and Chronic Progressor HIV-1 Isolates Replicate Vigorously and Cause CD4 ⁺ T Cell Depletion in Humanized BLT Mice. Journal of Virology, 2014, 88, 3340-3352.	3.4	46
64	Comparative Analysis of the Capacity of Elite Suppressor CD4 ⁺ and CD8 ⁺ T Cells To Inhibit HIV-1 Replication in Monocyte-Derived Macrophages. Journal of Virology, 2014, 88, 9789-9798.	3.4	17
65	Primary CD8+ T cells from elite suppressors effectively eliminate non-productively HIV-1 infected resting and activated CD4+T cells. Retrovirology, 2013, 10, 68.	2.0	41
66	The implications of viral reservoirs on the elite control of HIV-1 infection. Cellular and Molecular Life Sciences, 2013, 70, 1009-1019.	5.4	21
67	Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure. Cell, 2013, 155, 540-551.	28.9	1,207
68	CD8+T cells from HLA-B*57 elite suppressors effectively suppress replication of HIV-1 escape mutants. Retrovirology, 2013, 10, 152.	2.0	36
69	Rapid Quantification of the Latent Reservoir for HIV-1 Using a Viral Outgrowth Assay. PLoS Pathogens, 2013, 9, e1003398.	4.7	228
70	Effect of Natural and ARV-Induced Viral Suppression and Viral Breakthrough on Anti-HIV Antibody Proportion and Avidity in Patients with HIV-1 Subtype B Infection. PLoS ONE, 2013, 8, e55525.	2.5	40
71	Inhibitory Potential of Subpopulations of CD8 ⁺ T Cells in HIV-1-Infected Elite Suppressors. Journal of Virology, 2012, 86, 13679-13688.	3.4	46
72	Stimulation of HIV-1-Specific Cytolytic T Lymphocytes Facilitates Elimination of Latent Viral Reservoir after Virus Reactivation. Immunity, 2012, 36, 491-501.	14.3	680

#	Article	IF	CITATIONS
73	HIV-1 and Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2012, 18, S172-S176.	2.0	2
74	Host factors dictate control of viral replication in two HIV-1 controller/chronic progressor transmission pairs. Nature Communications, 2012, 3, 716.	12.8	57
75	Developing strategies for HIV-1 eradication. Trends in Immunology, 2012, 33, 554-562.	6.8	87
76	Residual Viremia and Viral Reservoirs in Elite Controllers. , 2012, , 253-271.		0
77	Sustained elite suppression of replication competent HIV-1 in a patient treated with rituximab based chemotherapy. Journal of Clinical Virology, 2011, 51, 195-198.	3.1	9
78	Spontaneous resolution of HIV-associated nephropathy in an elite controller. Aids, 2011, 25, 1135-1137.	2.2	4
79	The study of elite controllers: a pure academic exercise or a potential pathway to an HIV-1 vaccine?. Current Opinion in HIV and AIDS, 2011, 6, 147-150.	3.8	10
80	Prolonged control of replication-competent dual- tropic human immunodeficiency virus-1 following cessation of highly active antiretroviral therapy. Retrovirology, 2011, 8, 97.	2.0	47
81	Viral suppression of multiple escape mutants by de novo CD8+ T cell responses in a human immunodeficiency virus-1 Infected elite suppressor. Retrovirology, 2011, 8, 63.	2.0	29
82	HIV Type 1-Mediated Downregulation of HLA-B*57/B*5801 Proteins on Elite Suppressor CD4+ T Cells. AIDS Research and Human Retroviruses, 2011, 27, 183-186.	1.1	2
83	CD4 ⁺ T cells from elite suppressors are more susceptible to HIV-1 but produce fewer virions than cells from chronic progressors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E689-98.	7.1	41
84	Protective interleukin-28B genotype affects hepatitis C virus clearance, but does not contribute to HIV-1 control in a cohort of African–American elite controllers/suppressors. Aids, 2011, 25, 385-387.	2.2	20
85	Circulating Monocytes Are Not a Major Reservoir of HIV-1 in Elite Suppressors. Journal of Virology, 2011, 85, 10399-10403.	3.4	21
86	Unstimulated Primary CD4 ⁺ T Cells from HIV-1-Positive Elite Suppressors Are Fully Susceptible to HIV-1 Entry and Productive Infection. Journal of Virology, 2011, 85, 979-986.	3.4	33
87	Seronegative HIV-1 infection: a review of the literature. Aids, 2010, 24, 1407-1414.	2.2	29
88	Effector mechanisms in HIV-1 infected elite controllers: Highly active immune responses?. Antiviral Research, 2010, 85, 295-302.	4.1	82
89	A Case of Seronegative HIVâ€1 Infection. Journal of Infectious Diseases, 2010, 201, 341-345.	4.0	13
90	Control of HIV-1 in Elite Suppressors despite Ongoing Replication and Evolution in Plasma Virus. Journal of Virology, 2010, 84, 7018-7028.	3.4	116

#	Article	IF	CITATIONS
91	Prolonged Control of an HIV Type 1 Escape Variant Following Treatment Interruption in an HLA-B*27-Positive Patient. AIDS Research and Human Retroviruses, 2010, 26, 1307-1311.	1.1	9
92	Evolution of the HIV-1 nefgene in HLA-B*57 Positive Elite Suppressors. Retrovirology, 2010, 7, 94.	2.0	39
93	HIV-1 Gag evolution in recently infected human leukocyte antigen-B*57 patients with low-level viremia. Aids, 2010, 24, 2405-2408.	2.2	12
94	Control of HIV-1 replication in elite suppressors. Discovery Medicine, 2010, 9, 261-6.	0.5	48
95	Role of Natural Killer Cells in a Cohort of Elite Suppressors: Low Frequency of the Protective KIR3DS1 Allele and Limited Inhibition of Human Immunodeficiency Virus Type 1 Replication In Vitro. Journal of Virology, 2009, 83, 5028-5034.	3.4	83
96	Effective Downregulation of HLA-A*2 and HLA-B*57 by Primary Human Immunodeficiency Virus Type 1 Isolates Cultured from Elite Suppressors. Journal of Virology, 2009, 83, 6941-6946.	3.4	12
97	Evidence of CD8 ⁺ T-Cell-Mediated Selective Pressure on Human Immunodeficiency Virus Type 1 <i>nef</i> in HLA-B*57 ⁺ Elite Suppressors. Journal of Virology, 2009, 83, 88-97.	3.4	59
98	T Cell Dynamics and the Response to HAART in a Cohort of HIVâ€1–Infected Elite Suppressors. Clinical Infectious Diseases, 2009, 49, 1763-1766.	5.8	57
99	Elucidating the elite: mechanisms of control in HIV-1 infection. Trends in Pharmacological Sciences, 2009, 30, 631-637.	8.7	107
100	Elite Suppression of HIV-1 Replication. Immunity, 2008, 29, 845-847.	14.3	15
101	The role of protective HCP5 and HLA-C associated polymorphisms in the control of HIV-1 replication in a subset of elite suppressors. Aids, 2008, 22, 541-544.	2.2	50
102	Preservation of FoxP3 ⁺ Regulatory T Cells in the Peripheral Blood of Human Immunodeficiency Virus Type 1-Infected Elite Suppressors Correlates with Low CD4 ⁺ T-Cell Activation. Journal of Virology, 2008, 82, 8307-8315.	3.4	125
103	Transmission of Human Immunodeficiency Virus Type 1 from a Patient Who Developed AIDS to an Elite Suppressor. Journal of Virology, 2008, 82, 7395-7410.	3.4	90
104	CD4+T Cell Depletion in an Untreated HIV Type 1–Infected Human Leukocyte Antigen–B*5801–Positive Patient with an Undetectable Viral Load. Clinical Infectious Diseases, 2008, 46, e78-e82.	5.8	29
105	A Comparison of Viral Loads between HIVâ€1–Infected Elite Suppressors and Individuals Who Receive Suppressive Highly Active Antiretroviral Therapy. Clinical Infectious Diseases, 2008, 47, 102-104.	5.8	55
106	Role of APOBEC3G/F-Mediated Hypermutation in the Control of Human Immunodeficiency Virus Type 1 in Elite Suppressors. Journal of Virology, 2008, 82, 3125-3130.	3.4	77
107	Low frequency of GB virus C viremia in a cohort of HIV-1-infected elite suppressors. Aids, 2008, 22, 2398-2400.	2.2	7
108	Isolation and Characterization of Replication-Competent Human Immunodeficiency Virus Type 1 from a Subset of Elite Suppressors. Journal of Virology, 2007, 81, 2508-2518.	3.4	257

#	Article	IF	CITATIONS
109	Evolution of HIVâ€1 in an HLAâ€B*57–Positive Patient during Virologic Escape. Journal of Infectious Diseases, 2007, 196, 50-55.	4.0	55
110	Viral reservoirs and HIV-specific immunity. Current Opinion in Internal Medicine, 2006, 5, 211-215.	1.5	3
111	Maintenance of viral suppression in HIV-1–infected HLA-B*57+ elite suppressors despite CTL escape mutations. Journal of Experimental Medicine, 2006, 203, 1357-1369.	8.5	250
112	Neutralizing Antibodies Do Not Mediate Suppression of Human Immunodeficiency Virus Type 1 in Elite Suppressors or Selection of Plasma Virus Variants in Patients on Highly Active Antiretroviral Therapy. Journal of Virology, 2006, 80, 4758-4770.	3.4	156
113	Primary HIV-1 infection: to treat or not to treat?. Aids Reader, 2005, 15, 245-6, 249-51.	0.3	5
114	The Challenge of Viral Reservoirs in HIV-1 Infection. Annual Review of Medicine, 2002, 53, 557-593.	12.2	575
115	Loss of HIV-1-Specific Immunity During Treatment Interruption in 2 Chronically Infected Patients. JAMA - Journal of the American Medical Association, 2002, 288, 162-a-164.	7.4	12
116	Characterization of Chemokine Receptor Utilization of Viruses in the Latent Reservoir for Human Immunodeficiency Virus Type 1. Journal of Virology, 2000, 74, 7824-7833.	3.4	139
117	Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine, 1999, 5, 512-517.	30.7	1,962