List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7028639/publications.pdf Version: 2024-02-01



FULL HUEDTA

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature<br>Photonics, 2013, 7, 613-619.                                                                                        | 31.4 | 825       |
| 2  | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.                                                                 | 26.7 | 808       |
| 3  | The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars. Astrophysical Journal,<br>Supplement Series, 2018, 235, 37.                                                                                   | 7.7  | 448       |
| 4  | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.                                                                 | 26.7 | 447       |
| 5  | Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.                                                                        | 26.7 | 427       |
| 6  | The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background. Astrophysical Journal, 2018, 859, 47.                                                                               | 4.5  | 331       |
| 7  | Deep Learning for real-time gravitational wave detection and parameter estimation: Results with<br>Advanced LIGO data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics,<br>2018, 778, 64-70. | 4.1  | 230       |
| 8  | Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914.<br>Classical and Quantum Gravity, 2016, 33, 134001.                                                                      | 4.0  | 225       |
| 9  | Deep neural networks to enable real-time multimessenger astrophysics. Physical Review D, 2018, 97, .                                                                                                                          | 4.7  | 166       |
| 10 | A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of<br>Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.                                                              | 4.5  | 144       |
| 11 | The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole<br>Binaries. Astrophysical Journal, 2019, 880, 116.                                                                        | 4.5  | 102       |
| 12 | Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers. Physical Review D, 2018, 97, .                                           | 4.7  | 100       |
| 13 | Classification and unsupervised clustering of LIGO data with Deep Transfer Learning. Physical Review D, 2018, 97, .                                                                                                           | 4.7  | 100       |
| 14 | Accurate and efficient waveforms for compact binaries on eccentric orbits. Physical Review D, 2014, 90, .                                                                                                                     | 4.7  | 94        |
| 15 | Complete waveform model for compact binaries on eccentric orbits. Physical Review D, 2017, 95, .                                                                                                                              | 4.7  | 88        |
| 16 | The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.                                                                                                                           | 2.4  | 69        |
| 17 | Effect of eccentricity on binary neutron star searches in advanced LIGO. Physical Review D, 2013, 87, .                                                                                                                       | 4.7  | 68        |
| 18 | Gravitational wave denoising of binary black hole mergers with deep learning. Physics Letters, Section<br>B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 800, 135081.                                         | 4.1  | 61        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Enabling real-time multi-messenger astrophysics discoveries with deep learning. Nature Reviews<br>Physics, 2019, 1, 600-608.                                                                                        | 26.6 | 53        |
| 20 | Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO<br>Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.               | 4.5  | 52        |
| 21 | Modeling the Uncertainties of Solar System Ephemerides for Robust Gravitational-wave Searches with<br>Pulsar-timing Arrays. Astrophysical Journal, 2020, 893, 112.                                                  | 4.5  | 49        |
| 22 | Proposed search for the detection of gravitational waves from eccentric binary black holes. Physical Review D, 2016, 93, .                                                                                          | 4.7  | 47        |
| 23 | Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals.<br>Physical Review D, 2009, 79, .                                                                                   | 4.7  | 45        |
| 24 | Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations. Physical Review D, 2015, 92, .                                                               | 4.7  | 42        |
| 25 | DETECTING ECCENTRIC SUPERMASSIVE BLACK HOLE BINARIES WITH PULSAR TIMING ARRAYS: RESOLVABLE SOURCE STRATEGIES. Astrophysical Journal, 2016, 817, 70.                                                                 | 4.5  | 38        |
| 26 | Deep transfer learning for star cluster classification: I. application to the PHANGS– <i>HST</i> survey.<br>Monthly Notices of the Royal Astronomical Society, 2020, 493, 3178-3193.                                | 4.4  | 38        |
| 27 | Deep learning at scale for the construction of galaxy catalogs in the Dark Energy Survey. Physics<br>Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 795, 248-258.                  | 4.1  | 37        |
| 28 | The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory. Astrophysical Journal, 2020, 889,<br>38.                                                                                                          | 4.5  | 36        |
| 29 | Accelerated, scalable and reproducible AI-driven gravitational wave detection. Nature Astronomy, 2021, 5, 1062-1068.                                                                                                | 10.1 | 31        |
| 30 | Importance of including small body spin effects in the modelling of extreme and intermediate mass-ratio inspirals. Physical Review D, 2011, 84, .                                                                   | 4.7  | 29        |
| 31 | Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole<br>mergers. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 812,<br>136029. | 4.1  | 29        |
| 32 | Deep learning for gravitational wave forecasting of neutron star mergers. Physics Letters, Section B:<br>Nuclear, Elementary Particle and High-Energy Physics, 2021, 816, 136185.                                   | 4.1  | 29        |
| 33 | Intermediate-mass-ratio inspirals in the Einstein Telescope. I. Signal-to-noise ratio calculations.<br>Physical Review D, 2011, 83, .                                                                               | 4.7  | 28        |
| 34 | The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics. Astrophysical<br>Journal, 2020, 890, 108.                                                                                       | 4.5  | 28        |
| 35 | Star cluster classification in the PHANGS– <i>HST</i> survey: Comparison between human and machine<br>learning approaches. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5294-5317.                 | 4.4  | 28        |
| 36 | Physics of eccentric binary black hole mergers: A numerical relativity perspective. Physical Review D, 2019, 100, .                                                                                                 | 4.7  | 26        |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers. Physical Review D, 2019, 100, .                                                                                   | 4.7  | 25        |
| 38 | Intermediate-mass-ratio inspirals in the Einstein Telescope. II. Parameter estimation errors. Physical<br>Review D, 2011, 83, .                                                                                                                      | 4.7  | 24        |
| 39 | Convergence of artificial intelligence and high performance computing on NSF-supported cyberinfrastructure. Journal of Big Data, 2020, 7, .                                                                                                          | 11.0 | 22        |
| 40 | Physics-inspired deep learning to characterize the signal manifold of quasi-circular, spinning,<br>non-precessing binary black hole mergers. Physics Letters, Section B: Nuclear, Elementary Particle and<br>High-Energy Physics, 2020, 808, 135628. | 4.1  | 18        |
| 41 | Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence.<br>Physical Review D, 2020, 101, .                                                                                                                       | 4.7  | 18        |
| 42 | Characterization of numerical relativity waveforms of eccentric binary black hole mergers. Physical<br>Review D, 2019, 100, .                                                                                                                        | 4.7  | 17        |
| 43 | Importance of including small body spin effects in the modelling of intermediate mass-ratio inspirals.<br>II. Accurate parameter extraction of strong sources using higher-order spin effects. Physical Review<br>D, 2012, 85, .                     | 4.7  | 16        |
| 44 | Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric<br>Compact Binary Coalescence. Astrophysical Journal, 2021, 919, 82.                                                                                    | 4.5  | 16        |
| 45 | Deep Learning for Cardiologist-Level Myocardial Infarction Detection in Electrocardiograms. IFMBE<br>Proceedings, 2021, , 341-355.                                                                                                                   | 0.3  | 14        |
| 46 | Statistically-informed deep learning for gravitational wave parameter estimation. Machine Learning:<br>Science and Technology, 2022, 3, 015007.                                                                                                      | 5.0  | 14        |
| 47 | Probing neutron star structure via <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>f</mml:mi></mml:math> -mode oscillations and damping in dynamical<br>spacetime models. Physical Review D, 2019, 99, . | 4.7  | 12        |
| 48 | A FAIR and Al-ready Higgs boson decay dataset. Scientific Data, 2022, 9, 31.                                                                                                                                                                         | 5.3  | 12        |
| 49 | Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral.<br>Astrophysical Journal, 2018, 857, 38.                                                                                                                       | 4.5  | 11        |
| 50 | Observation of eccentric binary black hole mergers with second and third generation gravitational wave detector networks. Physical Review D, 2021, 103, .                                                                                            | 4.7  | 11        |
| 51 | Accurate modeling of intermediate-mass-ratio inspirals: Exploring the form of the self-force in the intermediate-mass-ratio regime. Physical Review D, 2012, 86, .                                                                                   | 4.7  | 10        |
| 52 | Supporting High-Performance and High-Throughput Computing for Experimental Science. Computing and Software for Big Science, 2019, 3, 1.                                                                                                              | 2.9  | 9         |
| 53 | Inference-Optimized AI and High Performance Computing for Gravitational Wave Detection at Scale.<br>Frontiers in Artificial Intelligence, 2022, 5, 828672.                                                                                           | 3.4  | 9         |
| 54 | P ython O pen source W aveform E xtracto R ( POWER ): an open source, Python package to monitor and post-process numerical relativity simulations. Classical and Quantum Gravity, 2018, 35, 027002.                                                  | 4.0  | 8         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Self-forced evolutions of an implicit rotating source: A natural framework to model comparable and intermediate mass-ratio systems from inspiral through ringdown. Physical Review D, 2014, 90, . | 4.7 | 6         |
| 56 | BOSS-LDG: A Novel Computational Framework That Brings Together Blue Waters, Open Science Grid,<br>Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery. , 2017, , .          |     | 6         |
| 57 | Interpretable Al forecasting for numerical relativity waveforms of quasicircular, spinning,<br>nonprecessing binary black hole mergers. Physical Review D, 2022, 105, .                           | 4.7 | 6         |
| 58 | Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources. , 2021, , 1-27.                                                                            |     | 3         |
| 59 | Initial data and eccentricity reduction toolkit for binary black hole numerical relativity waveforms.<br>Classical and Quantum Gravity, 0, , .                                                    | 4.0 | 2         |
| 60 | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.                                                                 |     | 2         |
| 61 | Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources. , 2022, , 1793-1819.                                                                       |     | 0         |