Manuel Rojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7027967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118942.	4.1	10
2	Mitochondria: Ultrastructure, Dynamics, Biogenesis and Main Functions. , 2019, , 3-32.		2
3	The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Reports, 2018, 19, .	4.5	39
4	Mitofusin gain and loss of function drive pathogenesis in <i>Drosophila</i> models of <scp>CMT</scp> 2A neuropathy. EMBO Reports, 2018, 19, .	4.5	62
5	Mitochondrial DNA Mutations Provoke Dominant Inhibition of Mitochondrial Inner Membrane Fusion. PLoS ONE, 2012, 7, e49639.	2.5	14
6	Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics. Seminars in Cell and Developmental Biology, 2010, 21, 558-565.	5.0	87
7	The BH3â€only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Reports, 2010, 11, 459-465.	4.5	150
8	Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics, 2010, 19, 4861-4870.	2.9	795
9	Metalloproteaseâ€mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biology of the Cell, 2008, 100, 315-325.	2.0	149
10	Mitochondrial Fusion Is Increased by the Nuclear Coactivator PGC-1Î ² . PLoS ONE, 2008, 3, e3613.	2.5	159
11	The Mitochondria of Cultured Mammalian Cells. Methods in Molecular Biology, 2007, 372, 3-16.	0.9	7
12	The Mitochondria of Cultured Mammalian Cells. Methods in Molecular Biology, 2007, 372, 17-32.	0.9	11
13	Organization, dynamics and transmission of mitochondrial DNA: Focus on vertebrate nucleoids. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 463-472.	4.1	44
14	Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. Journal of Cellular Physiology, 2006, 209, 468-480.	4.1	234
15	Separate fusion of outer and inner mitochondrial membranes. EMBO Reports, 2005, 6, 853-859.	4.5	186
16	Organization and dynamics of human mitochondrial DNA. Journal of Cell Science, 2004, 117, 2653-2662.	2.0	338
17	The trans-membrane protein p25 forms highly specialized domains that regulate membrane composition and dynamics. Journal of Cell Science, 2003, 116, 4821-4832.	2.0	38
18	Mitochondrial Fusion in Human Cells Is Efficient, Requires the Inner Membrane Potential, and Is Mediated by Mitofusins. Molecular Biology of the Cell, 2002, 13, 4343-4354.	2.1	573

Manuel Rojo

#	Article	IF	CITATIONS
19	Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. Journal of Cell Science, 2002, 115, 1663-1674.	2.0	460
20	Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. Journal of Cell Science, 2002, 115, 1663-74.	2.0	384
21	Synthetic Lethality with Conditional <i>dbp6</i> Alleles Identifies Rsa1p, a Nucleoplasmic Protein Involved in the Assembly of 60S Ribosomal Subunits. Molecular and Cellular Biology, 1999, 19, 8633-8645.	2.3	56
22	Dbp6p Is an Essential Putative ATP-Dependent RNA Helicase Required for 60S-Ribosomal-Subunit Assembly in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1998, 18, 1855-1865.	2.3	88
23	Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. Rna, 1998, 4, 1268-1281.	3.5	81
24	Involvement of the Transmembrane Protein p23 in Biosynthetic Protein Transport. Journal of Cell Biology, 1997, 139, 1119-1135.	5.2	144
25	The structure of mitochondrial creatine kinase and its membrane binding properties. Molecular and Cellular Biochemistry, 1994, 133-134, 115-123.	3.1	18
26	The mitochondrial ATP / ADP carrier: Interaction with detergents and purification by a novel procedure. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 360-367.	1.0	17
27	The structure of mitochondrial creatine kinase and its membrane binding properties. , 1994, , 115-123.		0
28	Interaction of mitochondrial creatine kinase with model membranes A monolayer study. FEBS Letters, 1991, 281, 123-129.	2.8	53
29	The role of contact sites between inner and outer mitochondrial membrane in energy transfer. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1018, 229-233.	1.0	38