Qining Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026925/publications.pdf

Version: 2024-02-01

471509 610901 24 1,641 26 17 h-index citations g-index papers 27 27 27 2614 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	<i>Miscanthus</i> : a fastâ€growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 2012, 6, 580-598.	3.7	360
2	High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanoligninâ€Polyvinyl Alcohol Blends. ChemSusChem, 2014, 7, 3513-3520.	6.8	199
3	Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chemistry, 2015, 17, 4239-4246.	9.0	146
4	The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. ChemSusChem, 2015, 8, 275-279.	6.8	139
5	Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnology for Biofuels, 2014, 7, 150.	6.2	113
6	NMR a critical tool to study the production of carbon fiber from lignin. Carbon, 2013, 52, 65-73.	10.3	103
7	A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chemistry, 2016, 18, 5015-5024.	9.0	85
8	Advanced Chemical Design for Efficient Lignin Bioconversion. ACS Sustainable Chemistry and Engineering, 2017, 5, 2215-2223.	6.7	75
9	Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 4563-4572.	6.7	73
10	Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Bioresource Technology, 2017, 224, 714-720.	9.6	55
11	Comparison of changes in cellulose ultrastructure during different pretreatments of poplar. Cellulose, 2014, 21, 2419-2431.	4.9	47
12	Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Applied Microbiology and Biotechnology, 2015, 99, 7369-7377.	3.6	47
13	Structural Transformation of Isolated Poplar and Switchgrass Lignins during Dilute Acid Treatment. ACS Sustainable Chemistry and Engineering, 2015, 3, 2203-2210.	6.7	35
14	Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process. Fuel, 2017, 206, 494-503.	6.4	30
15	Characterization and performance of melamine enhanced urea formaldehyde resin for bonding southern pine particleboard. Journal of Applied Polymer Science, 2011, 119, 3538-3543.	2.6	28
16	Chemical Groups and Structural Characterization of Brown-Rotted Pinus massoniana Lignin. International Journal of Polymer Analysis and Characterization, 2009, 14, 19-33.	1.9	18
17	Effect of D2O on Growth Properties and Chemical Structure of Annual Ryegrass (Lolium) Tj ETQq1 1 0.784314	rgBT /Over	lock 10 Tf 50
18	Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix. Green Chemistry, 2014, 16, 3458.	9.0	17

#	Article	lF	CITATIONS
19	Effect of different catalysts on urea–formaldehyde resin synthesis. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
20	Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 2014, 4, 12148.	3.6	14
21	Lignin Structure and Aggregation Behavior in a Two-Component Ionic Liquid Solvent System. BioResources, 2014, 9, .	1.0	12
22	Changes in Chemical Composition and Microstructure of Bamboo after Gamma Ray Irradiation. BioResources, 2014, 9, .	1.0	6
23	CHAPTER 7: FERMENTATION TO BIOETHANOL/BIOBUTANOL. Materials and Energy, 2014, , 155-189.	0.1	3
24	Modification of Bleached Bamboo Fiber using Cationic Guar Gum for Fiberboard. BioResources, 2013, 8,	1.0	1
25	A â€~Twitter' Generation Perspective on Biorefining. Biofuels, Bioproducts and Biorefining, 2013, 7, 629-633.	3.7	0
26	CHAPTER 6: ENZYMATIC DECONSTRUCTION OF LIGNOCELLULOSE TO FERMENTABLE SUGARS. Materials and Energy, 2014, , 127-153.	0.1	0