Sonia Kefi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026921/publications.pdf

Version: 2024-02-01

94433 82547 7,306 72 37 72 citations h-index g-index papers 88 88 88 8317 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ecological resilience: what to measure and how. Environmental Research Letters, 2022, 17, 043003.	5.2	45
2	Biotic homogenisation in bird communities leads to largeâ€scale changes in species associations. Oikos, 2022, 2022, .	2.7	7
3	Spatial autocorrelation of local patch extinctions drives recovery dynamics in metacommunities. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220543.	2.6	3
4	Scaling up our understanding of tipping points. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	12
5	Indirect facilitation drives species composition and stability in drylands. Theoretical Ecology, 2021, 14, 189-203.	1.0	5
6	Grazing and the vanishing complexity of plant association networks in grasslands. Oikos, 2021, 130, 541-552.	2.7	3
7	Scaling up biodiversity–ecosystem functioning relationships: the role of environmental heterogeneity in space and time. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202779.	2.6	24
8	Biogeography of global drylands. New Phytologist, 2021, 231, 540-558.	7.3	145
9	The physics of higher-order interactions in complex systems. Nature Physics, 2021, 17, 1093-1098.	16.7	287
10	Positive plant–soil feedback trigger tannin evolution by niche construction: A spatial stoichiometric model. Journal of Ecology, 2020, 108, 378-391.	4.0	11
11	Geographical variation of multiplex ecological networks in marine intertidal communities. Ecology, 2020, 101, e03165.	3.2	12
12	Advances in Understanding and Managing Catastrophic Ecosystem Shifts in Mediterranean Ecosystems. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	8
13	Identifying key-conservation areas for Posidonia oceanica seagrass beds. Biological Conservation, 2020, 247, 108546.	4.1	7
14	Scalingâ€up biodiversityâ€ecosystem functioning research. Ecology Letters, 2020, 23, 757-776.	6.4	270
15	Mapping hotspots of potential ecosystem fragility using commonly available spatial data. Biological Conservation, 2020, 241, 108388.	4.1	3
16	Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. Journal of Ecology, 2019, 107, 190-202.	4.0	51
17	Connectivity-Mediated Ecohydrological Feedbacks and Regime Shifts in Drylands. Ecosystems, 2019, 22, 1497-1511.	3.4	32
18	Advancing our understanding of ecological stability. Ecology Letters, 2019, 22, 1349-1356.	6.4	147

#	Article	IF	CITATIONS
19	Non-trophic interactions strengthen the diversity—functioning relationship in an ecological bioenergetic network model. PLoS Computational Biology, 2019, 15, e1007269.	3.2	19
20	Predator traits determine food-web architecture across ecosystems. Nature Ecology and Evolution, 2019, 3, 919-927.	7.8	157
21	An Open-System Approach to Complex Biological Networks. SIAM Journal on Applied Mathematics, 2019, 79, 619-640.	1.8	17
22	Unveiling dimensions of stability in complex ecological networks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25714-25720.	7.1	64
23	A framework for estimating species-specific contributions to community indicators. Ecological Indicators, 2019, 99, 74-82.	6.3	17
24	Seeing the forest for the trees: Putting multilayer networks to work for community ecology. Functional Ecology, 2019, 33, 206-217.	3.6	57
25	The interplay between facilitation and habitat type drives spatial vegetation patterns in global drylands. Ecography, 2019, 42, 755-767.	4.5	23
26	Spatially heterogeneous stressors can alter the performance of indicators of regime shifts. Ecological Indicators, 2018, 94, 520-533.	6.3	20
27	Merging community assembly into the regime-shift approach for informing ecological restoration. Ecological Indicators, 2018, 85, 991-998.	6.3	13
28	Prediction in ecology: promises, obstacles and clarifications. Oikos, 2018, 127, 171-183.	2.7	50
29	Implications of being discrete and spatial for detecting early warning signals of regime shifts. Ecological Indicators, 2018, 94, 503-511.	6.3	10
30	Ecology and evolution of facilitation among symbionts. Nature Communications, 2018, 9, 4869.	12.8	51
31	Monitoring ecosystem degradation using spatial data and the R package spatialwarnings. Methods in Ecology and Evolution, 2018, 9, 2067-2075.	5. 2	18
32	Effects of indirect facilitation on functional diversity, dominance and niche differentiation in tropical alpine communities. Journal of Vegetation Science, 2018, 29, 835-846.	2.2	9
33	Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nature Ecology and Evolution, 2017, 1, 3.	7.8	142
34	The multilayer nature of ecological networks. Nature Ecology and Evolution, 2017, 1, 101.	7.8	383
35	Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Global Change Biology, 2017, 23, 2962-2972.	9.5	54
36	Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nature Communications, 2017, 8, 15811.	12.8	86

#	Article	IF	CITATIONS
37	Nurse species and indirect facilitation through grazing drive plant community functional traits in tropical alpine peatlands. Ecology and Evolution, 2017, 7, 11265-11276.	1.9	18
38	How Structured Is the Entangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks Leads to Increased Persistence and Resilience. PLoS Biology, 2016, 14, e1002527.	5.6	154
39	Describe, understand and predict: why do we need networks in ecology?. Functional Ecology, 2016, 30, 1878-1882.	3.6	86
40	When can positive interactions cause alternative stable states in ecosystems?. Functional Ecology, 2016, 30, 88-97.	3.6	139
41	Trait selection during food web assembly: the roles of interactions and temperature. Theoretical Ecology, 2016, 9, 417-429.	1.0	10
42	mangal – making ecological network analysis simple. Ecography, 2016, 39, 384-390.	4.5	53
43	Structure and Functioning of Dryland Ecosystems in a Changing World. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 215-237.	8.3	330
44	Plant nurse effects rely on combined hydrological and ecological components in a semiarid ecosystem. Ecosphere, 2016, 7, e01514.	2.2	16
45	Spatially heterogeneous pressure raises risk of catastrophic shifts. Theoretical Ecology, 2016, 9, 207-217.	1.0	33
46	REVIEW: Predictive ecology in a changing world. Journal of Applied Ecology, 2015, 52, 1293-1310.	4.0	237
47	A Continuum of Specialists and Generalists in Empirical Communities. PLoS ONE, 2015, 10, e0114674.	2.5	18
48	Network structure beyond food webs: mapping nonâ€trophic and trophic interactions on Chilean rocky shores. Ecology, 2015, 96, 291-303.	3.2	168
49	The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters, 2015, 18, 597-611.	6.4	242
50	Can we infer plant facilitation from remote sensing? a test across global drylands. Ecological Applications, 2015, 25, 1456-1462.	3.8	35
51	Local Facilitation May Cause Tipping Points on a Landscape Level Preceded by Early-Warning Indicators. American Naturalist, 2015, 186, E81-E90.	2.1	43
52	Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns. PLoS ONE, 2014, 9, e92097.	2.5	286
53	Effects of trophic similarity on community composition. Ecology Letters, 2014, 17, 1495-1506.	6.4	31
54	Feedbacks between vegetation pattern and resource loss dramatically decrease ecosystem resilience and restoration potential in a simple dryland model. Landscape Ecology, 2013, 28, 931-942.	4.2	50

#	Article	IF	CITATIONS
55	Early warning signals also precede nonâ€catastrophic transitions. Oikos, 2013, 122, 641-648.	2.7	184
56	FORUM: Sustaining ecosystem functions in a changing world: a call for an integrated approach. Journal of Applied Ecology, 2013, 50, 1124-1130.	4.0	37
57	More than a meal… integrating nonâ€feeding interactions into food webs. Ecology Letters, 2012, 15, 291-300.	6.4	320
58	Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data. PLoS ONE, 2012, 7, e41010.	2.5	638
59	Slowing Down in Spatially Patterned Ecosystems at the Brink of Collapse. American Naturalist, 2011, 177, E153-E166.	2.1	203
60	Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecology Letters, 2011, 14, 29-35.	6.4	92
61	The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 2011, 14, 1170-1181.	6.4	332
62	Bistability and regular spatial patterns in arid ecosystems. Theoretical Ecology, 2010, 3, 257-269.	1.0	73
63	Comparing Direct Abiotic Amelioration and Facilitation as Tools for Restoration of Semiarid Grasslands. Restoration Ecology, 2009, 17, 908-916.	2.9	38
64	Dispersal strategies and spatial organization of vegetation in arid ecosystems. Oikos, 2008, 117, 1522-1532.	2.7	84
65	Vegetation pattern shift as a result of rising atmospheric CO2 in arid ecosystems. Theoretical Population Biology, 2008, 74, 332-344.	1.1	51
66	Evolution of Local Facilitation in Arid Ecosystems. American Naturalist, 2008, 172, E1-E17.	2.1	60
67	Investigating patchiness of spatially organized ecosystems using field and simulated data. Protocol Exchange, 2007, , .	0.3	2
68	Local facilitation, bistability and transitions in arid ecosystems. Theoretical Population Biology, 2007, 71, 367-379.	1.1	149
69	Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 2007, 449, 213-217.	27.8	804
70	Accumulated gain in a Prisoner's Dilemma: which game is carried out by the players?. Animal Behaviour, 2007, 74, e1-e6.	1.9	4
71	Toward Multiplex Ecological Networks: Accounting for Multiple Interaction Types to Understand Community Structure and Dynamics., 0,, 73-87.		6
72	Timing recovery of ecosystems in sequential remotely sensed and simulated data. Protocol Exchange, 0, , .	0.3	2