
Gustav Gaudernack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Telomerase with an HLA Class II-Restricted TCR for Cancer Immunotherapy. Molecular Therapy, 2021, 29, 1199-1213.	8.2	16
2	Targeting KRAS mutations with HLA class II-restricted TCRs for the treatment of solid tumors. Oncolmmunology, 2021, 10, 1936757.	4.6	10
3	Combining a Universal Telomerase Based Cancer Vaccine With Ipilimumab in Patients With Metastatic Melanoma - Five-Year Follow Up of a Phase I/IIa Trial. Frontiers in Immunology, 2021, 12, 663865.	4.8	17
4	Telomerase as a Target for Therapeutic Cancer Vaccines and Considerations for Optimizing Their Clinical Potential. Frontiers in Immunology, 2021, 12, 682492.	4.8	18
5	"Builtâ€in―PDâ€1 blocker to rescue NKâ€92 activity from PDâ€L1–mediated tumor escape mechanisms. Journal, 2021, 35, e21750.	FASEB	5
6	Reactive oxygen species as an initiator of toxic innate immune responses in retort to SARS-CoV-2 in an ageing population, consider N-acetylcysteine as early therapeutic intervention. Toxicology Reports, 2020, 7, 768-771.	3.3	79
7	Long-Term Outcomes of a Phase I Study With UV1, a Second Generation Telomerase Based Vaccine, in Patients With Advanced Non-Small Cell Lung Cancer. Frontiers in Immunology, 2020, 11, 572172.	4.8	21
8	NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine, 2019, 40, 106-117.	6.1	56
9	Transient redirection of T cells for adoptive cell therapy with telomerase-specific T helper cell receptors isolated from long term survivors after cancer vaccination. Oncolmmunology, 2019, 8, e1565236.	4.6	7
10	Preclinical assessment of transiently TCR redirected T cells for solid tumour immunotherapy. Cancer Immunology, Immunotherapy, 2019, 68, 1235-1243.	4.2	11
11	Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncolmmunology, 2019, 8, 1558663.	4.6	20
12	Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunology, Immunotherapy, 2017, 66, 891-901.	4.2	71
13	T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces <i>in vivo</i> tumor growth. Oncolmmunology, 2017, 6, e1302631.	4.6	57
14	A TCR-based Chimeric Antigen Receptor. Scientific Reports, 2017, 7, 10713.	3.3	76
15	T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy. Oncolmmunology, 2016, 5, e1249090.	4.6	16
16	Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. OncoImmunology, 2016, 5, e1232237.	4.6	38
17	Melanoma Lesions Independently Acquire T-cell Resistance during Metastatic Latency. Cancer Research, 2016, 76, 4347-4358.	0.9	63
18	Immunological factors influencing clinical outcome in lung cancer patients after telomerase peptide vaccination. Cancer Immunology, Immunotherapy, 2015, 64, 1609-1621.	4.2	42

#	Article	IF	CITATIONS
19	Awareness and understanding of cancer immunotherapy in Europe. Human Vaccines and Immunotherapeutics, 2014, 10, 1828-1835.	3.3	6
20	Immune escape of cancer cells with beta2â€microglobulin loss over the course of metastatic melanoma. International Journal of Cancer, 2014, 134, 102-113.	5.1	129
21	Therapeutic vaccines for cancer: an overview of clinical trials. Nature Reviews Clinical Oncology, 2014, 11, 509-524.	27.6	636
22	Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunology, Immunotherapy, 2013, 62, 1499-1509.	4.2	236
23	Influence of polymorphisms in genes encoding immunoregulatory proteins and metabolizing enzymes on susceptibility and outcome in patients with diffuse large B-cell lymphoma treated with rituximab. Leukemia and Lymphoma, 2013, 54, 2205-2214.	1.3	18
24	Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines. PLoS ONE, 2013, 8, e57020.	2.5	109
25	Clinical and Immunological Response Following hTERT/Survivin mRNA-Loaded Dendritic Cell Vaccination Combined With Ex-Vivo Expanded T Cell Transfer In Melanoma Patients. Blood, 2013, 122, 4487-4487.	1.4	0
26	Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncolmmunology, 2012, 1, 670-686.	4.6	95
27	Polymorphisms in genes encoding interleukin-10 and drug metabolizing enzymes GSTP1, GSTT1, GSTA1 and UGT1A1 influence risk and outcome in Hodgkin lymphoma. Leukemia and Lymphoma, 2012, 53, 1934-1944.	1.3	22
28	Telomerase Peptide Vaccination in NSCLC: A Phase II Trial in Stage III Patients Vaccinated after Chemoradiotherapy and an 8-Year Update on a Phase I/II Trial. Clinical Cancer Research, 2011, 17, 6847-6857.	7.0	149
29	Transiently redirected T cells for adoptive transfer. Cytotherapy, 2011, 13, 629-640.	0.7	58
30	hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunology, Immunotherapy, 2011, 60, 809-818.	4.2	85
31	Vaccination of patients with cutaneous melanoma with telomerase-specific peptides. Cancer Immunology, Immunotherapy, 2011, 60, 1553-1564.	4.2	42
32	Longâ€ŧerm followâ€up of patients with resected pancreatic cancer following vaccination against mutant Kâ€ŧas. International Journal of Cancer, 2011, 128, 1120-1128.	5.1	156
33	Telomerase Peptide Vaccination Combined with Temozolomide: A Clinical Trial in Stage IV Melanoma Patients. Clinical Cancer Research, 2011, 17, 4568-4580.	7.0	105
34	A Novel Cancer Vaccine Strategy In Previously Untreated Patients with Stage III/IV Follicular Lymphoma Generates Tumor-Reactive T Cells and Clinical Response. Blood, 2010, 116, 1804-1804.	1.4	0
35	Unconventional cytokine profiles and development of T cell memory in long-term survivors after cancer vaccination. Cancer Immunology, Immunotherapy, 2009, 58, 1609-1626.	4.2	44
36	ldentification of Cancer Stem-like Side Population Cells in Ovarian Cancer Cell Line OVCAR-3. Ultrastructural Pathology, 2009, 33, 175-181.	0.9	42

#	Article	IF	CITATIONS
37	Identification of Cancer Stem-like Side Population Cells in Ovarian Cancer Cell Line OVCAR-3. Ultrastructural Pathology, 2009, 33, 175-181.	0.9	20
38	T Cell Responses in Patients Vaccinated with Telomerase (hTERT)-mRNA Transfected Dendritic Cells Blood, 2009, 114, 373-373.	1.4	1
39	EBV infection renders B cells resistant to growth inhibition via adenylyl cyclase. Cellular Signalling, 2008, 20, 1169-1178.	3.6	7
40	ldentification of prostate cancer antigens by automated high-throughput filter immunoscreening. Journal of Immunological Methods, 2008, 330, 12-23.	1.4	12
41	T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunology, Immunotherapy, 2007, 56, 659-675.	4.2	60
42	Efficient Generation of Tumor-Specific, Cytotoxic T Cells by Genetic Transfer of allo-MHC Blood, 2007, 110, 2755-2755.	1.4	0
43	RNA Based Cancer Vaccines - Clinical Trials in Patients with Prostate Cancer and Malignant Melanoma Blood, 2007, 110, 1805-1805.	1.4	0
44	Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunology, Immunotherapy, 2006, 55, 1432-1442.	4.2	78
45	Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunology, Immunotherapy, 2006, 55, 1553-1564.	4.2	220
46	Prospects for vaccine therapy for pancreatic cancer. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2006, 20, 299-314.	2.4	15
47	Preclinical evaluation of autologous dendritic cells transfected with mRNA or loaded with apoptotic cells for immunotherapy of high-risk neuroblastoma. Cancer Gene Therapy, 2005, 12, 699-707.	4.6	26
48	Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Therapy, 2005, 12, 579-591.	4.6	57
49	Serological cloning of cancer/testis antigens expressed in prostate cancer using cDNA phage surface display. Cancer Immunology, Immunotherapy, 2004, 53, 431-438.	4.2	60
50	Analysis of the autoantibody repertoire in Burkitt?s lymphoma patients: frequent response against the transcription factor ATF-2. Cancer Immunology, Immunotherapy, 2004, 53, 1119-1126.	4.2	6
51	Resolving the evolutionary paradox of genetic instability: a cost-benefit analysis of DNA repair in changing environments. FEBS Letters, 2004, 563, 7-12.	2.8	27
52	HLA-A3 restricted mutant ras specific cytotoxic T-lymphocytes induced by vaccination with T-helper epitopes. Journal of Molecular Medicine, 2003, 81, 43-50.	3.9	26
53	mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). Journal of Immunological Methods, 2002, 259, 191-203.	1.4	127
54	Mutation Detection in KRAS Exon 1 by Constant Denaturant Capillary Electrophoresis in 96 Parallel Capillaries. Analytical Biochemistry, 2002, 304, 200-205.	2.4	24

#	Article	IF	CITATIONS
55	Independent prognostic significance of HER-2 oncoprotein expression in pN0 prostate cancer undergoing curative radiotherapy. International Journal of Cancer, 2002, 99, 100-105.	5.1	40
56	Effect of vaccination with mutant KRAS peptides on rat colon carcinogenesis induced by azoxymethane. Anticancer Research, 2002, 22, 171-5.	1.1	5
57	Mutation Analysis of <i>TP53</i> Exons 5–8 by Automated Constant Denaturant Capillary Electrophoresis. Tumor Biology, 2001, 22, 323-327.	1.8	12
58	A TGFβRII frameshift-mutation-derived CTL epitope recognised by HLA-A2-restricted CD8 + T cells. Cancer Immunology, Immunotherapy, 2001, 50, 469-476.	4.2	67
59	Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic adenocarcinoma. International Journal of Cancer, 2001, 92, 441-450.	5.1	261
60	Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis. Seminars in Cancer Biology, 1999, 9, 245-254.	9.6	150
61	Carcinogenesis and Natural Selection: A New Perspective to the Genetics and Epigenetics of Colorectal Cancer. Advances in Cancer Research, 1999, 76, 187-212.	5.0	74
62	Generation and characterization of GP-100 peptide-specific NK-T cell clones. , 1998, 75, 794-803.		11
63	Antigen-presenting function of human peritoneum mesothelial cells isolated from a pancreatic carcinoma patient after mutant Ras peptide vaccination. Cancer Immunology, Immunotherapy, 1997, 43, 262-268.	4.2	10
64	CDw78 — a determinant on a major histocompatibility complex class II subpopulation that can be induced to associate with the cytoskeleton. European Journal of Immunology, 1997, 27, 3206-3213.	2.9	12
65	Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12VAL) peptide vaccination of a patient, recognize 12VAL-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. , 1997, 72, 784-790.		147
66	Different genetic pathways to proximal and distal colorectal cancer influenced by sex-related factors. International Journal of Cancer, 1997, 74, 664-669.	5.1	153
67	T cell responses against mutant ras: a basis for novel cancer vaccines. Immunotechnology: an International Journal of Immunological Engineering, 1996, 2, 3-9.	2.4	2
68	Ex vivo ras peptide vaccination in patients with advanced pancreatic cancer: Results of a phase I/II study. , 1996, 65, 450-453.		97
69	Differences in the distribution of CD34 epitopes on normal haemopoietic progenitor cells and leukaemic blast cells. British Journal of Haematology, 1996, 94, 597-605.	2.5	29
70	Characterization of an HLA-DQ2-specific monoclonal antibody. Human Immunology, 1995, 42, 319-327.	2.4	24
71	A K-ras 13GLY → ASP mutation is recognized by HLA-DQ7 restricted T cells in a patient with colorectal cancer. Modifying effect of DQ7 on established cancers harbouring this mutation?. International Journal of Cancer, 1994, 58, 506-511.	5.1	36
72	T cell epitopes encompassing the mutational hot spot position 61 of p21 ras. Promiscuity in ras peptide binding to HLA. European Journal of Immunology, 1994, 24, 410-414.	2.9	28

#	Article	IF	CITATIONS
73	HLA restriction fineâ€specificity and T â€cell receptor usage of T cells recognizing DQ7. Tissue Antigens, 1994, 43, 266-270.	1.0	0
74	Heterogeneity of T cells specific for a particular peptide/HLA-DQ complex. Human Immunology, 1994, 39, 61-68.	2.4	5
75	p21â€ <i>ras</i> â€peptideâ€specific Tâ€cell responses in a patient with colorectal cancer. CD4 ⁺ and CD8 ⁺ T cells recognize a peptide corresponding to a common mutation (13Gly → Asp). International Journal of Cancer, 1994, 56, 40-45.	5.1	79
76	T cell clones specific for p21 ras-derived peptides: Characterization of their fine specificity and HLA restriction. European Journal of Immunology, 1993, 23, 754-760.	2.9	54
77	Overlapping epitopes encompassing a point mutation (12 Gly → Arg) in p21 ras can be recognized by HLA-DR, -DP and -DQ restricted T cells. European Journal of Immunology, 1993, 23, 2687-2691.	2.9	62
78	Memory T cells of a patient with follicular thyroid carcinoma recognize peptides derived from mutated p21 ras (Gin → Leu61). International Immunology, 1992, 4, 1331-1337.	4.0	60
79	Lymphoid cell distribution as prognostic factor in carcinoma of the uterine cervix. Acta Obstetricia Et Gynecologica Scandinavica, 1992, 71, 135-139.	2.8	6
80	T-cell responses against products of oncogenes: Generation and characterization of human T-cell clones specific for p21 ras-derived synthetic peptides. Human Immunology, 1992, 33, 266-274.	2.4	63
81	T cells recognizing an HLA-DQ αß heterodimer encoded in Cis by the DR4DQw4 haplotype and in Trans by DR4DQw8/DRw8DQw4 heterozygous cells. Human Immunology, 1991, 30, 226-232.	2.4	19
82	Intracellular events associated with inhibition of B cell activation by monoclonal antibodies to HLA class II antigens. European Journal of Immunology, 1989, 19, 1221-1225.	2.9	28
83	The PhastSystem equipment used for crossed immunoelectrophoresis combined with immunoblotting of coprecipitated monoclonal antibodies as studied with platelet membrane receptor proteins. Electrophoresis, 1989, 10, 752-758.	2.4	11
84	Reliable isolation of human immunodeficiency virus from cultures of naturally infected CD4+ T cells. Journal of Virological Methods, 1989, 25, 293-300.	2.1	25
85	Isolation of functionally active T cell receptor γÎ-bearing lymphocytes from human peripheral blood. Journal of Immunological Methods, 1989, 118, 251-255.	1.4	10
86	T lymphocyte clones recognizing an HLA-DQw3.2-associated epitope involving residue 57 on the DQ β chain. Human Immunology, 1988, 22, 235-246.	2.4	25
87	A simple and sensitive bioassay for the detection of IL-2 activity. Journal of Immunological Methods, 1988, 114, 95-99.	1.4	7
88	Isolation of pure functionally active CD8+ T cells positive selection with monoclonal antibodies directly conjugated to monosized magnetic microspheres. Journal of Immunological Methods, 1986, 90, 179-187.	1.4	140
89	Suppressive Effect of Monocytes in Vitro in Patients with Carcinoma of the Uterine Cervix. Acta Obstetricia Et Gynecologica Scandinavica, 1986, 65, 619-624.	2.8	3
90	Positive selection of activated T cells of the T8 (CD8) subâ€ŧype by immunomagnetic separation. Tissue Antigens, 1986, 28, 46-52.	1.0	26

#	Article	IF	CITATIONS
91	HLA class I and II typing using cells positively selected from blood by immunomagnetic isolation ―a fast and reliable technique. Tissue Antigens, 1986, 28, 301-312.	1.0	267
92	Antigen-specific T cell clones restricted by DR, DRw53 (MT), or DP (SB) class II HLA molecules. Inhibition studies with monoclonal HLA-specific antibodies. Human Immunology, 1984, 11, 207-217.	2.4	20
93	Rapid identification of human B-lymphocytes and monocytes with rhodamine-labeled Brucella melitensis. Journal of Immunological Methods, 1981, 43, 251-259.	1.4	4
94	Studies on PIVKA-X. Thrombosis and Haemostasis, 1975, 34, 455-464.	3.4	1