Stanislav Gobec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026682/publications.pdf

Version: 2024-02-01

248 papers 7,223 citations

43 h-index 98798 67 g-index

257 all docs

257 docs citations

257 times ranked

8232 citing authors

#	Article	IF	CITATIONS
1	Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiology Reviews, 2008, 32, 168-207.	8.6	583
2	Discovery, Biological Evaluation, and Crystal Structure of a Novel Nanomolar Selective Butyrylcholinesterase Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 8167-8179.	6.4	220
3	Discovery of Novel 5-Benzylidenerhodanine and 5-Benzylidenethiazolidine-2,4-dione Inhibitors of MurD Ligase. Journal of Medicinal Chemistry, 2010, 53, 6584-6594.	6.4	115
4	Endocrine Disruptomeâ€"An Open Source Prediction Tool for Assessing Endocrine Disruption Potential through Nuclear Receptor Binding. Journal of Chemical Information and Modeling, 2014, 54, 1254-1267.	5.4	113
5	The Magic of Crystal Structure-Based Inhibitor Optimization: Development of a Butyrylcholinesterase Inhibitor with Picomolar Affinity and in Vivo Activity. Journal of Medicinal Chemistry, 2018, 61, 119-139.	6.4	112
6	Inhibitors of Cathepsin B. Current Medicinal Chemistry, 2006, 13, 2309-2327.	2.4	106
7	Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Scientific Reports, 2016, 6, 39495.	3.3	105
8	False Positives in the Early Stages of Drug Discovery. Current Medicinal Chemistry, 2010, 17, 4231-4255.	2.4	96
9	Structural characterization and biological evaluation of a clioquinol–ruthenium complex with copper-independent antileukaemic activity. Dalton Transactions, 2014, 43, 9045-9051.	3.3	88
10	Novel Naphthalene- <i>N</i> -sulfonyl- <scp>d</scp> -glutamic Acid Derivatives as Inhibitors of MurD, a Key Peptidoglycan Biosynthesis Enzyme,. Journal of Medicinal Chemistry, 2008, 51, 7486-7494.	6.4	86
11	Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. European Journal of Medicinal Chemistry, 2017, 125, 676-695.	5.5	85
12	Structural and Functional Characterization of Enantiomeric Glutamic Acid Derivatives as Potential Transition State Analogue Inhibitors of MurD Ligase. Journal of Molecular Biology, 2007, 370, 107-115.	4.2	83
13	A road map for prioritizing warheads for cysteine targeting covalent inhibitors. European Journal of Medicinal Chemistry, 2018, 160, 94-107.	5.5	80
14	Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. Current Medicinal Chemistry, 2008, 15, 137-150.	2.4	78
15	Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorganic Chemistry, 2014, 55, 2-15.	4.1	78
16	Novel Mechanism of Cathepsinâ€B Inhibition by Antibiotic Nitroxoline and Related Compounds. ChemMedChem, 2011, 6, 1351-1356.	3.2	75
17	Antibacterial and βâ€Lactamase Inhibitory Activity of Monocyclic βâ€Lactams. Medicinal Research Reviews, 2018, 38, 426-503.	10.5	73
18	5â€Benzylidenethiazolidinâ€4â€ones as Multitarget Inhibitors of Bacterial Mur Ligases. ChemMedChem, 2010, 5, 286-295.	3.2	72

#	Article	IF	CITATIONS
19	Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT 6 receptor antagonists. Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2016, 124, 63-81.	5.5	72
20	Multi-target-directed ligands for treating Alzheimer's disease: Butyrylcholinesterase inhibitors displaying antioxidant and neuroprotective activities. European Journal of Medicinal Chemistry, 2018, 156, 598-617.	5.5	72
21	LiSiCA: A Software for Ligand-Based Virtual Screening and Its Application for the Discovery of Butyrylcholinesterase Inhibitors. Journal of Chemical Information and Modeling, 2015, 55, 1521-1528.	5.4	70
22	Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2668-2673.	2.2	67
23	Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). Journal of Applied Microbiology, 2014, 116, 955-966.	3.1	67
24	Structure-Based Design of a New Series of <scp>d</scp> -Glutamic Acid Based Inhibitors of Bacterial UDP- <i>N</i> -acetylmuramoyl- <scp>l</scp> -alanine: <scp>d</scp> -glutamate Ligase (MurD). Journal of Medicinal Chemistry, 2011, 54, 4600-4610.	6.4	64
25	Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget, 2015, 6, 19027-19042.	1.8	64
26	Structure–activity relationships of new cyanothiophene inhibitors ofÂthe essential peptidoglycan biosynthesis enzyme MurF. European Journal of Medicinal Chemistry, 2013, 66, 32-45.	5.5	62
27	Synthesis and Biological Evaluation of (6- and 7-Phenyl) Coumarin Derivatives as Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. Journal of Medicinal Chemistry, 2011, 54, 248-261.	6.4	61
28	New 5-benzylidenethiazolidin-4-one inhibitors of bacterial MurD ligase: Design, synthesis, crystal structures, and biological evaluation. European Journal of Medicinal Chemistry, 2011, 46, 5512-5523.	5.5	61
29	Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Fungal Biology, 2013, 117, 368-379.	2.5	60
30	Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and \hat{l}^2 -amyloid aggregation inhibitors with neuroprotective properties. European Journal of Medicinal Chemistry, 2015, 92, 738-749.	5.5	60
31	Tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer's disease. Chemical Communications, 2019, 55, 3765-3768.	4.1	60
32	Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nature Communications, 2017, 8, 1939.	12.8	59
33	Design, Synthesis, and Evaluation of New Thiadiazole-Based Direct Inhibitors of Enoyl Acyl Carrier Protein Reductase (InhA) for the Treatment of Tuberculosis. Journal of Medicinal Chemistry, 2015, 58, 613-624.	6.4	58
34	Design, synthesis and structure–activity relationships of new phosphinate inhibitors of MurD. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 343-348.	2.2	57
35	Development of New Cathepsin B Inhibitors: Combining Bioisosteric Replacements and Structure-Based Design To Explore the Structure–Activity Relationships of Nitroxoline Derivatives. Journal of Medicinal Chemistry, 2013, 56, 521-533.	6.4	56
36	Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Bioorganic and Medicinal Chemistry, 2009, 17, 1884-1889.	3.0	54

#	Article	IF	CITATIONS
37	Second-generation sulfonamide inhibitors of d-glutamic acid-adding enzyme: Activity optimisation with conformationally rigid analogues of d-glutamic acid. European Journal of Medicinal Chemistry, 2011, 46, 2880-2894.	5.5	51
38	Structure-based development of nitroxoline derivatives as potential multifunctional anti-Alzheimer agents. Bioorganic and Medicinal Chemistry, 2015, 23, 4442-4452.	3.0	50
39	N-Propargylpiperidines with naphthalene-2-carboxamide or naphthalene-2-sulfonamide moieties: Potential multifunctional anti-Alzheimer's agents. Bioorganic and Medicinal Chemistry, 2017, 25, 633-645.	3.0	49
40	Flavonoids and cinnamic acid derivatives as inhibitors of $17\hat{l}^2$ -hydroxysteroid dehydrogenase type 1. Molecular and Cellular Endocrinology, 2009, 301, 229-234.	3.2	48
41	Biochemical Characterization and Physiological Properties of Escherichia coli UDP- N -Acetylmuramate: I -Alanyl-γ- d -Glutamyl- meso - Diaminopimelate Ligase. Journal of Bacteriology, 2007, 189, 3987-3995.	2.2	47
42	Design, Synthesis, and Biological Evaluation of 1-Benzylamino-2-hydroxyalkyl Derivatives as New Potential Disease-Modifying Multifunctional Anti-Alzheimer's Agents. ACS Chemical Neuroscience, 2018, 9, 1074-1094.	3.5	47
43	Synthesis and structure–activity relationship study of novel quinazolinone-based inhibitors of MurA. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3529-3533.	2.2	46
44	A new â€~golden age' for the antitubercular target InhA. Drug Discovery Today, 2017, 22, 492-502.	6.4	46
45	Nonsteroidal anti-inflammatory drugs and their analogues as inhibitors of aldo-keto reductase AKR1C3: New lead compounds for the development of anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5170-5175.	2.2	45
46	Cinnamic acids as new inhibitors of $17\hat{l}^2$ -hydroxysteroid dehydrogenase type 5 (AKR1C3). Molecular and Cellular Endocrinology, 2006, 248, 233-235.	3.2	45
47	Dual Inhibitor of MurD and MurE Ligases from <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> . ACS Medicinal Chemistry Letters, 2012, 3, 626-630.	2.8	45
48	Synthesis of aminoboronic acid derivatives: an update on recent advances. Organic Chemistry Frontiers, 2019, 6, 2991-2998.	4.5	45
49	Synthesis and biological evaluation of new glutamic acid-based inhibitors of MurD ligase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 153-157.	2.2	44
50	Isoindoline-1,3-dione derivatives targeting cholinesterases: Design, synthesis and biological evaluation of potential anti-Alzheimer's agents. Bioorganic and Medicinal Chemistry, 2015, 23, 1629-1637.	3.0	44
51	Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer's disease. Future Medicinal Chemistry, 2017, 9, 811-832.	2.3	44
52	Novel Multitarget-Directed Ligands Aiming at Symptoms and Causes of Alzheimer's Disease. ACS Chemical Neuroscience, 2018, 9, 1195-1214.	3.5	44
53	Discovery of New Inhibitors of <scp>d</scp> -Alanine: <scp>d</scp> -Alanine Ligase by Structure-Based Virtual Screening. Journal of Medicinal Chemistry, 2008, 51, 7442-7448.	6.4	43
54	A new approach towards peptidosulfonamides: synthesis of potential inhibitors of bacterial peptidoglycan biosynthesis enzymes MurD and MurE. Tetrahedron, 2006, 62, 10980-10988.	1.9	42

#	Article	IF	Citations
55	Design, synthesis, biochemical evaluation and antimycobacterial action of phosphonate inhibitors of antigen 85C, a crucial enzyme involved in biosynthesis of the mycobacterial cell wall. European Journal of Medicinal Chemistry, 2007, 42, 54-63.	5.5	42
56	Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with \hat{l}^2 -amyloid anti-aggregation properties and beneficial effects on memory in vivo. Bioorganic and Medicinal Chemistry, 2015, 23, 2445-2457.	3.0	42
57	Design and synthesis of new hydroxyethylamines as inhibitors of d-alanyl-d-lactate ligase (VanA) and d-alanyl-d-alanine ligase (DdlB). Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1376-1379.	2.2	41
58	Chalcone derivatives: synthesis, inÂvitro and inÂvivo evaluation of their anti-anxiety, anti-depression and analgesic effects. Heliyon, 2019, 5, e01376.	3.2	41
59	Flavonoids and cinnamic acid esters as inhibitors of fungal 17β-hydroxysteroid dehydrogenase: A synthesis, QSAR and modelling study. Bioorganic and Medicinal Chemistry, 2006, 14, 7404-7418.	3.0	40
60	Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorganic Chemistry, 2009, 37, 217-222.	4.1	39
61	Phytoestrogens as inhibitors of the human progesterone metabolizing enzyme AKR1C1. Molecular and Cellular Endocrinology, 2006, 259, 30-42.	3.2	38
62	Nonpeptidic Selective Inhibitors of the Chymotrypsinâ€Like (β5 i) Subunit of the Immunoproteasome. Angewandte Chemie - International Edition, 2016, 55, 5745-5748.	13.8	38
63	Novel 2-thioxothiazolidin-4-one inhibitors of bacterial MurD ligase targeting d-Glu- and diphosphate-binding sites. European Journal of Medicinal Chemistry, 2011, 46, 3964-3975.	5.5	37
64	Diazenedicarboxamides as inhibitors of d-alanine-d-alanine ligase (Ddl). Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2047-2054.	2.2	36
65	New Noncovalent Inhibitors of Penicillin-Binding Proteins from Penicillin-Resistant Bacteria. PLoS ONE, 2011, 6, e19418.	2.5	36
66	Phosphonate inhibitors of antigen 85C, a crucial enzyme involved in the biosynthesis of the Mycobacterium tuberculosis cell wall. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3559-3562.	2.2	35
67	Novel toll-like receptor 4 (TLR4) antagonists identified by structure- and ligand-based virtual screening. European Journal of Medicinal Chemistry, 2013, 70, 393-399.	5.5	35
68	Design and Synthesis of Novel N-Benzylidenesulfonohydrazide Inhibitors of MurC and MurD as Potential Antibacterial Agents. Molecules, 2008, 13, 11-30.	3.8	34
69	Inhibitors of Aldo-Keto Reductases AKR1C1-AKR1C4. Current Medicinal Chemistry, 2011, 18, 2554-2565.	2.4	34
70	Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC–MurF). Bioorganic and Medicinal Chemistry, 2014, 22, 4124-4134.	3.0	34
71	Identification of Conserved Water Sites in Protein Structures for Drug Design. Journal of Chemical Information and Modeling, 2017, 57, 3094-3103.	5.4	34
72	Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. , 2021, 221, 107746.		34

#	Article	IF	Citations
73	Specificity Determinants for Lysine Incorporation in Staphylococcus aureus Peptidoglycan as Revealed by the Structure of a MurE Enzyme Ternary Complex. Journal of Biological Chemistry, 2013, 288, 33439-33448.	3.4	33
74	Clioquinol–ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity. Dalton Transactions, 2016, 45, 16913-16921.	3.3	33
75	Stereoselective Activity of 1-Propargyl-4-styrylpiperidine-like Analogues That Can Discriminate between Monoamine Oxidase Isoforms A and B. Journal of Medicinal Chemistry, 2020, 63, 1361-1387.	6.4	33
76	1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer's disease. European Journal of Medicinal Chemistry, 2020, 187, 111916.	5.5	33
77	N-alkylpiperidine carbamates as potential anti-Alzheimer's agents. European Journal of Medicinal Chemistry, 2020, 197, 112282.	5.5	33
78	Recent Advances in Design, Synthesis and Biological Activity of Aminoalkylsulfonates and Sulfonamidopeptides. Current Medicinal Chemistry, 2004, 11, 3263-3278.	2.4	32
79	Phosphinate Inhibitors of UDP-N-Acetylmuramoyl-L-Alanyl-D-Glutamate:L-Lysine Ligase (MurE). Archiv Der Pharmazie, 2007, 340, 127-134.	4.1	31
80	Synthesis and Biological Evaluation of <i>N</i> à€Acylhydrazones as Inhibitors of MurC and MurD Ligases. ChemMedChem, 2008, 3, 1362-1370.	3.2	31
81	Synthesis of N-phthalimido \hat{l}^2 -aminoethanesulfonyl chlorides: the use of thionyl chloride for a simple and efficient synthesis of new peptidosulfonamide building blocks. Tetrahedron Letters, 2005, 46, 4069-4072.	1.4	30
82	Progestins as inhibitors of the human 20-ketosteroid reductases, AKR1C1 and AKR1C3. Chemico-Biological Interactions, 2011, 191, 227-233.	4.0	30
83	Cobalt-Catalyzed Cross-Coupling of Grignards with Allylic and Vinylic Bromides: Use of Sarcosine as a Natural Ligand. Journal of Organic Chemistry, 2015, 80, 7803-7809.	3.2	30
84	Development of screening assays and discovery of initial inhibitors of pneumococcal peptidoglycan deacetylase PgdA. Biochemical Pharmacology, 2011, 82, 43-52.	4.4	29
85	Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta. Molecules, 2016, 21, 410.	3.8	29
86	Inhibition of endopeptidase and exopeptidase activity of cathepsin B impairs extracellular matrix degradation and tumour invasion. Biological Chemistry, 2016, 397, 165-174.	2.5	29
87	Structure Guided Development of Potent Reversibly Binding Penicillin Binding Protein Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 219-223.	2.8	28
88	MurD enzymes: some recent developments. Biomolecular Concepts, 2013, 4, 539-556.	2.2	28
89	Organoruthenated Nitroxoline Derivatives Impair Tumor Cell Invasion through Inhibition of Cathepsin B Activity. Inorganic Chemistry, 2019, 58, 12334-12347.	4.0	28
90	Reaching toward underexplored targets in antibacterial drug design. Drug Development Research, 2019, 80, 6-10.	2.9	28

#	Article	IF	Citations
91	4,6-Substituted-1,3,5-triazin-2(1H)-ones as monocyclic catalytic inhibitors of human DNA topoisomerase lll± targeting the ATP binding site. Bioorganic and Medicinal Chemistry, 2015, 23, 4218-4229.	3.0	27
92	Design, Synthesis, and Biological Evaluation of 2-(Benzylamino-2-Hydroxyalkyl)Isoindoline-1,3-Diones Derivatives as Potential Disease-Modifying Multifunctional Anti-Alzheimer Agents. Molecules, 2018, 23, 347.	3.8	27
93	New cyclopentane derivatives as inhibitors of steroid metabolizing enzymes AKR1C1 and AKR1C3. European Journal of Medicinal Chemistry, 2009, 44, 2563-2571.	5.5	26
94	Ellipticines and 9-acridinylamines as inhibitors of d-alanine:d-alanine ligase. Bioorganic and Medicinal Chemistry, 2011, 19, 5137-5146.	3.0	26
95	Discovery of <i>Mycobacterium tuberculosis</i> InhA Inhibitors by Binding Sites Comparison and Ligands Prediction. Journal of Medicinal Chemistry, 2016, 59, 11069-11078.	6.4	26
96	Cinnamic acid esters as potent inhibitors of fungal 17β-hydroxysteroid dehydrogenase––a model enzyme of the short-chain dehydrogenase/reductase superfamily. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3933-3936.	2.2	25
97	Design, synthesis and evaluation of second generation MurF inhibitors based on a cyanothiophene scaffold. European Journal of Medicinal Chemistry, 2014, 73, 83-96.	5.5	25
98	Synthesis and Biological Assessment of Racemic Benzochromenopyrimidinimines as Antioxidant, Cholinesterase, and Al 2 _{1242} Aggregation Inhibitors for Alzheimer's Disease Therapy. ChemMedChem, 2016, 11, 1318-1327.	3.2	24
99	Discovery of new MurA inhibitors using induced-fit simulation and docking. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 944-949.	2.2	24
100	Synthesis of 1-C-linked diphosphate analogues of UDP-N-Ac-glucosamine and UDP-N-Ac-muramic acid. Tetrahedron, 2008, 64, 9093-9100.	1.9	23
101	Recent Advances in the Synthesis and Applications of Reduced Amide Pseudopeptides. Current Medicinal Chemistry, 2009, 16, 2289-2304.	2.4	23
102	Cathepsin B inhibitors: Further exploration of the nitroxoline core. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1239-1247.	2.2	23
103	Pyrimido[1,2-b]indazole derivatives: Selective inhibitors of human monoamine oxidase B with neuroprotective activity. European Journal of Medicinal Chemistry, 2021, 209, 112911.	5.5	23
104	Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer's Disease. Molecules, 2016, 21, 634.	3.8	22
105	Heterocyclic electrophiles as new MurA inhibitors. Archiv Der Pharmazie, 2018, 351, e1800184.	4.1	22
106	Recent Advances in the Synthesis of Acylboranes and Their Widening Applicability. ACS Omega, 2020, 5, 17868-17875.	3.5	22
107	Cinnamic Acid Derivatives Induce Cell Cycle Arrest in Carcinoma Cell Lines. Medicinal Chemistry, 2013, 9, 633-641.	1.5	22
108	6-Arylpyrido [2,3-d]pyrimidines as Novel ATP-Competitive Inhibitors of Bacterial D-Alanine: D-Alanine Ligase. PLoS ONE, 2012, 7, e39922.	2.5	21

#	Article	IF	Citations
109	Inhibitor Design Strategy Based on an Enzyme Structural Flexibility: A Case of Bacterial MurD Ligase. Journal of Chemical Information and Modeling, 2014, 54, 1451-1466.	5.4	21
110	Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC–MurF): experimental and computational characterization. Journal of Computer-Aided Molecular Design, 2015, 29, 541-560.	2.9	21
111	Structure–Activity Relationships of Novel Tryptamine-Based Inhibitors of Bacterial Transglycosylase. Journal of Medicinal Chemistry, 2015, 58, 9712-9721.	6.4	21
112	A patent review of immunoproteasome inhibitors. Expert Opinion on Therapeutic Patents, 2018, 28, 517-540.	5.0	21
113	WIDOCK: a reactive docking protocol for virtual screening of covalent inhibitors. Journal of Computer-Aided Molecular Design, 2021, 35, 223-244.	2.9	21
114	Redox-Based Inactivation of Cysteine Cathepsins by Compounds Containing the 4-Aminophenol Moiety. PLoS ONE, 2011, 6, e27197.	2.5	20
115	Selective Inhibitors of Aldo-Keto Reductases AKR1C1 and AKR1C3 Discovered by Virtual Screening of a Fragment Library. Journal of Medicinal Chemistry, 2012, 55, 7417-7424.	6.4	20
116	MurD enzymes from different bacteria: Evaluation of inhibitors. Biochemical Pharmacology, 2012, 84, 625-632.	4.4	20
117	New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. European Journal of Medicinal Chemistry, 2016, 112, 252-257.	5.5	20
118	Structure-guided optimization of 4,6-substituted-1,3,5-triazin-2(1H)-ones as catalytic inhibitors of human DNA topoisomerase $\hat{\text{Ill}}_{\pm}$. European Journal of Medicinal Chemistry, 2019, 175, 330-348.	5.5	20
119	Cinnamates and cinnamamides inhibit fungal $17\hat{l}^2$ -hydroxysteroid dehydrogenase. Molecular and Cellular Endocrinology, 2006, 248, 239-241.	3.2	19
120	Small molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor. Biochemical Pharmacology, 2011, 81, 1098-1105.	4.4	19
121	Cathepsin X cleavage of the $\hat{A}2$ integrin regulates talin-binding and LFA-1 affinity in T cells. Journal of Leukocyte Biology, 2011, 90, 99-109.	3.3	19
122	Function of the <scp>d</scp> -Alanine: <scp>d</scp> -Alanine Ligase Lid Loop: A Molecular Modeling and Bioactivity Study. Journal of Medicinal Chemistry, 2012, 55, 6849-6856.	6.4	19
123	Molecular dynamics to enhance structure-based virtual screening on cathepsin B. Journal of Computer-Aided Molecular Design, 2015, 29, 707-712.	2.9	19
124	Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments. ChemBioChem, 2021, 22, 743-753.	2.6	19
125	Novel inhibitors of \hat{I}^2 -ketoacyl-ACP reductase from Escherichia coli. Chemico-Biological Interactions, 2009, 178, 310-316.	4.0	18
126	Trihydroxynaphthalene reductase of Curvularia lunataâ€"A target for flavonoid action?. Chemico-Biological Interactions, 2009, 178, 259-267.	4.0	18

#	Article	IF	Citations
127	<scp>D</scp> â€Glucosamine in ironâ€catalysed crossâ€coupling reactions of Grignards with allylic and vinylic bromides: application to the synthesis of a key sitagliptin precursor. Applied Organometallic Chemistry, 2015, 29, 528-535.	3.5	18
128	Selective Toll-like receptor 7 agonists with novel chromeno [3,4-d] imidazol-4(1H)-one and 2-(trifluoromethyl) quinoline/ quinazoline-4-amine scaffolds. European Journal of Medicinal Chemistry, 2019, 179, 109-122.	5.5	18
129	Synthesis of ethyl 3-(hydroxyphenoxy)benzyl butylphosphonates as potential antigen 85C inhibitors. Tetrahedron, 2007, 63, 10698-10708.	1.9	17
130	Derivatives of pyrimidine, phthalimide and anthranilic acid as inhibitors of human hydroxysteroid dehydrogenase AKR1C1. Chemico-Biological Interactions, 2009, 178, 158-164.	4.0	17
131	Benzoic acid derivatives with improved antifungal activity: Design, synthesis, structure–activity relationship (SAR) and CYP53 docking studies. Bioorganic and Medicinal Chemistry, 2015, 23, 4264-4276.	3.0	17
132	Structure-activity relationship study of tryptophan-based butyrylcholinesterase inhibitors. European Journal of Medicinal Chemistry, 2020, 208, 112766.	5.5	17
133	Phytoestrogens as inhibitors of fungal 17β-hydroxysteroid dehydrogenase. Steroids, 2005, 70, 694-703.	1.8	16
134	New lipophilic phthalimido- and 3-phenoxybenzyl sulfonates: Inhibition of antigen 85C mycolyltransferase activity and cytotoxicity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 391-397.	5.2	16
135	A Novel Scalable Synthesis of Pramipexole. Organic Process Research and Development, 2010, 14, 1125-1129.	2.7	16
136	Discovery and kinetic evaluation of 6-substituted 4-benzylthio-1,3,5-triazin-2(1H)-ones as inhibitors of cathepsin B. European Journal of Medicinal Chemistry, 2011, 46, 4648-4656.	5.5	16
137	Virtual screening for potential inhibitors of bacterial MurC and MurD ligases. Journal of Molecular Modeling, 2012, 18, 1063-1072.	1.8	16
138	Development of potent reversible selective inhibitors of butyrylcholinesterase as fluorescent probes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 498-505.	5.2	16
139	Phytoestrogens as inhibitors of fungal 17β-hydroxysteroid dehydrogenase. Steroids, 2005, 70, 626-635.	1.8	15
140	Epoxide opening with amino acids: improved synthesis of hydroxyethylamine dipeptide isosteres. Tetrahedron Letters, 2006, 47, 1733-1735.	1.4	15
141	Novel Inhibitors of Trihydroxynaphthalene Reductase with Antifungal Activity Identified by Ligand-Based and Structure-Based Virtual Screening. Journal of Chemical Information and Modeling, 2011, 51, 1716-1724.	5.4	15
142	N-Benzoyl anthranilic acid derivatives as selective inhibitors of aldo–keto reductase AKR1C3. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5948-5951.	2.2	15
143	Virtual Screening Yields Inhibitors of Novel Antifungal Drug Target, Benzoate 4-Monooxygenase. Journal of Chemical Information and Modeling, 2012, 52, 3053-3063.	5.4	15
144	Synthesis of pyrazolo[1,2-a]pyrazole-based peptide mimetics. Tetrahedron, 2013, 69, 6648-6665.	1.9	15

#	Article	IF	Citations
145	New antagonists of toll-like receptor 7 discovered through 3D ligand-based virtual screening. Medicinal Chemistry Research, 2015, 24, 362-371.	2.4	15
146	Crystallographic Study of Peptidoglycan Biosynthesis Enzyme MurD: Domain Movement Revisited. PLoS ONE, 2016, 11, e0152075.	2.5	15
147	Identification and characterization of the novel reversible and selective cathepsin X inhibitors. Scientific Reports, 2017, 7, 11459.	3.3	15
148	Biochemical and biological evaluation of novel potent coumarin inhibitor of $17\hat{l}^2$ -HSD type 1. Chemico-Biological Interactions, 2011, 191, 60-65.	4.0	14
149	Straightforward synthesis of orthogonally protected piperidin-3-ylmethanamine and piperidin-4-ylmethanamine derivatives. Tetrahedron Letters, 2014, 55, 2037-2039.	1.4	14
150	Discovery of multifunctional anti-Alzheimerâ \in TM s agents with a unique mechanism of action including inhibition of the enzyme butyrylcholinesterase and l³-aminobutyric acid transporters. European Journal of Medicinal Chemistry, 2021, 218, 113397.	5.5	14
151	Addition of 2-(ethylamino)acetonitrile group to nitroxoline results in significantly improved anti-tumor activity <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2017, 8, 59136-59147.	1.8	14
152	The Synthesis of Novel 2,4,6-Trisubstituted 1,3,5-Triazines: A Search for Potential MurF Enzyme Inhibitors. Heterocycles, 2010, 81, 91.	0.7	13
153	Expression of human aldo-keto reductase 1C2 in cell lines of peritoneal endometriosis: Potential implications in metabolism of progesterone and dydrogesterone and inhibition by progestins. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 16-25.	2.5	13
154	In Silico Design and Enantioselective Synthesis of Functionalized Monocyclic 3â€Aminoâ€1â€carboxymethylâ€Î²â€lactams as Inhibitors of Penicillinâ€Binding Proteins of Resistant Bacteria. Chemistry - A European Journal, 2018, 24, 15254-15266.	3.3	13
155	Efficient synthesis and preliminary biological evaluations of trifluoromethylated imidazo[1,2- <i>a</i>)pyrimidines and benzimidazo[1,2- <i>a</i>)pyrimidines. New Journal of Chemistry, 2019, 43, 9961-9968.	2.8	13
156	Methylation of selenocysteine catalysed by thiopurine S-methyltransferase. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 182-190.	2.4	13
157	2'-Hydroxy-4',5'-dimethyl-4-dimethylaminochalcone, a novel fluorescent flavonoid with capacity to detect aluminium in cells and modulate Alzheimer's disease targets. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113137.	3.9	13
158	Development and crystallography-aided SAR studies of multifunctional BuChE inhibitors and 5-HT6R antagonists with \hat{l}^2 -amyloid anti-aggregation properties. European Journal of Medicinal Chemistry, 2021, 225, 113792.	5.5	13
159	Microwave-assisted synthesis of hydroxyethylamine dipeptide isosteres. Tetrahedron, 2007, 63, 141-147.	1.9	12
160	Discovery of new inhibitors of aldo-keto reductase 1C1 by structure-based virtual screening. Molecular and Cellular Endocrinology, 2009, 301, 245-250.	3.2	12
161	The Binding Mode of Second-Generation Sulfonamide Inhibitors of MurD: Clues for Rational Design of Potent MurD Inhibitors. PLoS ONE, 2012, 7, e52817.	2.5	12
162	BoBER: web interface to the base of bioisosterically exchangeable replacements. Journal of Cheminformatics, 2017, 9, 62.	6.1	12

#	Article	IF	CITATIONS
163	Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1010-1017.	5.2	12
164	Longitudinal evaluation of a novel BChE PET tracer as an early <i>in vivo</i> biomarker in the brain of a mouse model for Alzheimer disease. Theranostics, 2021, 11, 6542-6559.	10.0	12
165	Treatment of canine cognitive dysfunction with novel butyrylcholinesterase inhibitor. Scientific Reports, 2021, 11, 18098.	3.3	12
166	Recent Advances in the Development of Undecaprenyl Pyrophosphate Synthase Inhibitors as Potential Antibacterials. Current Medicinal Chemistry, 2016, 23, 464-482.	2.4	12
167	Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds. Drug Discovery Today, 2022, 27, 1733-1742.	6.4	12
168	Towards the first inhibitors of trihydroxynaphthalene reductase from Curvularia lunata: Synthesis of artificial substrate, homology modelling and initial screening. Bioorganic and Medicinal Chemistry, 2008, 16, 5881-5889.	3.0	11
169	A microwave-assisted nucleophilic substitution reaction on a quinoline system: the synthesis of amino analogues of nitroxoline. Tetrahedron Letters, 2012, 53, 1964-1967.	1.4	11
170	Multiple Ligands Targeting Cholinesterases and βâ€Amyloid: Synthesis, Biological Evaluation of Heterodimeric Compounds with Benzylamine Pharmacophore. Archiv Der Pharmazie, 2015, 348, 556-563.	4.1	11
171	Discovery of Immunoproteasome Inhibitors Using Large-Scale Covalent Virtual Screening. Molecules, 2019, 24, 2590.	3.8	11
172	Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT6 receptor with anti-aggregation properties against amyloid-beta and tau. European Journal of Medicinal Chemistry, 2021, 225, 113783.	5.5	11
173	From tryptophan-based amides to tertiary amines: Optimization of a butyrylcholinesterase inhibitor series. European Journal of Medicinal Chemistry, 2022, 234, 114248.	5.5	11
174	2,3-Diarylpropenoic acids as selective non-steroidal inhibitors of type-5 17β-hydroxysteroid dehydrogenase (AKR1C3). European Journal of Medicinal Chemistry, 2013, 62, 89-97.	5.5	10
175	In silico identification, synthesis and biological evaluation of novel tetrazole inhibitors of MurB. Chemical Biology and Drug Design, 2018, 91, 1101-1112.	3.2	10
176	αâ€Unsaturated 3â€Aminoâ€1â€carboxymethylâ€Î²â€lactams as Bacterial PBP Inhibitors: Synthesis and Biochem Assessment. Chemistry - A European Journal, 2019, 25, 16128-16140.	niçal 3.3	10
177	8-Hydroxyquinoline-based anti-Alzheimer multimodal agents. Monatshefte Fýr Chemie, 2020, 151, 1111-1120.	1.8	10
178	(Z)-5-(4-Fluorophenyl)pent-4-enoic Acid: A Precursor for Convenient and Efficient Synthesis of the Antihypercholesterolemia Agent Ezetimibe. Synthesis, 2010, 2010, 3433-3438.	2.3	9
179	Discovery of highly potent, nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 inhibitors by virtual high-throughput screening. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 255-261.	2.5	9
180	Combined Liquid Chromatography–Tandem Mass Spectrometry Analysis of Progesterone Metabolites. PLoS ONE, 2015, 10, e0117984.	2.5	9

#	Article	IF	Citations
181	A focused structure–activity relationship study of psoralen-based immunoproteasome inhibitors. MedChemComm, 2019, 10, 1958-1965.	3.4	9
182	Nep1-like proteins as a target for plant pathogen control. PLoS Pathogens, 2021, 17, e1009477.	4.7	9
183	Discovery of selective fragment-sized immunoproteasome inhibitors. European Journal of Medicinal Chemistry, 2021, 219, 113455.	5.5	9
184	Upregulation of Cathepsin X in Glioblastoma: Interplay with \hat{I}^3 -Enolase and the Effects of Selective Cathepsin X Inhibitors. International Journal of Molecular Sciences, 2022, 23, 1784.	4.1	9
185	SYNTHESIS OF PHOSPHONO PHTHALIMIDO-DESMURAMYLDIPEPTIDE ANALOGS. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 156, 125-133.	1.6	8
186	Quantitative Structure-Activity Relationships of Streptococcus pneumoniae MurD Transition State Analogue Inhibitors. QSAR and Combinatorial Science, 2004, 23, 399-405.	1.4	8
187	Selective Cytotoxicity of Amidinopiperidine Based Compounds Towards Burkitt's Lymphoma Cells Involves Proteasome Inhibition. PLoS ONE, 2012, 7, e41961.	2.5	8
188	Anthranilic Acid Inhibitors of Undecaprenyl Pyrophosphate Synthase (UppS), an Essential Enzyme for Bacterial Cell Wall Biosynthesis. Frontiers in Microbiology, 2018, 9, 3322.	3.5	8
189	Bromo-Cyclobutenaminones as New Covalent UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) Inhibitors. Pharmaceuticals, 2020, 13, 362.	3.8	8
190	Monocyclic beta–lactams for therapeutic uses: a patent overview (2010–2020). Expert Opinion on Therapeutic Patents, 2021, 31, 247-266.	5.0	8
191	Synthesis and activity of phosphono desmuramyldipeptide analogs. International Journal of Peptide Research and Therapeutics, 1995, 2, 193-197.	0.1	7
192	Modulation of tumour necrosis factor production with desmuramyldipeptide analogues. Pflugers Archiv European Journal of Physiology, 2000, 440, R064-R066.	2.8	7
193	Synthesis of New Lipophilic Phosphonate and Phosphonamidate Analogues of N-Acetylmuramyl-L-alanyl-D-isoglutamine Related to LK 423. Molecules, 2002, 7, 394-404.	3.8	7
194	Synthetic tripeptides as alternate substrates of murein peptide ligase (Mpl). Biochimie, 2013, 95, 1120-1126.	2.6	7
195	Mur ligases inhibitors with azastilbene scaffold: Expanding the structure–activity relationship. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127966.	2.2	7
196	Modulation of cytokine production by some phthalimido-desmuramyl dipeptides and their cytotoxicity. Il Farmaco, 2004, 59, 345-352.	0.9	6
197	Synthesis of Novel Nitroxoline Analogs with Potent Cathepsin B Exopeptidase Inhibitory Activity. ChemMedChem, 2020, 15, 2477-2490.	3.2	6
198	Psoralen Derivatives as Inhibitors of Mycobacterium tuberculosis Proteasome. Molecules, 2020, 25, 1305.	3.8	6

#	Article	IF	CITATIONS
199	Novel Selective IDO1 Inhibitors with Isoxazolo[5,4-d]pyrimidin-4(5H)-one Scaffold. Pharmaceuticals, 2021, 14, 265.	3.8	6
200	Multitarget 2′-hydroxychalcones as potential drugs for the treatment of neurodegenerative disorders and their comorbidities. Neuropharmacology, 2021, 201, 108837.	4.1	6
201	Nitroxoline and its derivatives are potent inhibitors of metallo- \hat{l}^2 -lactamases. European Journal of Medicinal Chemistry, 2022, 228, 113975.	5.5	6
202	Evaluation of novel cathepsin-X inhibitors in vitro and in vivo and their ability to improve cathepsin-B-directed antitumor therapy. Cellular and Molecular Life Sciences, 2022, 79, 34.	5.4	6
203	Biochemical characterization of MurF from Streptococcus pneumoniae and the identification of a new MurF inhibitor through ligand-based virtual screening. Acta Chimica Slovenica, 2013, 60, 294-9.	0.6	6
204	Design, Synthesis and in vitro Biochemical Activity of Novel Amino Acid Sulfonohydrazide Inhibitors of MurC. Acta Chimica Slovenica, 2011, 58, 295-310.	0.6	6
205	Fragment-Sized and Bidentate (Immuno)Proteasome Inhibitors Derived from Cysteine and Threonine Targeting Warheads. Cells, 2021, 10, 3431.	4.1	6
206	A general synthesis of ethyl 4-aminophenyl and ethyl 4-[amino(hydroxyimino)methyl]phenyl phosphonates. Tetrahedron Letters, 2002, 43, 167-170.	1.4	5
207	Effect of Free and in Poly(η-caprolactone) Nanoparticles Incorporated New Type 1 17β -Hydroxysteroid Dehydrogenase Inhibitors on Cancer Cells. Current Nanoscience, 2010, 6, 69-76.	1.2	5
208	Exploring the aryl esterase catalysis of paraoxonase-1 through solvent kinetic isotope effects and phosphonate-based isosteric analogues of the tetrahedral reaction intermediate. Biochimie, 2014, 106, 184-186.	2.6	5
209	Unusual substrate specificity of the peptidoglycan MurE ligase from Erysipelothrix rhusiopathiae. Biochimie, 2016, 121, 209-218.	2.6	5
210	Synthesis and NMR spectroscopic assignment of chlorinated benzimidazole-2-thione derivatives. Tetrahedron Letters, 2019, 60, 151078.	1.4	5
211	Efficient and Straightforward Syntheses of Two United States Pharmacopeia Sitagliptin Impurities: 3-Desamino-2,3-dehydrositagliptin and 3-Desamino-3,4-dehydrositagliptin. ACS Omega, 2020, 5, 5356-5364.	3.5	5
212	4-Phenethyl-1-Propargylpiperidine-Derived Dual Inhibitors of Butyrylcholinesterase and Monoamine Oxidase B. Molecules, 2021, 26, 4118.	3.8	5
213	Biological Evaluation of 8-Hydroxyquinolines as Multi-Target Directed Ligands for Treating Alzheimer's Disease. Current Alzheimer Research, 2019, 16, 801-814.	1.4	5
214	Exploration of the chemical space of novel naphthalene-sulfonamide and anthranilic Acid-based inhibitors of penicillin-binding proteins. Acta Chimica Slovenica, 2012, 59, 280-388.	0.6	5
215	New enzymatic assay for the AKR1C enzymes. Chemico-Biological Interactions, 2013, 202, 204-209.	4.0	4
216	Structure-activity relationships of triazole-benzodioxine inhibitors of cathepsin X. European Journal of Medicinal Chemistry, 2020, 193, 112218.	5 . 5	4

#	Article	IF	CITATIONS
217	Synthesis and Initial Characterization of a Reversible, Selective 18F-Labeled Radiotracer for Human Butyrylcholinesterase. Molecular Imaging and Biology, 2021, 23, 505-515.	2.6	4
218	Chlorocarbonylsulfenyl Chloride Cyclizations Towards Piperidin-3-yl-oxathiazol-2-ones as Potential Covalent Inhibitors of Threonine Proteases. Acta Chimica Slovenica, 2017, 64, 771-781.	0.6	4
219	Synthesis and Biological Evaluation of N-Aryl-N'-(5-(2-hydroxybenzoyl) pyrimidin-2-yl)guanidines as Toll-Like Receptor 4 Antagonists. Medicinal Chemistry, 2016, 12, 742-750.	1.5	4
220	Repurposing of 8â∈Hydroxyquinolineâ∈Based Butyrylcholinesterase and Cathepsin B Ligands as Potent Nonpeptidic Deoxyribonuclease I Inhibitors. ChemMedChem, 2022, 17, .	3.2	4
221	ProBiS-Dock: A Hybrid Multitemplate Homology Flexible Docking Algorithm Enabled by Protein Binding Site Comparison. Journal of Chemical Information and Modeling, 2022, 62, 1573-1584.	5.4	4
222	New inhibitors of fungal $17\hat{l}^2$ -hydroxysteroid dehydrogenase based on the [1,5]-benzodiazepine scaffold. Journal of Enzyme Inhibition and Medicinal Chemistry, 2007, 22, 29-36.	5.2	3
223	Crystallization and preliminary X-ray analysis of a UDP-MurNAc-tripeptide <scp>D</scp> -alanyl- <scp>D</scp> -alanine-adding enzyme (PaMurF) from <i>Pseudomonas aeruginosa</i> Communications, 2013, 69, 503-505.	0.7	3
224	A Simple Synthesis of Polyfunctionalized 4â€Aminopyrazolidinâ€3â€ones as â€~Azaâ€deoxa' Analogs of <scp>D</scp> â€Cycloserine. Helvetica Chimica Acta, 2014, 97, 245-267.	1.6	3
225	Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides. Molecular Diversity, 2016, 20, 667-676.	3.9	3
226	Evaluation of US 2016/0115161 A1: isoindoline compounds and methods of their use. Expert Opinion on Therapeutic Patents, 2017, 27, 637-641.	5.0	3
227	Synthesis and Penicillinâ€binding Protein Inhibitory Assessment of Dipeptidic 4â€Phenylâ€Î²â€lactams from αâ€Amino Acidâ€derived Imines. Chemistry - an Asian Journal, 2020, 15, 51-55.	3.3	3
228	Synthesis and Biochemical Evaluation of Warhead-Decorated Psoralens as (Immuno)Proteasome Inhibitors. Molecules, 2021, 26, 356.	3.8	3
229	Catalytic Approach to Diverse αâ€Aminoboronic Acid Derivatives by Iridiumâ€Catalyzed Hydrogenation of Trifluoroborateâ€Iminiums. Advanced Synthesis and Catalysis, 2021, 363, 2396-2402.	4.3	3
230	Towards discovery of inhibitors of the undecaprenyl-pyrophosphate phosphatase BacA by virtual high-throughput screening. Computational and Structural Biotechnology Journal, 2022, 20, 2360-2371.	4.1	3
231	Synthesis of new phosphonamidate and phosphinamide desmuramyldipeptide analogs. International Journal of Peptide Research and Therapeutics, 1998, 5, 109-114.	0.1	2
232	Design and synthesis of substrate mimetics based on an indole scaffold: potential inhibitors of $17\hat{l}^2$ -HSD type 1. Hormone Molecular Biology and Clinical Investigation, 2011, 6, 201-209.	0.7	2
233	Convenient syntheses of orthogonally protected aminocyclopentitols from aldopentoses. Tetrahedron Letters, 2015, 56, 529-531.	1.4	2
234	Virtual screening approach and biochemical evaluation on MurB. Chemical Data Collections, 2019, 24, 100276.	2.3	2

#	Article	IF	CITATIONS
235	Further hit optimization of 6-(trifluoromethyl)pyrimidin-2-amine based TLR8 modulators: Synthesis, biological evaluation and structure–activity relationships. European Journal of Medicinal Chemistry, 2021, 225, 113809.	5.5	2
236	Indoles and 1-(3-(benzyloxy)benzyl)piperazines: Reversible and selective monoamine oxidase B inhibitors identified by screening an in-house compound library. Bioorganic Chemistry, 2022, 119, 105581.	4.1	2
237	A Set of Experimentally Validated Decoys for the Human CC Chemokine Receptor 7 (CCR7) Obtained by Virtual Screening. Frontiers in Pharmacology, 2022, 13, 855653.	3.5	2
238	One-Pot Synthesis of \hat{l}^2 -Keto Esters and Preparation of 3-Ketopalmitoyl-CoA. Synlett, 2012, 23, 1609-1612.	1.8	1
239	Docking study with biological validation on bacterial enzyme MurD. Chemical Data Collections, 2018, 13-14, 139-155.	2.3	1
240	Synthesis of Indolineâ€Based Benzhydroxamic Acids as Potential HDAC6 Inhibitors. ChemistrySelect, 2019, 4, 12308-12312.	1.5	1
241	Kinetic mechanism of Enterococcus faecium d-aspartate ligase. Biochimie, 2019, 158, 217-223.	2.6	1
242	Application of the N-Dibenzyl Protective Group in the Preparation of \hat{l}^2 -Lactam Pseudopeptides. Molecules, 2019, 24, 1261.	3.8	1
243	Synthesis of 3-Amino-4-substituted Monocyclic ß-Lactamsâ€"Important Structural Motifs in Medicinal Chemistry. International Journal of Molecular Sciences, 2022, 23, 360.	4.1	1
244	Synthesis of New Phosphono Desmuramyldipeptide Analogs. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 97-97.	1.6	0
245	Cinnamic Acid Esters as Potent Inhibitors of Fungal 17β-Hydroxysteroid Dehydrogenase — A Model Enzyme of the Short-Chain Dehydrogenase/Reductase Superfamily. ChemInform, 2004, 35, no.	0.0	0
246	Discovery of Novel Small-Molecule Compounds with Selective Cytotoxicity for Burkitt's Lymphoma Cells Using 3D Ligand-Based Virtual Screening. Molecules, 2014, 19, 19209-19219.	3.8	0
247	A Simple and Effective Synthesis of 3- and 4-((Phenylcarbamoyl)oxy)benzoic Acids. Acta Chimica Slovenica, 2020, 67, 940-948.	0.6	0
248	Screening of Big Pharma's Library against Various in-house Biological Targets. Molecules, 2022, 27, 4484.	3.8	0