
Maria L GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/702664/publications.pdf Version: 2024-02-01

ΜΑΡΙΑΙ ΟΑΡΟΑ

#	Article	IF	CITATIONS
1	Differentiating between viruses and virus species by writing their names correctly. Archives of Virology, 2022, 167, 1231-1234.	2.1	33
2	Detection of citrus psorosis virus by RTâ€qPCR validated by diagnostic parameters. Plant Pathology, 2021, 70, 980-986.	2.4	0
3	Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Archives of Virology, 2021, 166, 2633-2648.	2.1	219
4	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
5	Interplay between potato virus X and RNA granules in Nicotiana benthamiana. Virus Research, 2020, 276, 197823.	2.2	5
6	Up-regulation of microRNA targets correlates with symptom severity in Citrus sinensis plants infected with two different isolates of citrus psorosis virus. Planta, 2020, 251, 7.	3.2	6
7	Transgenic Citrange troyer rootstocks overexpressing antimicrobial potato Snakin-1 show reduced citrus canker disease symptoms. Journal of Biotechnology, 2020, 324, 99-102.	3.8	9
8	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
9	Transgenic Sweet Orange expressing hairpin CP-mRNA in the interstock confers tolerance to citrus psorosis virus in the non-transgenic scion. Transgenic Research, 2020, 29, 215-228.	2.4	13
10	Identification of a microRNA encoded by Anticarsia gemmatalis multiple nucleopolyhedrovirus. Computational Biology and Chemistry, 2020, 87, 107276.	2.3	1
11	Biological and molecular characterization of tomato spotted wilt virus (TSWV) resistanceâ€breaking isolates from Argentina. Plant Pathology, 2019, 68, 1587-1601.	2.4	9
12	Citrus Psorosis Virus Movement Protein Contains an Aspartic Protease Required for Autocleavage and the Formation of Tubule-Like Structures at Plasmodesmata. Journal of Virology, 2018, 92, .	3.4	12
13	Identification and characterization of two RNA silencing suppressors encoded by ophioviruses. Virus Research, 2017, 235, 96-105.	2.2	12
14	Citrus psorosis virus coat protein-derived hairpin construct confers stable transgenic resistance in citrus against psorosis A and B syndromes. Transgenic Research, 2017, 26, 225-235.	2.4	7
15	ICTV Virus Taxonomy Profile: Ophioviridae. Journal of General Virology, 2017, 98, 1161-1162.	2.9	26
16	<i>Citrus psorosis virus</i> 24 <scp>K</scp> protein interacts with citrus <scp>miRNA</scp> precursors, affects their processing and subsequent <scp>miRNA</scp> accumulation and target expression. Molecular Plant Pathology, 2016, 17, 317-329.	4.2	26
17	Bioinformatic and mutational analysis of ophiovirus movement proteins, belonging to the 30K superfamily. Virology, 2016, 498, 172-180.	2.4	17
18	Uncontrolled Citrus psorosis virus infection in Citrus sinensis transgenic plants expressing a viral 24K-derived hairpin that does not trigger RNA silencing. Physiological and Molecular Plant Pathology, 2016, 94, 149-155.	2.5	3

Maria L GarcÃa

#	Article	IF	CITATIONS
19	Improved Detection of <i>Citrus psorosis virus</i> and Coat Proteinâ€Derived Transgenes in Citrus Plants: Comparison Between RTâ€qPCR and TASâ€ELISA. Journal of Phytopathology, 2015, 163, 915-925.	1.0	10
20	The psorosis disease of citrus: a pale light at the end of the tunnel. Journal of Citrus Pathology, 2015, 2, .	0.5	15
21	Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. Journal of Biotechnology, 2013, 167, 412-419.	3.8	31
22	Ophioviruses CPsV and MiLBVV movement protein is encoded in RNA 2 and interacts with the coat protein. Virology, 2013, 441, 152-161.	2.4	28
23	Citrus psorosis and Mirafiori lettuce big-vein ophiovirus coat proteins localize to the cytoplasm and self interact in vivo. Virus Research, 2012, 170, 34-43.	2.2	10
24	Negative-strand RNA viruses: The plant-infecting counterparts. Virus Research, 2011, 162, 184-202.	2.2	167
25	Generation of Sweet Orange Transgenic Lines and Evaluation of <i>Citrus psorosis virus</i> â€derived Resistance against Psorosis A and Psorosis B. Journal of Phytopathology, 2011, 159, 531-537.	1.0	12
26	Resistance to Citrus psorosis virus in transgenic sweet orange plants is triggered by coat protein–RNA silencing. Journal of Biotechnology, 2011, 151, 151-158.	3.8	52
27	Ophiovirus. , 2011, , 995-1003.		7
28	ldentification of <i>Mirafiori lettuce bigâ€vein virus</i> and <i>Lettuce bigâ€vein associated virus</i> infecting <i>Lactuca sativa</i> with symptoms of lettuce bigâ€vein disease in Argentina. Plant Pathology, 2010, 59, 1160-1161.	2.4	8
29	Effect of temperature on RNA silencing of a negativeâ€stranded RNA plant virus: <i>Citrus psorosis virus</i> . Plant Pathology, 2010, 59, 982-990.	2.4	43
30	Differential resistance to Citrus psorosis virus in transgenic Nicotiana benthamiana plants expressing hairpin RNA derived from the coat protein and 54K protein genes. Plant Cell Reports, 2009, 28, 1817-1825.	5.6	18
31	Genetic Diversity Among Viruses Associated with Sugarcane Mosaic Disease in TucumÃ;n, Argentina. Phytopathology, 2009, 99, 38-49.	2.2	37
32	Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Reports, 2008, 27, 57-66.	5.6	48
33	Detection of Citrus psorosis virus in the northwestern citrus production area of Argentina by using an improved TAS-ELISA. Journal of Virological Methods, 2006, 137, 245-251.	2.1	25
34	Genetic variation of populations of Citrus psorosis virus. Journal of General Virology, 2006, 87, 3097-3102.	2.9	32
35	The complete nucleotide sequence of a Spanish isolate of Citrus psorosis virus: comparative analysis with other ophioviruses. Archives of Virology, 2005, 150, 167-176.	2.1	26
36	Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase. Virus Research, 2003, 96, 49-61.	2.2	41

Maria L GarcÃa

#	Article	IF	CITATIONS
37	RNA 2 of Citrus psorosis virus is of negative polarity and has a single open reading frame in its complementary strand. Journal of General Virology, 2002, 83, 1777-1781.	2.9	32
38	A fast one-step reverse transcription and polymerase chain reaction (RT-PCR) amplification procedure providing highly specific complementary DNA from plant virus RNA. Journal of Virological Methods, 2000, 87, 25-28.	2.1	9
39	A highly sensitive heminested RT-PCR assay for the detection of citrus psorosis virus targeted to a conserved region of the genome. Journal of Virological Methods, 2000, 84, 15-22.	2.1	20
40	Detection of citrus psorosisâ€ringspot virus using RTâ€PCR and DASâ€ELISA. Plant Pathology, 1997, 46, 830-836.	2.4	36
41	Accumulation of alfalfa mosaic virus RNAs 1 and 2 requires the encoded proteins in cis. Journal of Virology, 1996, 70, 5100-5105.	3.4	30
42	The closely related citrus ringspot and citrus psorosis viruses have particles of novel filamentous morphology. Journal of General Virology, 1994, 75, 3585-3590.	2.9	50
43	Citrus psorosis is probably caused by a bipartate ssRNA virus. Research in Virology, 1991, 142, 303-311.	0.7	23