
Marcin Ptaszek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/702662/publications.pdf Version: 2024-02-01

MADCIN DTASZEK

#	Article	IF	CITATIONS
1	Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging. ACS Applied Materials & Interfaces, 2022, 14, 20790-20801.	4.0	10
2	Conjugated-linker dependence of the photophysical properties and electronic structure of chlorin dyads. Journal of Porphyrins and Phthalocyanines, 2021, 25, 639-663.	0.4	4
3	Weakly conjugated bacteriochlorin-bacteriochlorin dyad: Synthesis and photophysical properties. Journal of Porphyrins and Phthalocyanines, 2021, 25, 724-733.	0.4	6
4	Amphiphilic Near-IR-Emitting 3,5- <i>Bis</i> (2-Pyrrolylethenyl)BODIPY Derivatives: Synthesis, Characterization, and Comparison with Other (Hetero)Arylethenyl-Substituted BODIPYs. Journal of Organic Chemistry, 2021, 86, 8755-8765.	1.7	10
5	Intersystem Crossing in Tetrapyrrolic Macrocycles. A First-Principles Analysis. Journal of Physical Chemistry C, 2021, 125, 13493-13500.	1.5	12
6	Photoinduced charge transfer in Zn(II) and Au(III)-ligated symmetric and asymmetric bacteriochlorin dyads: A computational study. Journal of Chemical Physics, 2020, 153, 134111.	1.2	13
7	Solvent-dependent energy and charge transfer dynamics in hydroporphyrin-BODIPY arrays. Journal of Chemical Physics, 2020, 153, 074302.	1.2	5
8	Effect of Short PEG on Near-Infrared BODIPY-Based Activatable Optical Probes. ACS Omega, 2020, 5, 15657-15665.	1.6	4
9	Photoisomerization of Enediynyl Linker Leads to Slipped Cofacial Hydroporphyrin Dyads with Strong Through-Bond and Through-Space Electronic Interactions. Journal of Organic Chemistry, 2019, 84, 7851-7862.	1.7	10
10	Activatable Near-Infrared Fluorescence Imaging Using PEGylated Bacteriochlorin-Based Chlorin and BODIPY-Dyads as Probes for Detecting Cancer. Bioconjugate Chemistry, 2019, 30, 169-183.	1.8	29
11	Excitonic Interactions in Bacteriochlorin Homo-Dyads Enable Charge Transfer: A New Approach to the Artificial Photosynthetic Special Pair. Journal of Physical Chemistry B, 2018, 122, 4131-4140.	1.2	15
12	Symmetrical and Nonsymmetrical Meso–Meso Directly Linked Hydroporphyrin Dyads: Synthesis and Photochemical Properties. Inorganic Chemistry, 2018, 57, 2977-2988.	1.9	14
13	Hydroporphyrins in Fluorescence In Vivo Imaging. Reviews in Fluorescence, 2018, , 21-51.	0.5	0
14	Strongly coupled bacteriochlorin dyad studied using phase-modulated fluorescence-detected two-dimensional electronic spectroscopy. Optics Express, 2018, 26, 22327.	1.7	33
15	Expanding π-Conjugation in Chlorins Using Ethenyl Linker. Journal of Organic Chemistry, 2018, 83, 9076-9087.	1.7	12
16	The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles. Origins of Life and Evolution of Biospheres, 2017, 47, 93-119.	0.8	7
17	Amphiphilic BODIPY-Hydroporphyrin Energy Transfer Arrays with Broadly Tunable Absorption and Deep Red/Near-Infrared Emission in Aqueous Micelles. Journal of Organic Chemistry, 2017, 82, 6054-6070.	1.7	21
18	BODIPY–Bacteriochlorin Energy Transfer Arrays: Toward Near-IR Emitters with Broadly Tunable, Multiple Absorption Bands. Journal of Organic Chemistry, 2017, 82, 13068-13075.	1.7	15

MARCIN PTASZEK

#	Article	IF	CITATIONS
19	Scope and limitations of two model prebiotic routes to tetrapyrrole macrocycles. New Journal of Chemistry, 2016, 40, 7445-7455.	1.4	4
20	Complexity in structure-directed prebiotic chemistry. Reaction bifurcation from a \hat{I}^2 -diketone in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6434-6440.	1.4	3
21	Bacteriochlorin Dyads as Solvent Polarity Dependent Near-Infrared Fluorophores and Reactive Oxygen Species Photosensitizers. Organic Letters, 2016, 18, 4590-4593.	2.4	26
22	Synthesis of diverse acyclic precursors to pyrroles for studies of prebiotic routes to tetrapyrrole macrocycles. New Journal of Chemistry, 2016, 40, 8786-8808.	1.4	9
23	Complexity in structure-directed prebiotic chemistry. Unexpected compositional richness from competing reactants in tetrapyrrole formation. New Journal of Chemistry, 2016, 40, 6421-6433.	1.4	8
24	Effects of Strong Electronic Coupling in Chlorin and Bacteriochlorin Dyads. Journal of Physical Chemistry A, 2016, 120, 379-395.	1.1	28
25	Photophysical Properties and Electronic Structure of Chlorin-Imides: Bridging the Cap between Chlorins and Bacteriochlorins. Journal of Physical Chemistry B, 2015, 119, 7503-7515.	1.2	27
26	Progress towards synthetic chlorins with graded polarity, conjugatable substituents, and wavelength tunability. Journal of Porphyrins and Phthalocyanines, 2015, 19, 547-572.	0.4	10
27	Deep-Red Emissive BODIPY–Chlorin Arrays Excitable with Green and Red Wavelengths. Journal of Organic Chemistry, 2015, 80, 3858-3869.	1.7	25
28	Activatable Organic Near-Infrared Fluorescent Probes Based on a Bacteriochlorin Platform: Synthesis and Multicolor <i>in Vivo</i> Imaging with a Single Excitation. Bioconjugate Chemistry, 2014, 25, 362-369.	1.8	41
29	Regioselective β-pyrrolic electrophilic substitution of hydrodipyrrin–dialkylboron complexes facilitates access to synthetic models for chlorophyll f. New Journal of Chemistry, 2014, 38, 1717.	1.4	25
30	Strongly Conjugated Hydroporphyrin Dyads: Extensive Modification of Hydroporphyrins' Properties by Expanding the Conjugated System. Journal of Organic Chemistry, 2014, 79, 7910-7925.	1.7	37
31	Near-IR Emissive Chlorin–Bacteriochlorin Energy-Transfer Dyads with a Common Donor and Acceptors with Tunable Emission Wavelength. Journal of Organic Chemistry, 2013, 78, 10678-10691.	1.7	42
32	Rational Design of Fluorophores for In Vivo Applications. Progress in Molecular Biology and Translational Science, 2013, 113, 59-108.	0.9	50
33	Multifunctional Bacteriochlorins from Selective Palladium-Coupling Reactions. Organic Letters, 2012, 14, 3708-3711.	2.4	39
34	Galactosyl Human Serum Albumin-NMP1 Conjugate: A Near Infrared (NIR)-Activatable Fluorescence Imaging Agent to Detect Peritoneal Ovarian Cancer Metastases. Bioconjugate Chemistry, 2012, 23, 1671-1679.	1.8	60
35	Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants. New Journal of Chemistry, 2011, 35, 65-75.	1.4	36
36	De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls. New Journal of Chemistry, 2011, 35, 2671.	1.4	17

MARCIN PTASZEK

#	Article	IF	CITATIONS
37	Structural characteristics that make chlorophylls green: interplay of hydrocarbon skeleton and substituents. New Journal of Chemistry, 2011, 35, 76-88.	1.4	40
38	Expanded Scope of Synthetic Bacteriochlorins via Improved Acid Catalysis Conditions and Diverse Dihydrodipyrrin-Acetals. Journal of Organic Chemistry, 2010, 75, 1016-1039.	1.7	119
39	De Novo Synthesis of Long-Wavelength Absorbing Chlorin-13,15-dicarboximides. Journal of Organic Chemistry, 2010, 75, 1659-1673.	1.7	39
40	Chlorin–Bacteriochlorin Energyâ€transfer Dyads as Prototypes for Nearâ€infrared Molecular Imaging Probes: Controlling Chargeâ€transfer and Fluorescence Properties in Polar Media. Photochemistry and Photobiology, 2009, 85, 909-920.	1.3	37
41	Regioselective Bromination Tactics in the de Novo Synthesis of Chlorophyll <i>b</i> Analogues. Journal of Organic Chemistry, 2009, 74, 3237-3247.	1.7	28
42	Refined syntheses of hydrodipyrrin precursors to chlorin and bacteriochlorin building blocks. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1098-1110.	0.4	39
43	Synthesis and Excited-state Photodynamics of a Chlorin–Bacteriochlorin Dyad—Through-space Versus Through-bond Energy Transfer in Tetrapyrrole Arrays. Photochemistry and Photobiology, 2008, 84, 786-801.	1.3	38
44	Examination of Chlorin–Bacteriochlorin Energyâ€ŧransfer Dyads as Prototypes for Nearâ€infrared Molecular Imaging Probes ^{â€} . Photochemistry and Photobiology, 2008, 84, 1061-1072.	1.3	51
45	Direct Synthesis of Magnesium Porphine via 1-Formyldipyrromethane. Journal of Organic Chemistry, 2007, 72, 5008-5011.	1.7	66
46	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 2: Redox Properties, Optical Spectra and Electronic Structure. Photochemistry and Photobiology, 2007, 83, 1125-1143.	1.3	77
47	Two Complementary Routes to 7-Substituted Chlorins. Partial Mimics of Chlorophyllb. Journal of Organic Chemistry, 2007, 72, 7736-7749.	1.7	39
48	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 1: Synthesis. Tetrahedron, 2007, 63, 3826-3839.	1.0	56
49	Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 3: Spectral and structural properties. Tetrahedron, 2007, 63, 3850-3863.	1.0	63
50	Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 1: Synthesis, Vibrational Properties and Excited-state Decay Characteristics. Photochemistry and Photobiology, 2007, 83, 1110-1124.	1.3	68
51	Synthesis of 1-Formyldipyrromethanes. Journal of Organic Chemistry, 2006, 71, 4328-4331.	1.7	32
52	Synthetic Chlorins Bearing Auxochromes at the 3- and 13-Positions. Journal of Organic Chemistry, 2006, 71, 4092-4102.	1.7	92
53	Refined Synthesis of 2,3,4,5-Tetrahydro-1,3,3-trimethyldipyrrin, a Deceptively Simple Precursor to Hydroporphyrins. Organic Process Research and Development, 2005, 9, 651-659.	1.3	54