Andrew P Dobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026617/publications.pdf

Version: 2024-02-01

173 papers 24,452 citations

14124 69 h-index 150 g-index

185 all docs

185
docs citations

185 times ranked 28244 citing authors

#	Article	IF	CITATIONS
1	Spatiotemporal variations in exposure: Chagas disease in Colombia as a case study. BMC Medical Research Methodology, 2022, 22, 13.	1.4	2
2	Savannas are vital but overlooked carbon sinks. Science, 2022, 375, 392-392.	6.0	11
3	An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conservation Letters, 2022, 15, .	2.8	62
4	The costs and benefits of primary prevention of zoonotic pandemics. Science Advances, 2022, 8, eabl4183.	4.7	99
5	Dietary abundance distributions: Dominance and diversity in vertebrate diets. Ecology Letters, 2022, 25, 992-1008.	3.0	9
6	Resolution of Respect Robert M. May (1936–2020). Bulletin of the Ecological Society of America, 2021, 102, e01769.	0.2	0
7	COVIDâ€Clarity demands unification of health and environmental policy. Global Change Biology, 2021, 27, 1319-1321.	4.2	9
8	Plant ecology: Macroparasitism in plant communities. Current Biology, 2021, 31, R287-R289.	1.8	0
9	A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
10	Host population dynamics in the face of an evolving pathogen. Journal of Animal Ecology, 2021, 90, 1480-1491.	1.3	7
11	Towards an ecosystem model of infectious disease. Nature Ecology and Evolution, 2021, 5, 907-918.	3.4	22
12	A solution scan of societal options to reduce transmission and spread of respiratory viruses: SARS-CoV-2 as a case study. Journal of Biosafety and Biosecurity, 2021, 3, 84-90.	1.4	2
13	Biodiversity loss due to more than climate change. Science, 2021, 374, 699-700.	6.0	23
14	Challenges in modelling the dynamics of infectious diseases at the wildlife–human interface. Epidemics, 2021, 37, 100523.	1.5	20
15	Conservation value of small reserves. Conservation Biology, 2020, 34, 66-79.	2.4	57
16	Preliminary Characterization of Triatomine Bug Blood Meals on the Island of Trinidad Reveals Opportunistic Feeding Behavior on Both Human and Animal Hosts. Tropical Medicine and Infectious Disease, 2020, 5, 166.	0.9	5
17	Ecology and economics for pandemic prevention. Science, 2020, 369, 379-381.	6.0	411
18	Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine, 2020, 38, 5582-5590.	1.7	36

#	Article	IF	CITATIONS
19	Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. ELife, 2020, 9, .	2.8	91
20	Population viability and harvest sustainability for Madagascar lemurs. Conservation Biology, 2019, 33, 99-111.	2.4	23
21	Anthropogenic modifications to fire regimes in the wider Serengetiâ€Mara ecosystem. Global Change Biology, 2019, 25, 3406-3423.	4.2	38
22	Trophy hunting: Bans create opening for change. Science, 2019, 366, 434-435.	6.0	11
23	Linking scaling laws across eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21616-21622.	3.3	95
24	Critical transitions in malaria transmission models are consistently generated by superinfection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180275.	1.8	17
25	Disentangling serology to elucidate henipa―and filovirus transmission in Madagascar fruit bats. Journal of Animal Ecology, 2019, 88, 1001-1016.	1.3	36
26	Population trends for two Malagasy fruit bats. Biological Conservation, 2019, 234, 165-171.	1.9	15
27	Transmission ecology of canine parvovirus in a multi-host, multi-pathogen system. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182772.	1.2	26
28	Development, environmental degradation, and disease spread in the Brazilian Amazon. PLoS Biology, 2019, 17, e3000526.	2.6	45
29	Evidence of Critical Transitions and Coexistence of Alternative States in Nature: The Case of Malaria Transmission. Trends in Mathematics, 2019, , 73-79.	0.1	1
30	Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecology Letters, 2018, 21, 557-567.	3.0	55
31	Pathogen spillover during land conversion. Ecology Letters, 2018, 21, 471-483.	3.0	161
32	Incomplete host immunity favors the evolution of virulence in an emergent pathogen. Science, 2018, 359, 1030-1033.	6.0	50
33	Toward an integrative molecular approach to wildlife disease. Conservation Biology, 2018, 32, 798-807.	2.4	36
34	Lowâ€cost agricultural waste accelerates tropical forest regeneration. Restoration Ecology, 2018, 26, 275-283.	1.4	17
35	Pneumonia in bighorn sheep: Risk and resilience. Journal of Wildlife Management, 2018, 82, 32-45.	0.7	75
36	Complementary Paths to Chagas Disease Elimination: The Impact of Combining Vector Control With Etiological Treatment. Clinical Infectious Diseases, 2018, 66, S293-S300.	2.9	20

#	Article	IF	CITATIONS
37	Comparison and validation of two computational models of Chagas disease: A thirty year perspective from Venezuela. Epidemics, 2017, 18, 81-91.	1.5	14
38	Alternative stable states and spatial indicators of critical slowing down along a spatial gradient in a savanna ecosystem. Global Ecology and Biogeography, 2017, 26, 638-649.	2.7	58
39	Null expectations for disease dynamics in shrinking habitat: dilution or amplification?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160173.	1.8	67
40	Elucidating transmission dynamics and host-parasite-vector relationships for rodent-borne Bartonella spp. in Madagascar. Epidemics, 2017, 20, 56-66.	1.5	19
41	The rise and fall of malaria under land-use change in frontier regions. Nature Ecology and Evolution, 2017, 1, 108.	3.4	40
42	Valuing water for sustainable development. Science, 2017, 358, 1003-1005.	6.0	136
43	General ecological models for human subsistence, health and poverty. Nature Ecology and Evolution, 2017, 1, 1153-1159.	3.4	25
44	Muskox Health Ecology Symposium 2016: Gathering to Share Knowledge on Umingmak in a Time of Rapid Change. Arctic, 2017, 70, 225.	0.2	19
45	Body size and meta-community structure: the allometric scaling of parasitic worm communities in their mammalian hosts. Parasitology, 2016, 143, 880-893.	0.7	8
46	<i>Trypanosoma cruzi–Trypanosoma rangeli</i> co-infection ameliorates negative effects of single trypanosome infections in experimentally infected <i>Rhodnius prolixus</i> . Parasitology, 2016, 143, 1157-1167.	0.7	21
47	Improving marine disease surveillance through sea temperature monitoring, outlooks and projections. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150208.	1.8	55
48	Managing marine disease emergencies in an era of rapid change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150364.	1.8	109
49	Assessing Rotation-Invariant Feature Classification for Automated Wildebeest Population Counts. PLoS ONE, 2016, 11, e0156342.	1.1	24
50	Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium. One Health, 2015, 1, 66-75.	1.5	44
51	Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasites and Vectors, 2015, 8, 630.	1.0	80
52	Non-invasive surveillance for Plasmodium in reservoir macaque species. Malaria Journal, 2015, 14, 404.	0.8	23
53	Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control. Parasites and Vectors, 2015, 8, 537.	1.0	30
54	Conservation and economic benefits of a road around the Serengeti. Conservation Biology, 2015, 29, 932-936.	2.4	17

#	Article	IF	CITATIONS
55	Bats as †special' reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 2015, 23, 172-180.	3.5	358
56	Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1464-1469.	3.3	128
57	Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains. American Journal of Tropical Medicine and Hygiene, 2015, 93, 564-572.	0.6	28
58	Bartonella spp. in Fruit Bats and Blood-Feeding Ectoparasites in Madagascar. PLoS Neglected Tropical Diseases, 2015, 9, e0003532.	1.3	71
59	Climate change and Arctic parasites. Trends in Parasitology, 2015, 31, 181-188.	1.5	35
60	Synergistic and antagonistic interactions between bednets and vaccines in the control of malaria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3014-3019.	3.3	10
61	A general consumer-resource population model. Science, 2015, 349, 854-857.	6.0	86
62	Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics, 2015, 10, 26-30.	1.5	69
63	Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens. PLoS Pathogens, 2014, 10, e1004129.	2.1	135
64	Phocine Distemper Virus: Current Knowledge and Future Directions. Viruses, 2014, 6, 5093-5134.	1.5	114
65	Yellowstone Wolves and the Forces That Structure Natural Systems. PLoS Biology, 2014, 12, e1002025.	2.6	31
66	Cetacean Morbillivirus: Current Knowledge and Future Directions. Viruses, 2014, 6, 5145-5181.	1.5	195
67	Mathematical models for emerging disease. Science, 2014, 346, 1294-1295.	6.0	9
68	Compromise solutions between conservation and road building in the tropics. Current Biology, 2014, 24, R722-R725.	1.8	60
69	A walk on the tundra: Host–parasite interactions in an extreme environment. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 198-208.	0.6	45
70	Gimme shelter – the relative sensitivity of parasitic nematodes with direct and indirect life cycles to climate change. Global Change Biology, 2013, 19, 3291-3305.	4.2	42
71	Conservation Biology, Discipline of. , 2013, , 238-248.		2
72	Climate change and infectious diseases: Can we meet the needs for better prediction?. Climatic Change, 2013, 118, 625-640.	1.7	88

#	Article	IF	Citations
73	The Impact of Community Organization on Vector-Borne Pathogens. American Naturalist, 2013, 181, 1-11.	1.0	115
74	Metabolic approaches to understanding climate change impacts on seasonal hostâ€macroparasite dynamics. Ecology Letters, 2013, 16, 9-21.	3.0	116
75	Parallel Patterns of Increased Virulence in a Recently Emerged Wildlife Pathogen. PLoS Biology, 2013, 11, e1001570.	2.6	78
76	Spatioâ€ŧemporal dynamics of pneumonia in bighorn sheep. Journal of Animal Ecology, 2013, 82, 518-528.	1.3	62
77	Multiple host transfers, but only one successful lineage in a continent-spanning emergent pathogen. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131068.	1.2	37
78	Interactions between Social Structure, Demography, and Transmission Determine Disease Persistence in Primates. PLoS ONE, 2013, 8, e76863.	1.1	11
79	Disease Ecology, Biodiversity, and the Latitudinal Gradient in Income. PLoS Biology, 2012, 10, e1001456.	2.6	87
80	Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. Journal of the Royal Society Interface, 2012, 9, 89-101.	1.5	245
81	Ecology of zoonoses: natural and unnatural histories. Lancet, The, 2012, 380, 1936-1945.	6.3	590
82	Andrew Dobson: taking a macroscopic view of zoonoses. Lancet, The, 2012, 380, 1899.	6.3	0
83	Linking community and disease ecology: the impact of biodiversity on pathogen transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2807-2813.	1.8	85
84	Parasite invasion following host reintroduction: a case study of Yellowstone's wolves. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2840-2851.	1.8	77
85	Disease dynamics in wild populations: modeling and estimation: a review. Journal of Ornithology, 2012, 152, 485-509.	0.5	70
86	EVOLUTION OF VIRULENCE IN HETEROGENEOUS HOST COMMUNITIES UNDER MULTIPLE TRADE-OFFS. Evolution; International Journal of Organic Evolution, 2012, 66, 391-401.	1.1	32
87	Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. ELife, 2012, 1, e00093.	2.8	43
88	Frontiers in climate change–disease research. Trends in Ecology and Evolution, 2011, 26, 270-277.	4.2	273
89	Predicted Impact of Barriers to Migration on the Serengeti Wildebeest Population. PLoS ONE, 2011, 6, e16370.	1.1	81
90	Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468, 647-652.	13.7	1,481

#	Article	IF	CITATIONS
91	Road will ruin Serengeti. Nature, 2010, 467, 272-273.	13.7	86
92	Transmission Dynamics and Prospects for the Elimination of Canine Rabies. PLoS Biology, 2009, 7, e1000053.	2.6	374
93	A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C. PLoS Biology, 2009, 7, e1000210.	2.6	232
94	Food-web structure and ecosystem services: insights from the Serengeti. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1665-1682.	1.8	58
95	The assembly, collapse and restoration of food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1803-1806.	1.8	21
96	<i>Pteropus vampyrus</i> , a hunted migratory species with a multinational homeâ€fange and a need for regional management. Journal of Applied Ecology, 2009, 46, 991-1002.	1.9	145
97	Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology, 2009, 90, 920-927.	1.5	86
98	Epidemic Dynamics at the Human-Animal Interface. Science, 2009, 326, 1362-1367.	6.0	554
99	Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature, 2008, 454, 515-518.	13.7	506
100	Parasites in food webs: the ultimate missing links. Ecology Letters, 2008, 11, 533-546.	3.0	716
101	Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem. Journal of Applied Ecology, 2008, 45, 1246-1257.	1.9	166
102	Body-size scaling in an SEI model of wildlife diseases. Theoretical Population Biology, 2008, 73, 374-382.	0.5	20
103	How does poaching affect the size of national parks?. Trends in Ecology and Evolution, 2008, 23, 177-180.	4.2	30
104	Homage to Linnaeus: How many parasites? How many hosts?. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11482-11489.	3.3	551
105	Allometric Scaling and Seasonality in the Epidemics of Wildlife Diseases. American Naturalist, 2008, 172, 818-828.	1.0	31
106	Rabies Exposures, Post-Exposure Prophylaxis and Deaths in a Region of Endemic Canine Rabies. PLoS Neglected Tropical Diseases, 2008, 2, e339.	1.3	176
107	The Multiple Roles of Infectious Diseases in the Serengeti Ecosystem. , 2008, , 209-240.		18
108	Pathogen-induced reversal of native dominance in a grassland community. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5473-5478.	3.3	175

#	Article	IF	CITATIONS
109	Synchronous cycles of domestic dog rabies in sub-Saharan Africa and the impact of control efforts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7717-7722.	3.3	132
110	Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds. PLoS Biology, 2007, 5, e157.	2.6	818
111	Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends in Parasitology, 2007, 23, 311-316.	1.5	66
112	Cholera Seasonality in Madras (1901–1940): Dual Role for Rainfall in Endemic and Epidemic Regions. EcoHealth, 2007, 4, 52-62.	0.9	69
113	HABITAT LOSS, TROPHIC COLLAPSE, AND THE DECLINE OF ECOSYSTEM SERVICES. Ecology, 2006, 87, 1915-1924.	1.5	458
114	Trade-offs across Space, Time, and Ecosystem Services. Ecology and Society, 2006, 11, .	1.0	951
115	Hyperinfectivity in Cholera: A New Mechanism for an Old Epidemiological Model?. PLoS Medicine, 2006, 3, e280.	3.9	40
116	Disease and connectivity., 2006,, 479-501.		7
117	Seasonality and the dynamics of infectious diseases. Ecology Letters, 2006, 9, 467-484.	3.0	1,162
118	A message from the frogs. Nature, 2006, 439, 143-144.	13.7	62
119	Dynamics of Mycoplasmal Conjunctivitis in the Native and Introduced Range of the Host. EcoHealth, 2006, 3, 95-102.	0.9	44
120	Parasites dominate food web links. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11211-11216.	3.3	691
121	Extending the principles of community ecology to address the epidemiology of host-pathogen systems. , 2006, , 6-27.		43
122	Sacred Cows and Sympathetic Squirrels: The Importance of Biological Diversity to Human Health. PLoS Medicine, 2006, 3, e231.	3.9	144
123	Seasonal Patterns of Infectious Diseases. PLoS Medicine, 2005, 2, e5.	3.9	77
124	Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 229-241.	1.8	87
125	EXPOSING EXTINCTION RISK ANALYSIS TO PATHOGENS: IS DISEASE JUST ANOTHER FORM OF DENSITY DEPENDENCE?. , 2005, 15, 1402-1414.		47
126	VIROLOGY: What Links Bats to Emerging Infectious Diseases?. Science, 2005, 310, 628-629.	6.0	158

#	Article	IF	Citations
127	Dynamics of a novel pathogen in an avian host: Mycoplasmal conjunctivitis in house finches. Acta Tropica, 2005, 94, 77-93.	0.9	98
128	Ecological theory to enhance infectious disease control and public health policy. Frontiers in Ecology and the Environment, 2005, 3, 29-37.	1.9	62
129	Ecological science and sustainability for the 21st century. Frontiers in Ecology and the Environment, 2005, 3, 4-11.	1.9	127
130	Ecological Science and Sustainability for the 21st Century. Frontiers in Ecology and the Environment, 2005, 3, 4.	1.9	1
131	The rising tide of ocean diseases: unsolved problems and research priorities. Frontiers in Ecology and the Environment, 2004, 2, 375-382.	1.9	236
132	Seasonality and wildlife disease: how seasonal birth, aggregation and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2569-2577.	1.2	130
133	Population Dynamics of Pathogens with Multiple Host Species. American Naturalist, 2004, 164, S64-S78.	1.0	475
134	Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecology Letters, 2003, 6, 797-802.	3.0	357
135	Parasite establishment in host communities. Ecology Letters, 2003, 6, 837-842.	3.0	205
136	Rates of spread of marine pathogens. Ecology Letters, 2003, 6, 1062-1067.	3.0	144
137	Human health effects of a changing global nitrogen cycle. Frontiers in Ecology and the Environment, 2003, 1, 240-246.	1.9	370
138	Social Organization and Parasite Risk in Mammals: Integrating Theory and Empirical Studies. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 517-547.	3.8	625
139	ECOLOGY: Metalife!. Science, 2003, 301, 1488-1490.	6.0	19
140	Human Health Effects of a Changing Global Nitrogen Cycle. Frontiers in Ecology and the Environment, 2003, 1, 240.	1.9	6
141	Disease, habitat fragmentation and conservation. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2041-2049.	1.2	220
142	Wow! And again, Wow!. Trends in Ecology and Evolution, 2002, 17, 98-99.	4.2	0
143	Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science, 2002, 296, 2158-2162.	6.0	2,154
144	Cholera and climate: revisiting the quantitative evidence. Microbes and Infection, 2002, 4, 237-245.	1.0	250

#	Article	IF	Citations
145	Title is missing!. International Journal of Primatology, 2002, 23, 327-353.	0.9	137
146	Wildlife Perspectives on the Evolution of Virulence. , 2002, , 26-38.		3
147	Virulence Management in Wildlife Populations. , 2002, , 413-424.		2
148	Ecological Forecasts: An Emerging Imperative. Science, 2001, 293, 657-660.	6.0	774
149	An international biodiversity observation year. Trends in Ecology and Evolution, 2001, 16, 52-54.	4.2	8
150	SYNOPTIC TINKERING: INTEGRATING STRATEGIES FOR LARGE-SCALE CONSERVATION., 2001, 11, 1019-1026.		33
151	Invertebrates are here again. Trends in Parasitology, 2001, 17, 603.	1.5	0
152	Conservation Biology, Discipline of. , 2001, , 855-864.		1
153	Local data are vital to worldwide conservation. Nature, 2000, 403, 241-241.	13.7	47
154	Sexually transmitted diseases in polygynous mating systems: prevalence and impact on reproductive success. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1555-1563.	1.2	147
155	Tinker, tailor, scientist, advocate!. Trends in Ecology and Evolution, 2000, 15, 388.	4.2	0
156	Global biodiversity assessment. Trends in Ecology and Evolution, 1997, 12, 39-40.	4.2	1
157	Invited Discussion. , 1996, , 184-188.		0
158	Allometry and simple epidemic models for microparasites. Nature, 1996, 379, 720-722.	13.7	78
159	The Population Dynamics of Brucellosis in the Yellowstone National Park. Ecology, 1996, 77, 1026-1036.	1.5	141
160	Detecting disease and parasite threats to endangered species and ecosystems. Trends in Ecology and Evolution, 1995, 10, 190-194.	4.2	438
161	Biodiversity and human health. Trends in Ecology and Evolution, 1995, 10, 390-391.	4.2	21
162	Pathogens and the structure of plant communities. Trends in Ecology and Evolution, 1994, 9, 393-398.	4.2	204

#	Article	IF	CITATIONS
163	The Cambridge World history of human disease. Trends in Microbiology, 1993, 1, 321.	3.5	O
164	Ivory: Why the Ban Must Stay!. Conservation Biology, 1992, 6, 149-151.	2.4	8
165	The dynamics of serengeti research. Trends in Ecology and Evolution, 1992, 7, 108-110.	4.2	3
166	Regulation and Stability of a Free-Living Host-Parasite System: Trichostrongylus tenuis in Red Grouse. I. Monitoring and Parasite Reduction Experiments. Journal of Animal Ecology, 1992, 61, 477.	1.3	249
167	How to pay for tropical rain forests. Trends in Ecology and Evolution, 1991, 6, 348-351.	4.2	8
168	Primate ecology at the crossroads. Trends in Ecology and Evolution, 1990, 5, 324-325.	4.2	2
169	The greenhouse effect and biological diversity. Trends in Ecology and Evolution, 1989, 4, 64-68.	4.2	48
170	Going, going…Guan!. Trends in Ecology and Evolution, 1988, 3, 217-218.	4.2	2
171	Antipredator Behavior and the Population Dynamics of Simple Predator-Prey Systems. American Naturalist, 1987, 130, 431-447.	1.0	194
172	What's special about desert ecology?. Trends in Ecology and Evolution, 1987, 2, 145-146.	4.2	6
173	Ecological Synthesis and Its Role in Advancing Knowledge. BioScience, 0, , .	2.2	4