List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nature Microbiology, 2021, 6, 327-338.	13.3	68
2	<scp>SARS</scp> â€CoVâ€2, bacterial coâ€infections, and <scp>AMR</scp> : the deadly trio in <scp>COVID</scp> â€19?. EMBO Molecular Medicine, 2020, 12, e12560.	6.9	169
3	Evolution of Colistin Resistance in the Klebsiella pneumoniae Complex Follows Multiple Evolutionary Trajectories with Variable Effects on Fitness and Virulence Characteristics. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	12
4	Nonclonal Emergence of Colistin Resistance Associated with Mutations in the BasRS Two-Component System in Escherichia coli Bloodstream Isolates. MSphere, 2020, 5, .	2.9	19
5	Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathogens, 2020, 16, e1007969.	4.7	86
6	PYHIN1 regulates pro-inflammatory cytokine induction rather than innate immune DNA sensing in airway epithelial cells. Journal of Biological Chemistry, 2020, 295, 4438-4450.	3.4	15
7	Viruses to fight other viruses: the influenza vaccine case. EMBO Molecular Medicine, 2020, 12, e12059.	6.9	1
8	Klebsiella pneumoniae Reduces SUMOylation To Limit Host Defense Responses. MBio, 2020, 11, .	4.1	24
9	SARS-CoV-2, BACTERIAL CO-INFECTIONS, AND AMR: THE DEADLY TRIO IN COVID-19?. Juvenis Scientia, 2020, 6, 42-50.	0.2	2
10	Control of Klebsiella pneumoniae Infection in Mice by Using Dissolving Microarray Patches Containing Gentamicin. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
11	2-Hydroxylation of <i>Acinetobacter baumannii</i> Lipid A Contributes to Virulence. Infection and Immunity, 2019, 87, .	2.2	37
12	A Porcine <i>Ex Vivo</i> Lung Perfusion Model To Investigate Bacterial Pathogenesis. MBio, 2019, 10, .	4.1	19
13	Electronic cigarette vapour increases virulence and inflammatory potential of respiratory pathogens. Respiratory Research, 2019, 20, 267.	3.6	44
14	The intrinsic resistome of Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 2019, 53, 29-33.	2.5	20
15	<i>Klebsiella pneumoniae</i> infection biology: living to counteract host defences. FEMS Microbiology Reviews, 2019, 43, 123-144.	8.6	322
16	Global gene expression profiling of a virulent Klebsiella pneumoniae strain during pulmonary infection. Access Microbiology, 2019, 1, .	0.5	0
17	Modulation of Haemophilus influenzae interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways. Scientific Reports, 2018, 8, 6872.	3.3	19
18	Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. Journal of Controlled Release, 2018, 279, 316-325.	9.9	44

#	Article	IF	CITATIONS
19	Nanodelivery strategies for the treatment of multidrugâ€resistant bacterial infections. Journal of Interdisciplinary Nanomedicine, 2018, 3, 111-121.	3.6	22
20	A <i>Klebsiella pneumoniae</i> antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Molecular Medicine, 2017, 9, 430-447.	6.9	136
21	Several Hfqâ€dependent alterations in physiology of <i>Yersinia enterocolitica </i> O:3 are mediated by derepression of the transcriptional regulator RovM. Molecular Microbiology, 2017, 103, 1065-1091.	2.5	4
22	Investigating intracellular persistence of <i>Staphylococcus aureus</i> within a murine alveolar macrophage cell line. Virulence, 2017, 8, 1761-1775.	4.4	65
23	Identification and Characterization of Two Klebsiella pneumoniae <i>lpxL</i> Lipid A Late Acyltransferases and Their Role in Virulence. Infection and Immunity, 2017, 85, .	2.2	42
24	Vibrio cholerae amino acids go on the defense. Journal of Biological Chemistry, 2017, 292, 21216-21217.	3.4	5
25	Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens. Frontiers in Microbiology, 2017, 8, 276.	3.5	22
26	Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope. Frontiers in Microbiology, 2017, 8, 2657.	3.5	5
27	Natural killer cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae growth during lung infection. PLoS Pathogens, 2017, 13, e1006696.	4.7	54
28	Klebsiellasweet deadly kiss. Virulence, 2016, 7, 742-744.	4.4	4
29	<i>Klebsiella pneumoniae</i> survives within macrophages by avoiding delivery to lysosomes. Cellular Microbiology, 2015, 17, 1537-1560.	2.1	116
30	Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways. PLoS ONE, 2015, 10, e0123154.	2.5	21
31	Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation. PLoS Pathogens, 2015, 11, e1004627.	4.7	95
32	Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling. Journal of Biological Chemistry, 2015, 290, 16678-16697.	3.4	48
33	Relationship between Azithromycin Susceptibility and Administration Efficacy for Nontypeable Haemophilus influenzae Respiratory Infection. Antimicrobial Agents and Chemotherapy, 2015, 59, 2700-2712.	3.2	15
34	Genome Expression Profiling-Based Identification and Administration Efficacy of Host-Directed Antimicrobial Drugs against Respiratory Infection by Nontypeable Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 2015, 59, 7581-7592.	3.2	15
35	Deciphering tissue-induced <i>Klebsiella pneumoniae</i> lipid A structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6369-78.	7.1	97
36	Bacteria microarrays as sensitive tools for exploring pathogen surface epitopes and recognition by host receptors. RSC Advances, 2015, 5, 7173-7181.	3.6	12

#	Article	IF	CITATIONS
37	Characterization of Nontypable Haemophilus influenzae Isolates Recovered from Adult Patients with Underlying Chronic Lung Disease Reveals Genotypic and Phenotypic Traits Associated with Persistent Infection. PLoS ONE, 2014, 9, e97020.	2.5	29
38	Generation of Replication-Proficient Influenza Virus NS1 Point Mutants with Interferon-Hyperinducer Phenotype. PLoS ONE, 2014, 9, e98668.	2.5	3
39	Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biology, 2014, 12, 41.	3.8	132
40	An Unbiased Genetic Screen Reveals the Polygenic Nature of the Influenza Virus Anti-Interferon Response. Journal of Virology, 2014, 88, 4632-4646.	3.4	45
41	Significance of tagl and mfd genes in the virulence of non-typeable Haemophilus influenzae. International Microbiology, 2014, 17, 159-64.	2.4	1
42	<i>Klebsiella pneumoniae</i> targets an EGF receptor-dependent pathway to subvert inflammation. Cellular Microbiology, 2013, 15, 1212-1233.	2.1	46
43	Relative Contributions of Lipooligosaccharide Inner and Outer Core Modifications to Nontypeable Haemophilus influenzae Pathogenesis. Infection and Immunity, 2013, 81, 4100-4111.	2.2	48
44	Modeling Klebsiella pneumoniae Pathogenesis by Infection of the Wax Moth Galleria mellonella. Infection and Immunity, 2013, 81, 3552-3565.	2.2	167
45	Role of Bacterial Surface Structures on the Interaction of Klebsiella pneumoniae with Phagocytes. PLoS ONE, 2013, 8, e56847.	2.5	119
46	The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition. PLoS Pathogens, 2012, 8, e1002675.	4.7	140
47	Deciphering the Acylation Pattern of Yersinia enterocolitica Lipid A. PLoS Pathogens, 2012, 8, e1002978.	4.7	32
48	Molecular Basis of Yersinia enterocolitica Temperature-Dependent Resistance to Antimicrobial Peptides. Journal of Bacteriology, 2012, 194, 3173-3188.	2.2	37
49	Impact of cigarette smoke exposure on host-bacterial pathogen interactions. European Respiratory Journal, 2012, 39, 467-477.	6.7	81
50	Host cell kinases, α5 and β1 integrins, and Rac1 signalling on the microtubule cytoskeleton are important for non-typable Haemophilus influenzae invasion of respiratory epithelial cells. Microbiology (United) Tj ETQq00	0 ng&T /O\	ver sa ck 10 Tf
51	Genotypic and phenotypic diversity of the noncapsulated Haemophilus influenzae: adaptation and pathogenesis in the human airways. International Microbiology, 2012, 15, 159-72.	2.4	18
52	Infection systems biology: from reactive to proactive (P4) medicine. International Microbiology, 2012, 15, 55-60.	2.4	12
53	Identification of the Lipopolysaccharide Core of Yersinia pestis and Yersinia pseudotuberculosis as the Receptor for Bacteriophage φA1122. Journal of Bacteriology, 2011, 193, 4963-4972.	2.2	87
54	Phosphoethanolamine Modification of Lipid A in Colistin-Resistant Variants of Acinetobacter baumannii Mediated by the pmrAB Two-Component Regulatory System. Antimicrobial Agents and Chemotherapy, 2011, 55, 3370-3379.	3.2	354

#	Article	IF	CITATIONS
55	Lipopolysaccharide Core Oligosaccharide Biosynthesis and Assembly. , 2011, , 237-273.		10
56	Nontypable Haemophilus influenzae Displays a Prevalent Surface Structure Molecular Pattern in Clinical Isolates. PLoS ONE, 2011, 6, e21133.	2.5	22
57	Klebsiella pneumoniae subverts the activation of inflammatory responses in a NOD1-dependent manner. Cellular Microbiology, 2011, 13, 135-153.	2.1	61
58	Efficacy of cecropin A-melittin peptides on a sepsis model of infection by pan-resistant Acinetobacter baumannii. European Journal of Clinical Microbiology and Infectious Diseases, 2011, 30, 1391-1398.	2.9	26
59	Secretory IgA and COPD: A New Kid on the Block?. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 285-287.	5.6	7
60	Chronic Obstructive Pulmonary Disease Th1 Cells Display Impaired Response to Endotoxin. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 148-150.	5.6	7
61	Evidence for a non-replicative intracellular stage of nontypable Haemophilus influenzae in epithelial cells. Microbiology (United Kingdom), 2011, 157, 234-250.	1.8	79
62	Analysis of the Networks Controlling the Antimicrobial-Peptide-Dependent Induction of Klebsiella pneumoniae Virulence Factors. Infection and Immunity, 2011, 79, 3718-3732.	2.2	93
63	Klebsiella pneumoniae Outer Membrane Protein A Is Required to Prevent the Activation of Airway Epithelial Cells. Journal of Biological Chemistry, 2011, 286, 9956-9967.	3.4	67
64	Expression of Toll-Like Receptors 2 and 4 is Upregulated During Hospital Admission in Traumatic Patients. Annals of Surgery, 2010, 251, 521-527.	4.2	8
65	Defective B cell response to TLR9 ligand (CpG-ODN), Streptococcus pneumoniae and Haemophilus influenzae extracts in common variable immunodeficiency patients. Cellular Immunology, 2010, 262, 105-111.	3.0	24
66	Dissection of Host Cell Signal Transduction during Acinetobacter baumannii – Triggered Inflammatory Response. PLoS ONE, 2010, 5, e10033.	2.5	57
67	Characterization of the Six Glycosyltransferases Involved in the Biosynthesis of Yersinia enterocolitica Serotype O:3 Lipopolysaccharide Outer Core. Journal of Biological Chemistry, 2010, 285, 28333-28342.	3.4	22
68	<i>Klebsiella pneumoniae</i> Capsule Polysaccharide Impedes the Expression of β-Defensins by Airway Epithelial Cells. Infection and Immunity, 2010, 78, 1135-1146.	2.2	97
69	Role of Lipid A Acylation in <i>Yersinia enterocolitica</i> Virulence. Infection and Immunity, 2010, 78, 2768-2781.	2.2	29
70	<i>Klebsiella pneumoniae</i> AcrAB Efflux Pump Contributes to Antimicrobial Resistance and Virulence. Antimicrobial Agents and Chemotherapy, 2010, 54, 177-183.	3.2	332
71	Lack of effect of glutamine administration to boost the innate immune system response in trauma patients in the intensive care unit. Critical Care, 2010, 14, R233.	5.8	34
72	Functional genomics to identify therapeutic prophylactic targets. Environmental Microbiology Reports, 2010, 2, 219-227.	2.4	1

#	Article	IF	CITATIONS
73	Nontypeable <i>Haemophilus influenzae</i> Clearance by Alveolar Macrophages Is Impaired by Exposure to Cigarette Smoke. Infection and Immunity, 2009, 77, 4232-4242.	2.2	115
74	<i>Klebsiella pneumoniae</i> OmpA Confers Resistance to Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2009, 53, 298-302.	3.2	91
75	<i>Klebsiella pneumoniae</i> Increases the Levels of Toll-Like Receptors 2 and 4 in Human Airway Epithelial Cells. Infection and Immunity, 2009, 77, 714-724.	2.2	74
76	Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells. BMC Microbiology, 2009, 9, 156.	3.3	51
77	Glutamine as a modulator of the immune system of critical care patients: Effect on Toll-like receptor expression. A preliminary study. Nutrition, 2008, 24, 522-527.	2.4	31
78	Lipopolysaccharide-binding protein and CD14 are increased in the bronchoalveolar lavage fluid of smokers. European Respiratory Journal, 2008, 33, 273-281.	6.7	40
79	Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology (United Kingdom), 2008, 154, 3877-3886.	1.8	243
80	Expression of the Yersinia enterocolitica pYV-Encoded Type III Secretion System Is Modulated by Lipopolysaccharide O-Antigen Status. Infection and Immunity, 2007, 75, 1512-1516.	2.2	20
81	Characterization and Biological Role of the O-Polysaccharide Gene Cluster of <i>Yersinia enterocolitica</i> Serotype O:9. Journal of Bacteriology, 2007, 189, 7244-7253.	2.2	19
82	Expression of Toll-like receptor 2 is up-regulated in monocytes from patients with chronic obstructive pulmonary disease. Respiratory Research, 2006, 7, 64.	3.6	69
83	Experimental pig yersiniosis to assess attenuation ofYersinia enterocoliticaO:8 mutant strains. FEMS Immunology and Medical Microbiology, 2006, 47, 425-435.	2.7	6
84	Molecular Evolution of Proadrenomedullin N-Terminal 20 Peptide (PAMP): Evidence for Gene Co-Option. Endocrinology, 2006, 147, 3457-3461.	2.8	17
85	Quinolones Sensitize Gram-Negative Bacteria to Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2006, 50, 2361-2367.	3.2	29
86	The uptake of a Klebsiella pneumoniae capsule polysaccharide mutant triggers an inflammatory response by human airway epithelial cells. Microbiology (United Kingdom), 2006, 152, 555-566.	1.8	74
87	Capsule Polysaccharide Mediates Bacterial Resistance to Antimicrobial Peptides. Infection and Immunity, 2004, 72, 7107-7114.	2.2	406
88	Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Molecular Microbiology, 2004, 52, 451-469.	2.5	120
89	The biosynthesis and biological role of lipopolysaccharide O-antigens of pathogenic Yersiniae. Carbohydrate Research, 2003, 338, 2521-2529.	2.3	80
90	Proper expression of the O-antigen of lipopolysaccharide is essential for the virulence ofYersinia enterocoliticaO:8 in experimental oral infection of rabbits. FEMS Immunology and Medical Microbiology, 2003, 38, 97-106.	2.7	20

#	Article	IF	CITATIONS
91	Pathogenic Yersinia enterocolitica Strains Increase the Outer Membrane Permeability in Response to Environmental Stimuli by Modulating Lipopolysaccharide Fluidity and Lipid A Structure. Infection and Immunity, 2003, 71, 2014-2021.	2.2	36
92	Regulation of O-Antigen Biosynthesis in Yersinia enterocolitica. , 2003, 529, 267-274.		4
93	Functional Characterization of Gne (UDP- N -Acetylglucosamine- 4-Epimerase), Wzz (Chain Length) Tj ETQq1 1 (Bacteriology, 2002, 184, 4277-4287.).784314 2.2	rgBT /Overloc 96
94	Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Molecular Microbiology, 2002, 44, 1045-1062.	2.5	57
95	Complement Factor H Is a Serum-binding Protein for Adrenomedullin, and the Resulting Complex Modulates the Bioactivities of Both Partners. Journal of Biological Chemistry, 2001, 276, 12292-12300.	3.4	214
96	Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Molecular Microbiology, 2000, 37, 67-80.	2.5	152
97	Brucella abortus and Its Closest Phylogenetic Relative, Ochrobactrum spp., Differ in Outer Membrane Permeability and Cationic Peptide Resistance. Infection and Immunity, 2000, 68, 3210-3218.	2.2	89
98	The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Molecular Microbiology, 1999, 31, 1443-1462.	2.5	103
99	Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom . Synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. FEBS Journal, 1998, 253, 452-461.	0.2	161
100	Outer membrane differences between pathogenic and environmental Yersinia enterocolitica biogroups probed with hydrophobic permeants and polycationic peptides. Infection and Immunity, 1996, 64, 4891-4899.	2.2	44