Mikhail Baklanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026109/publications.pdf

Version: 2024-02-01

323 papers

9,015 citations

42 h-index 84 g-index

335 all docs 335 docs citations

335 times ranked 5378 citing authors

#	Article	IF	CITATIONS
1	Low dielectric constant materials for microelectronics. Journal of Applied Physics, 2003, 93, 8793-8841.	2.5	1,494
2	Determination of pore size distribution in thin films by ellipsometric porosimetry. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1385.	1.6	472
3	Disorder-Induced Inhomogeneities of the Superconducting State Close to the Superconductor-Insulator Transition. Physical Review Letters, 2008, 101, 157006.	7.8	274
4	Plasma processing of low-k dielectrics. Journal of Applied Physics, 2013, 113, .	2.5	258
5	Metal-Organic Framework ZIF-8 Films As Low-κ Dielectrics in Microelectronics. Chemistry of Materials, 2013, 25, 27-33.	6.7	227
6	Superinsulator and quantum synchronization. Nature, 2008, 452, 613-615.	27.8	193
7	Localized Superconductivity in the Quantum-Critical Region of the Disorder-Driven Superconductor-Insulator Transition in TiN Thin Films. Physical Review Letters, 2007, 99, 257003.	7.8	174
8	Non-destructive characterisation of porous low-k dielectric films. Microelectronic Engineering, 2002, 64, 335-349.	2.4	157
9	Pseudogap in a thin film of a conventional superconductor. Nature Communications, 2010, 1, 140.	12.8	149
10	Comparative study of SiOCH low-k films with varied porosity interacting with etching and cleaning plasma. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1923.	1.6	141
11	Porous low dielectric constant materials for microelectronics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 201-215.	3.4	112
12	Structural Characterization of Mesoporous Organosilica Films for Ultralow-kDielectrics. Journal of Physical Chemistry B, 2003, 107, 4280-4289.	2.6	107
13	Advanced Interconnects: Materials, Processing, and Reliability. ECS Journal of Solid State Science and Technology, 2015, 4, Y1-Y4.	1.8	104
14	Determination of Young's Modulus of Porous Low-k Films by Ellipsometric Porosimetry. Electrochemical and Solid-State Letters, 2002, 5, F29.	2.2	99
15	Challenges in the implementation of low-k dielectrics in the back-end of line. Microelectronic Engineering, 2005, 80, 337-344.	2.4	99
16	Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study. Journal of Applied Physics, 2003, 94, 3427-3435.	2.5	94
17	Magnetic field-induced dissipation-free state in superconducting nanostructures. Nature Communications, 2013, 4, 1437.	12.8	90
18	Characterization of Cu surface cleaning by hydrogen plasma. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1201.	1.6	89

#	Article	IF	CITATIONS
19	Improving mechanical robustness of ultralow-k SiOCH plasma enhanced chemical vapor deposition glasses by controlled porogen decomposition prior to UV-hardening. Journal of Applied Physics, 2010, 107, .	2.5	81
20	Influence of absorbed water components on SiOCH low-k reliability. Journal of Applied Physics, 2008, 104, .	2.5	77
21	Quantum Metallicity on the High-Field Side of the Superconductor-Insulator Transition. Physical Review Letters, 2007, 98, 127003.	7.8	76
22	Effect of pressure on efficiency of UV curing of CVD-derived low-k material at different wavelengths. Microelectronic Engineering, 2008, 85, 2094-2097.	2.4	72
23	Comparison of techniques to characterise the density, porosity and elastic modulus of porous low-k SiO2 xerogel films. Microelectronic Engineering, 2002, 60, 133-141.	2.4	66
24	Effects of oxygen and fluorine on the dry etch characteristics of organic low-k dielectrics. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 372.	1.6	63
25	Nondestructive Determination of Pore Size Distribution in Thin Films Deposited on Solid Substrates. Electrochemical and Solid-State Letters, 1999, 2, 192.	2.2	61
26	Critical properties of nanoporous low dielectric constant films revealed by Brillouin light scattering and surface acoustic wave spectroscopy. Applied Physics Letters, 2002, 80, 4594-4596.	3.3	60
27	Superconductivity on the localization threshold and magnetic-field-tuned superconductor-insulator transition in TiN films. JETP Letters, 2004, 79, 337-341.	1.4	59
28	Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry. Applied Physics Letters, 2009, 95, .	3.3	59
29	Nanoscale Noncontact Subsurface Investigations of Mechanical and Optical Properties of Nanoporous Low- <i>k</i>) Material Thin Film. ACS Nano, 2012, 6, 1410-1415.	14.6	59
30	Tuning the Pore Size of Ink-Bottle Mesopores by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 1992-1994.	6.7	59
31	The Removal of Copper Oxides by Ethyl Alcohol Monitored In Situ by Spectroscopic Ellipsometry. Journal of the Electrochemical Society, 2003, 150, G300.	2.9	57
32	Quantification of processing damage in porous low dielectric constant films. Microelectronic Engineering, 2006, 83, 2287-2291.	2.4	56
33	Effect of Porogen Residue on Chemical, Optical, and Mechanical Properties of CVD SiCOH Low-k Materials. Electrochemical and Solid-State Letters, 2009, 12, H292.	2.2	56
34	Superconducting phase transitions in ultrathin TiN films. Europhysics Letters, 2012, 97, 17012.	2.0	56
35	Capacitance measurements and k-value extractions of low-k films. Microelectronic Engineering, 2010, 87, 2391-2406.	2.4	54
36	The mechanism of low-k SiOCH film modification by oxygen atoms. Journal of Applied Physics, 2010, 108,	2.5	53

#	Article	IF	CITATIONS
37	<i>In Situ</i> Monitoring of Atomic Layer Deposition in Nanoporous Thin Films Using Ellipsometric Porosimetry. Langmuir, 2012, 28, 3852-3859.	3.5	51
38	Porogen residues detection in optical properties of low-k dielectrics cured by ultraviolet radiation. Thin Solid Films, 2010, 518, 4266-4272.	1.8	50
39	Effect of Pore Structure of Nanometer Scale Porous Films on the Measured Elastic Modulus. Langmuir, 2013, 29, 12025-12035.	3.5	47
40	Low- <i>k</i> films modification under EUV and VUV radiation. Journal Physics D: Applied Physics, 2014, 47, 025102.	2.8	47
41	Ultra-low-k cyclic carbon-bridged PMO films with a high chemical resistance. Journal of Materials Chemistry, 2012, 22, 8281.	6.7	44
42	Electrical Reliability Challenges of Advanced Low-k Dielectrics. ECS Journal of Solid State Science and Technology, 2015, 4, N3065-N3070.	1.8	44
43	Characterization of a Molecular Sieve Coating Using Ellipsometric Porosimetry. Langmuir, 2007, 23, 12811-12816.	3.5	43
44	Direct observation of the 1/E dependence of time dependent dielectric breakdown in the presence of copper. Applied Physics Letters, 2011, 98, 032107.	3.3	43
45	Diffusion barrier integrity evaluation by ellipsometric porosimetry. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 220.	1.6	42
46	Optical Property Changes in Low-k Films upon Ultraviolet-Assisted Curing. Journal of the Electrochemical Society, 2008, 155, G115.	2.9	42
47	Effect of porogen residue on electrical characteristics of ultra low-k materials. Microelectronic Engineering, 2011, 88, 990-993.	2.4	42
48	Comparative Study of Pore Size of Low-Dielectric-Constant Porous Spin-on-Glass Films Using Different Methods of Nondestructive Instrumentation. Japanese Journal of Applied Physics, 2001, 40, L323-L326.	1.5	40
49	Mechanical Stability of Porous Low-k Dielectrics. ECS Journal of Solid State Science and Technology, 2015, 4, N3058-N3064.	1.8	40
50	Damage Reduction and Sealing of Low-k Films by Combined He and NH[sub 3] Plasma Treatment. Electrochemical and Solid-State Letters, 2007, 10, G76.	2.2	38
51	Ultraviolet-Assisted Curing of Polycrystalline Pure-Silica Zeolites:  Hydrophobization, Functionalization, and Cross-Linking of Grains. Journal of the American Chemical Society, 2007, 129, 9288-9289.	13.7	38
52	Impact of VUV photons on SiO2 and organosilicate low-k dielectrics: General behavior, practical applications, and atomic models. Applied Physics Reviews, 2019, 6, .	11.3	38
53	Removal of Plasma-Modified Low-k Layer Using Dilute HF: Influence of Concentration. Electrochemical and Solid-State Letters, 2005, 8, F21.	2.2	37
54	Effect of UV wavelength on the hardening process of porogen-containing and porogen-free ultralow-k plasma-enhanced chemical vapor deposition dielectrics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	37

#	Article	IF	CITATIONS
55	Porous structure of SiO2 films synthesized at low temperature and pressure. Thin Solid Films, 1989, 171, 43-52.	1.8	36
56	Morphological Control of Nanoporous Films by the Use of Functionalized Cyclodextrins as Porogens. Advanced Functional Materials, 2004, 14, 277-282.	14.9	36
57	Zeolite-Inspired Low-kDielectrics Overcoming Limitations of Zeolite Films. Journal of the American Chemical Society, 2008, 130, 17528-17536.	13.7	36
58	SELECTIVE REMOVAL OF HIGH- <i>K</i> GATE DIELECTRICS. Chemical Engineering Communications, 2009, 196, 1475-1535.	2.6	36
59	Controllable Change of Porosity of 3-Methylsilane Low-k Dielectric Film. Electrochemical and Solid-State Letters, 2001, 4, F3.	2.2	35
60	Evidence of Large Voids in Pureâ€Silicaâ€Zeolite Lowâ€ <i>k</i> Dielectrics Synthesized by Spinâ€on of Nanoparticle Suspensions. Advanced Materials, 2008, 20, 3110-3116.	21.0	34
61	Influence of porosity on electrical properties of low-k dielectrics. Microelectronic Engineering, 2012, 92, 59-61.	2.4	33
62	From quantum corrections to magnetic-field-tuned superconductor–insulator quantum phase transition in TiN films. Physica B: Condensed Matter, 2005, 359-361, 500-502.	2.7	32
63	Intrinsic effect of porosity on mechanical and fracture properties of nanoporous ultralow- <i>k</i> dielectrics. Applied Physics Letters, 2012, 101, 123109.	3.3	32
64	Role of copper in time dependent dielectric breakdown of porous organo-silicate glass low-k materials. Applied Physics Letters, 2011, 99, 222110.	3.3	31
65	Damage Free Cryogenic Etching of a Porous Organosilica Ultralow-k Film. ECS Solid State Letters, 2012, 2, N5-N7.	1.4	31
66	Modification of organosilicate glasses low-k films under extreme and vacuum ultraviolet radiation. Applied Physics Letters, $2013,102,$.	3.3	31
67	Improved Plasma Resistance for Porous Low-k Dielectrics by Pore Stuffing Approach. ECS Journal of Solid State Science and Technology, 2015, 4, N3098-N3107.	1.8	31
68	Effect of energetic ions on plasma damage of porous SiCOH low-k materials. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 450-459.	1.2	30
69	Low Damage Cryogenic Etching of Porous Organosilicate Low-k Materials Using SF ₆ /O ₂ /SiF ₄ . ECS Journal of Solid State Science and Technology, 2013, 2, N131-N139.	1.8	29
70	Surface characterization of a low dielectric constant polymer–SiLK[sup â^—] polymer, and investigation of its interface with Cu. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 2336.	1.6	28
71	Pore Structure of Modified Cyclic Silsesquioxane Thin Films Made Porous Using a Cyclodextrins-Based Porogen. Journal of Physical Chemistry B, 2004, 108, 8953-8959.	2.6	28
72	Impact of Plasma Pretreatment and Pore Size on the Sealing of Ultra-Low- <i>k</i> Dielectrics by Self-Assembled Monolayers. Langmuir, 2014, 30, 3832-3844.	3.5	28

#	Article	IF	Citations
73	Properties of porous HSQ-based films capped by plasma enhanced chemical vapor deposition dielectric layers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 109.	1.6	27
74	Quantum-critical region of the disorder-driven superconductor–insulator transition. Physica C: Superconductivity and Its Applications, 2008, 468, 316-321.	1.2	27
75	Effects of He Plasma Pretreatment on Low-k Damage during Cu Surface Cleaning with NH[sub 3] Plasma. Journal of the Electrochemical Society, 2010, 157, H565.	2.9	27
76	Defect-induced bandgap narrowing in low-k dielectrics. Applied Physics Letters, 2015, 107, 082903.	3.3	27
77	Low temperature oxidation and selective etching of chemical vapor deposition a-SiC:H films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1281.	1.6	26
78	Enhancement of ALCVDâ,,¢ TiN growth on Si–O–C and α-SiC:H films by O2-based plasma treatments. Microelectronic Engineering, 2002, 60, 59-69.	2.4	26
79	Diffusion of solvents in thin porous films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 111-116.	4.7	26
80	Effect of ultraviolet curing wavelength on low-k dielectric material properties and plasma damage resistance. Thin Solid Films, 2011, 519, 3619-3626.	1.8	26
81	Spacious and mechanically flexible mesoporous silica thin film composed of an open network of interlinked nanoslabs. Journal of Materials Chemistry, 2011, 21, 7692.	6.7	24
82	Pore sealing of k 2.0 dielectrics assisted by self-assembled monolayers deposited from vapor phase. Microelectronic Engineering, 2014, 120, 240-245.	2.4	24
83	Comparative study of PECVD SiOCH low-k films obtained at different deposition conditions. Microelectronic Engineering, 2002, 64, 361-366.	2.4	23
84	A Discussion of the Practical Importance of Positron Annihilation Lifetime Spectroscopy Percolation Threshold in Evaluation of Porous Low-KDielectrics. Japanese Journal of Applied Physics, 2004, 43, 247-248.	1.5	23
85	Hyperactivated resistance in TiN films on the insulating side of the disorder-driven superconductor-insulator transition. JETP Letters, 2008, 88, 752-757.	1.4	23
86	Recombination of O and H Atoms on the Surface of Nanoporous Dielectrics. IEEE Transactions on Plasma Science, 2009, 37, 1697-1704.	1.3	23
87	Study of metal barrier deposition-induced damage to porous low-k materials. Microelectronic Engineering, 2011, 88, 3030-3034.	2.4	23
88	Pore Sealing of Porous Ultralow-k Dielectrics by Self-Assembled Monolayers Combined with Atomic Layer Deposition. ECS Solid State Letters, 2012, 1, P42-P44.	1.4	23
89	Interaction of F atoms with SiOCH ultra-low- <i>k</i> films: I. Fluorination and damage. Journal Physics D: Applied Physics, 2015, 48, 175203.	2.8	23
90	Evaluation of Mechanical Properties of Porous OSG Films by PFQNM AFM and Benchmarking with Traditional Instrumentation. Langmuir, 2020, 36, 9377-9387.	3.5	23

#	Article	IF	Citations
91	Internal matrix structure of low- \hat{I}^2 mesoporous silica and its relation to mechanical properties. Journal of Non-Crystalline Solids, 2004, 349, 189-199.	3.1	22
92	Ultraviolet-Assisted Curing of Organosilicate Glass Low-k Dielectric by Excimer Lamps. Journal of the Electrochemical Society, 2008, 155, G231.	2.9	22
93	A new procedure to seal the pores of mesoporous low-k films with precondensed organosilica oligomers. Chemical Communications, 2012, 48, 2797.	4.1	22
94	Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics. Journal of Applied Physics, 2015, 118, .	2.5	22
95	Effect of Bridging and Terminal Alkyl Groups on Structural and Mechanical Properties of Porous Organosilicate Films. ECS Journal of Solid State Science and Technology, 2017, 6, N182-N188.	1.8	22
96	Reaction of Trimethylchlorosilane in Spin-On Silicalite-1 Zeolite Film. Langmuir, 2008, 24, 4894-4900.	3.5	21
97	Multi-step reaction mechanism for F atom interactions with organosilicate glass and SiO _{<i>x</i>} films. Journal Physics D: Applied Physics, 2016, 49, 345203.	2.8	21
98	Characterization of spin-on zeolite films prepared from Silicalite-1 nanoparticle suspensions. Microporous and Mesoporous Materials, 2009, 118, 458-466.	4.4	20
99	Damage free integration of ultralow-k dielectrics by template replacement approach. Applied Physics Letters, 2015, 107, .	3.3	20
100	Effect of terminal methyl groups concentration on properties of organosilicate glass low dielectric constant films. Japanese Journal of Applied Physics, 2018, 57, 07MC01.	1.5	20
101	Minimizing plasma damage and in situ sealing of ultralow-k dielectric films by using oxygen free fluorocarbon plasmas. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2198.	1.6	19
102	Electron spin resonance study of defects in low-l̂º oxide insulators (l̂º=2.5–2.0). Microelectronic Engineering, 2011, 88, 1503-1506.	2.4	19
103	Atomic Layer Deposition of TiO ₂ on Surface Modified Nanoporous Low- <i>k</i> Films. Langmuir, 2013, 29, 12284-12289.	3.5	19
104	Influence of porosity on dielectric breakdown of ultralow-k dielectrics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 050604.	1.2	19
105	Advanced PECVD SiCOH low-k films with low dielectric constant and/or high Young's modulus. Microelectronic Engineering, 2014, 120, 225-229.	2.4	19
106	Cryogenic etching of porous low-k dielectrics in CF3Br and CF4 plasmas. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	19
107	Highâ€rate deposition of aâ€Si:H films using a flow plasma–chemical method with electron beam activation. Journal of Applied Physics, 1996, 79, 7274-7277.	2.5	18
108	Characterisation of Low-K Dielectric Films by Ellipsometric Porosimetry. Materials Research Society Symposia Proceedings, 2000, 612, 421.	0.1	18

#	Article	IF	Citations
109	The effect of He plasma treatment on properties of organosilicate glass low-k films. Journal of Applied Physics, 2011, 109, 043303-043303-11.	2.5	18
110	Cryogenic etching processes applied to porous low- <i>k</i> materials using SF ₆ /C ₄ F ₈ plasmas. Journal Physics D: Applied Physics, 2015, 48, 435202.	2.8	18
111	Experimental and theoretical study of RF capacitively coupled plasma in Ar–CF ₄ –CF ₃ 1 mixtures. Plasma Sources Science and Technology, 2015, 24, 055006.	3.1	18
112	Effect of porosity and pore size on dielectric constant of organosilicate based low-k films: An analytical approach. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	18
113	Effect of silylation on triethoxyfluorosilane xerogel films by means of atmospheric pressure drying. Thin Solid Films, 2005, 471, 145-153.	1.8	17
114	Stiffening and hydrophilisation of SOG lowâ€ <i>k</i> material studied by ellipsometric porosimetry, UV ellipsometry and laserâ€induced surface acoustic waves. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 829-832.	1.8	17
115	Quantitative characterization of pore stuffing and unstuffing for postporosity plasma protection of low-k materials. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	17
116	Interaction of F atoms with SiOCH ultra low-k films. Part II: etching. Journal Physics D: Applied Physics, 2015, 48, 175204.	2.8	17
117	Effects of Methyl Terminal and Carbon Bridging Groups Ratio on Critical Properties of Porous Organosilicate Glass Films. Materials, 2020, 13, 4484.	2.9	17
118	Initial stages of the interaction of nitrous oxide and oxygen with the (100) silicon surface under low pressures. Reactivity of Solids, 1989, 7, 1-18.	0.3	16
119	Bulk Properties of MOCVD-Deposited HfO[sub 2] Layers for High k Dielectric Applications. Journal of the Electrochemical Society, 2004, 151, F228.	2.9	16
120	A theoretical and experimental study of atomic-layer-deposited films onto porous dielectric substrates. Journal of Applied Physics, 2005, 98, 083515.	2.5	16
121	Optical properties of TiN thin films close to the superconductor–insulator transition. New Journal of Physics, 2009, 11, 113017.	2.9	16
122	Effect of bake/cure temperature of an advanced organic ultra low- $\langle i \rangle$ k $\langle i \rangle$ material on the interface adhesion strength to metal barriers. Journal of Applied Physics, 2011, 109, .	2.5	16
123	Active species in porous media: Random walk and capture in traps. Microelectronic Engineering, 2011, 88, 694-696.	2.4	16
124	Study of Chemical Vapor Deposition of Manganese on Porous SiCOH Low-k Dielectrics Using Bis(ethylcyclopentadienyl)manganese. Electrochemical and Solid-State Letters, 2012, 15, H176.	2.2	16
125	Study of CoTa alloy as barrier layer for Cu/low- <i>k</i> interconnects. Journal Physics D: Applied Physics, 2017, 50, 405306.	2.8	16
126	Proximity effects and Andreev reflection in a mesoscopic SNS junction with perfect NS interfaces. Physical Review B, 2000, 61, 11340-11343.	3.2	15

#	Article	IF	Citations
127	Low and Ultralow Dielectric Constant Films Prepared by Plasma-enhanced Chemical Vapor Deposition. , 0, , 1-32.		15
128	Chemisorption of ALD precursors in and on porous low-k films. Microelectronic Engineering, 2013, 106, 81-84.	2.4	15
129	High-resolution electron spin resonance analysis of ion bombardment induced defects in advanced low-κ insulators (κ = 2.0-2.5). Applied Physics Letters, 2013, 102, .	3.3	15
130	Impact of carbon-doping on time dependent dielectric breakdown of SiO2-based films. Applied Physics Letters, 2015, 106, 072902.	3.3	15
131	Comparison of vacuum ultra-violet emission of Ar/CF ₄ and Ar/CF ₃ 1 capacitively coupled plasmas. Plasma Sources Science and Technology, 2016, 25, 055001.	3.1	15
132	Reentrant Resistive Behavior and Dimensional Crossover in Disordered Superconducting TiN Films. Scientific Reports, 2017, 7, 1718.	3.3	15
133	Effect of water content on the structural properties of porous methyl-modified silicate films. Journal of Sol-Gel Science and Technology, 2019, 92, 273-281.	2.4	15
134	O2 plasma treated biosensor for enhancing detection sensitivity of sulfadiazine in a high-Đº HfO2 coated silicon nanowire array. Sensors and Actuators B: Chemical, 2020, 306, 127464.	7.8	15
135	Ellipsometric study of the change in the porosity of silica xerogels after chemical modification of the surface with hexamethyldisilazane. Analytical and Bioanalytical Chemistry, 2002, 374, 654-657.	3.7	14
136	Ellipsometric Porosimetry of Porous Low-k Films with Quazi-Closed Cavities. Materials Research Society Symposia Proceedings, 2004, 812, F5.4.1.	0.1	14
137	Integrated diffusion–recombination model for describing the logarithmic time dependence of plasma damage in porous low-k materials. Microelectronic Engineering, 2011, 88, 631-634.	2.4	14
138	Mechanism of Modification of Fluorocarbon Polymer by Ultraviolet Irradiation in Oxygen Atmosphere. ECS Journal of Solid State Science and Technology, 2013, 2, N93-N98.	1.8	14
139	Impact of wavelength of UV light and UV cure time on chemical and mechanical properties of PECVD deposited porous ultra low-k films. Microelectronic Engineering, 2013, 107, 134-137.	2.4	14
140	Mitigation of plasma-induced damage in porous low- <i>k</i> dielectrics by cryogenic precursor condensation. Journal Physics D: Applied Physics, 2016, 49, 175203.	2.8	14
141	Plasma induced damage mitigation in spin-on self-assembly based ultra low- k dielectrics using template residues. Applied Physics Letters, 2017, 110, .	3.3	14
142	Study on the Electrical, Structural, Chemical and Optical Properties of PVD Ta(N) Films Deposited with Different N2 Flow Rates. Coatings, 2021, 11, 937.	2.6	14
143	Kinetics and Mechanism of the Etching of CoSi2 in HFâ€based Solutions. Journal of the Electrochemical Society, 1996, 143, 3245-3251.	2.9	13
144	Oxidation and roughening of silicon during annealing in a rapid thermal processing chamber. Journal of Applied Physics, 1998, 83, 3614-3619.	2.5	13

#	Article	IF	Citations
145	Anomalous behavior near T c and synchronization of Andreev reflection in two-dimensional arrays of SNS junctions. JETP Letters, 2005, 81, 10-14.	1.4	13
146	Effect of plasma treatments on a low-k dielectric polymer surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1551.	1.6	13
147	Vacuum ultra-violet emission of CF ₄ and CF ₃ I containing plasmas and Their effect on low-k materials. Journal Physics D: Applied Physics, 2015, 48, 395202.	2.8	13
148	Dependence of dielectric constant of SiOCH low-k films on porosity and pore size. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	13
149	Silicon dioxide and low- <i>k</i> material sputtering in dual frequency inductive discharge by argon ions with energies from 16 to 200 eV. Journal Physics D: Applied Physics, 2018, 51, 02LT02.	2.8	13
150	Effect of the pore structure on the properties of nanoporous silsesquioxane thin film. Microporous and Mesoporous Materials, 2006, 94, 113-121.	4.4	12
151	Spin-on Dielectric Materials. , 0, , 33-83.		12
152	Evaluation of a New Advanced Low-kMaterial. Japanese Journal of Applied Physics, 2011, 50, 05EB03.	1.5	12
153	Correlation between stress-induced leakage current and dielectric degradation in ultra-porous SiOCH low-k materials. Journal of Applied Physics, 2015, 118, .	2.5	12
154	Fluorine atoms interaction with the nanoporous materials: experiment and DFT simulation. European Physical Journal D, 2017, 71, 1.	1.3	12
155	Characterization of PECVD ultralow dielectric constant porous SiOCH films using triethoxymethylsilane precursor and cinene porogen. Journal Physics D: Applied Physics, 2018, 51, 115103.	2.8	12
156	Effect of thickness scaling on the permeability and thermal stability of Ta(N) diffusion barrier. Applied Surface Science, 2019, 498, 143887.	6.1	12
157	Critical properties and charge transport in ethylene bridged organosilica low-κ dielectrics. Journal of Applied Physics, 2020, 127, .	2.5	12
158	Effect of terminal methyl group concentration on critical properties and plasma resistance of organosilicate low-k dielectrics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	12
159	Characteristics of low-k and ultralow-k PECVD deposited SiCOH films Materials Research Society Symposia Proceedings, 2002, 716, 1231.	0.1	11
160	Spectroscopic ellipsometry and ellipsometric porosimetry studies of CVD lowâ€k dielectric films. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1253-1256.	0.8	11
161	Advanced Organic Polymer for the Aggressive Scaling of Low-k Materials. Japanese Journal of Applied Physics, 2011, 50, 04DB01.	1.5	11
162	Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films. Applied Physics Letters, 2016, 108, .	3.3	11

#	Article	IF	CITATIONS
163	Surface-confined activation of ultra low-k dielectrics in CO2 plasma. Applied Physics Letters, 2016, 108,	3.3	11
164	Charge transport mechanism in periodic mesoporous organosilica low-k dielectric. Applied Physics Letters, 2019, 115, 082904.	3.3	11
165	A detailed ellipsometric porosimetry and positron annihilation spectroscopy study of porous organosilicate-glass films with various ratios of methyl terminal and ethylene bridging groups. Microporous and Mesoporous Materials, 2020, 306, 110434.	4.4	11
166	Characterisation of HF-last cleaning of ion-implanted Si surfaces. Materials Science in Semiconductor Processing, 1998, 1, 107-117.	4.0	10
167	Low dielectric constant materials: challenges of plasma damage. , 2006, , .		10
168	Profile control of novel non-Si gates using BCl[sub 3]â^•N[sub 2] plasma. Journal of Vacuum Science & Technology B, 2007, 25, 739.	1.3	10
169	Low-k a-SiCO:H films as diffusion barriers for advanced interconnects. Microelectronic Engineering, 2014, 120, 221-224.	2.4	10
170	Synergistic effect of VUV photons and F atoms on damage and etching of porous organosilicate films. Plasma Processes and Polymers, 2018, 15, 1700213.	3.0	10
171	Effect of the C-bridge on UV properties of organosilicate films. Thin Solid Films, 2019, 685, 329-334.	1.8	10
172	Surface processes occurring on TiSi[sub 2] and CoSi[sub 2] in fluorine-based plasmas: Afterglow of a NF[sub 3] plasma. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 164.	1.6	9
173	Integration of Low-k Dielectric Films in Damascene Processes. , 0, , 199-250.		9
174	Nanoporous Organosilicate Films Prepared in Acidic Conditions Using Tetraalkylammonium Bromide Porogens. Advanced Functional Materials, 2008, 18, 3332-3339.	14.9	9
175	Comment on "MELâ€type Pureâ€Silica Zeolite Nanocrystals Prepared by an Evaporationâ€Assisted Twoâ€Sta Synthesis Method as Ultra‣owâ€ <i>k</i> Materials― Advanced Functional Materials, 2010, 20, 2377-2379.	ge 14.9	9
176	Influence of the ion bombardment of O2 plasmas on low-k materials. Thin Solid Films, 2011, 520, 464-468.	1.8	9
177	Characterization of Porous Structures in Advanced Low-kFilms with Thin TaN Layers Using Monoenergetic Positron Beams. Japanese Journal of Applied Physics, 2013, 52, 106501.	1.5	9
178	Supercritical carbon dioxide etching of transition metal (Cu, Ni, Co, Fe) thin films. Microelectronic Engineering, 2016, 153, 5-10.	2.4	9
179	Morphology of corrosion pits in aluminum thin film metallizations. Journal of Solid State Electrochemistry, 1998, 2, 150-155.	2.5	8

Analyses of Post Metal Etch Cleaning in Downstream  H 2 O   Based Plasma Followed by a Wet Chemistry. Journal of the Electrochemical Society, 1999, 146, 3843-3851.

#	Article	IF	CITATIONS
181	Moisture Induced Degradation of Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2006, 914, 1.	0.1	8
182	Effects of Bias, Pressure and Temperature in Plasma Damage of Ultra Low-k Films. Solid State Phenomena, 2008, 134, 317-320.	0.3	8
183	Surface properties restoration and passivation of high porosity ultra low-k dielectric (kâ ¹ /42.3) after direct-CMP. Microelectronic Engineering, 2007, 84, 2620-2623.	2.4	8
184	TaN metal gate etch mechanisms in BCl3-based plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 302-305.	2.1	8
185	Sealed ultra low-k organosilica films with improved electrical, mechanical and chemical properties. Journal of Materials Chemistry C, 2013, 1, 3961.	5. 5	8
186	UV cure of oxycarbosilane low-k films. Microelectronic Engineering, 2016, 156, 103-107.	2.4	8
187	Photoabsorption and damage of OSG lowâ€k films by VUV emission at 140–160 nm. Plasma Processes and Polymers, 2018, 15, 1700166.	3.0	8
188	On the nature of the rate limiting step of the reaction of interaction of monocrystalline germanium with gaseous bromine. Surface Science, 1979, 88, 427-438.	1.9	7
189	The change of properties of the dehydroxylated SiO2 layer surface during gas adsorption in the temperature range 20–400°C. Materials Letters, 1991, 11, 119-123.	2.6	7
190	Plasma etching of organic low-dielectric-constant polymers: comparative analysis. Materials Research Society Symposia Proceedings, 1998, 511, 247.	0.1	7
191	Process integration induced thermodesorption from SiO[sub 2]/SiLK resin dielectric based interconnects. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 2136.	1.6	7
192	Characterization of the Post Dryâ€Etch Cleaning of Silicon for Tiâ€Selfâ€Aligned Silicide Technology. Journal of the Electrochemical Society, 1999, 146, 1549-1556.	2.9	7
193	Porosity of Low Dielectric Constant Materials. , 0, , 85-136.		7
194	Plasma etching: From micro- to nanoelectronics. High Energy Chemistry, 2009, 43, 204-212.	0.9	7
195	Dual threshold diode based on the superconductor-to-insulator transition in ultrathin TiN films. Applied Physics Letters, 2013, 102, .	3.3	7
196	The Effects of Plasma Treatments and Subsequent Atomic Layer Deposition on the Pore Structure of a $k=2.0\ Low-k$ Material. ECS Journal of Solid State Science and Technology, 2013, 2, N103-N109.	1.8	7
197	Study of Wet Surface Activation Routes to Enable the Deposition of Monomolecular Organic Thin Films on k 2.0 Porous Dielectrics. ECS Journal of Solid State Science and Technology, 2014, 3, N3106-N3111.	1.8	7
198	Determination of the Model for the Chemical Structure of Porous PECVD Low-k Films. ECS Journal of Solid State Science and Technology, 2015, 4, N3140-N3145.	1.8	7

#	Article	IF	Citations
199	Stuffing-enabled surface confinement of silanes used as sealing agents on CF4 plasma-exposed 2.0 p-OSG films. Microelectronic Engineering, 2015, 137, 70-74.	2.4	7
200	Experimental and DFT study of nitrogen atoms interactions with SiOCH low- \hat{l}^{ϱ} films. European Physical Journal D, 2017, 71, 1.	1.3	7
201	Integration of porous low- <i>k</i> dielectrics using post porosity pore protection. Journal Physics D: Applied Physics, 2016, 49, 505105.	2.8	7
202	Advanced Organic Polymer for the Aggressive Scaling of Low- <i>k</i> Materials. Japanese Journal of Applied Physics, 2011, 50, 04DB01.	1.5	7
203	Silicon surface cleaning using XeF2 gas treatment. Applied Surface Science, 1995, 90, 191-194.	6.1	6
204	Surface processes occurring on TiSi2 and CoSi2 in fluorine-based plasmas. Reactive ion etching in CF4/CHF3 plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 3005-3014.	2.1	6
205	Challenges of clean/strip processing for Cu/low-k technology. , 0, , .		6
206	The influence of N containing plasmas on low-k films. Microelectronic Engineering, 2011, 88, 627-630.	2.4	6
207	Evaluation of a New Advanced Low-kMaterial. Japanese Journal of Applied Physics, 2011, 50, 05EB03.	1.5	6
208	Calculation of Pore Size Distribution in the Ellipsometric Porosimetry: Method and Reliability. Materials Research Society Symposia Proceedings, 1999, 565, 81.	0.1	5
209	Effect of Surfactant as Additive in Wet Clean Solutions on Properties of Low-k Materials. Electrochemical and Solid-State Letters, 2006, 9, F17.	2.2	5
210	Study of a Metal Gate and Silicon Selective "Dry Ash Only―Process for Combined Extension and Halo Implanted Photo Resist. Solid State Phenomena, 2007, 134, 113-116.	0.3	5
211	Plasma Modification Of Si-O-Si Bond Structure in Porous Sioch Films. Materials Research Society Symposia Proceedings, 2008, 1079, 1.	0.1	5
212	Ultra Low-k Materials: Challenges of Scaling. ECS Transactions, 2010, 33, 117-123.	0.5	5
213	Influence of the UV Cure on Advanced Plasma Enhanced Chemical Vapour Deposition Low-kMaterials. Japanese Journal of Applied Physics, 2011, 50, 05EB05.	1.5	5
214	Modification of Ultra Low-k Dielectric Films by O ₂ and CO ₂ Plasmas. ECS Journal of Solid State Science and Technology, 2015, 4, N3048-N3057.	1.8	5
215	The effects of vacuum-ultraviolet radiation on defects in low-k organosilicate glass (SiCOH) as measured with electron-spin resonance. Thin Solid Films, 2016, 616, 23-26.	1.8	5
216	Damage and etching of ultra low- <i>k</i> materials in fluorocarbon plasma at lowered temperatures. Journal Physics D: Applied Physics, 2017, 50, 485202.	2.8	5

#	Article	IF	CITATIONS
217	A non-destructive, fast evaluation of PVD diffusion barriers deposited on porous low-k dielectrics. Microelectronic Engineering, 2018, 198, 22-28.	2.4	5
218	Influence of Current Density on Orientation-Controllable Growth and Characteristics of Electrochemically Deposited Au Films. Journal of the Electrochemical Society, 2019, 166, D3232-D3237.	2.9	5
219	Superconductivity in a disordered metal with Coulomb interactions. Physical Review Research, 2020, 2, .	3.6	5
220	Adsorption of molecular fluorine on the Si(100) surface: an ellipsometric study. Surface Science, 1996, 347, 97-104.	1.9	4
221	Changes of UV Optical Properties of Plasma Damaged Low-k Dielectrics for Sidewall Damage Scatterometry. Materials Research Society Symposia Proceedings, 2008, 1079, 1.	0.1	4
222	Optimization of low-k UV Curing: Effect of Wavelength on Critical Properties of the Dielectrics. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	4
223	Impact of plasma exposure on organic low-k materials. , 2009, , .		4
224	Influence of Milling Conditions on the Hydriding Properties of Mg-C Nanocomposites. Journal of Nanomaterials, 2015, 2015, 1-6.	2.7	4
225	Improvement of cohesion strength in ULK OSG materials by pore structure adjustment. Microelectronic Engineering, 2015, 137, 75-78.	2.4	4
226	VUV radiation flux from argon DC magnetron plasma. Journal Physics D: Applied Physics, 2020, 53, 295202.	2.8	4
227	Properties of organosilicate low- $\langle i \rangle k \langle j \rangle$ films with 1,3- and 1,3,5-benzene bridges between Si atoms. Japanese Journal of Applied Physics, 2020, 59, SLLG01.	1.5	4
228	Limitation of HFâ€Based Chemistry for Deepâ€Submicron Contact Hole Cleaning on Silicides. Journal of the Electrochemical Society, 1998, 145, 3240-3246.	2.9	3
229	Post Dry-Etch Cleaning Issues of an Organic Low-K Dielectric. Solid State Phenomena, 1999, 65-66, 89-92.	0.3	3
230	Mesoscopic SNS junctions on the basis of superconducting PtSi films. Physica B: Condensed Matter, 2000, 284-288, 1860-1861.	2.7	3
231	Modification of Nanoporous Silica Structures by Fluorocarbon Plasma Treatment. Materials Research Society Symposia Proceedings, 2004, 812, F6.7.1.	0.1	3
232	Highly Sensitive Monitoring of Ru Etching Using Optical Emission. Electrochemical and Solid-State Letters, 2005, 8, G176.	2.2	3
233	Effect of Chemical Solution on the Stability of Low-k Films. Solid State Phenomena, 2005, 103-104, 349-352.	0.3	3
234	Negative magnetoresistance and quantum oscillations in ultrathin perforated PtSi films. Physica B: Condensed Matter, 2006, 378-380, 1058-1059.	2.7	3

#	Article	IF	CITATIONS
235	Plasma ash modulation of TDDB thermal activation energy in damascene SiOC:H. Semiconductor Science and Technology, 2007, 22, 320-325.	2.0	3
236	Ultra-violet-assisted cure of spin-on silicalite-1 films. Studies in Surface Science and Catalysis, 2007, 170, 594-599.	1.5	3
237	An investigation of ultra low-k dielectrics with high thermal stability for integration in memory devices. Microelectronic Engineering, 2007, 84, 2582-2586.	2.4	3
238	Characterization of Plasma Damage in Low-k Films by TVS Measurements. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	3
239	Unusual Modification of CuCl or CuBr Films by He Plasma Exposure Resulting in Nanowire Formation. Langmuir, 2010, 26, 2014-2020.	3.5	3
240	Fundamental study of atomic layer deposition in and on porous low-k films. , 2011, , .		3
241	Defects in Low-k Insulators (κ=2.5 – 2.0): ESR Analysis and Charge Injection. Materials Research Society Symposia Proceedings, 2011, 1335, 119.	0.1	3
242	Time dependent dielectric breakdown study of organo silicate glass materials over a wide range of k-values. , 2012 , , .		3
243	Pore Narrowing of Mesoporous Silica Materials. Materials, 2013, 6, 570-579.	2.9	3
244	Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films. Thin Solid Films, 2015, 575, 103-106.	1.8	3
245	Cu passivation for integration of gap-filling ultralow-k dielectrics. Applied Physics Letters, 2016, 109, 232901.	3.3	3
246	Influence of porosity on electrical properties of low-k dielectrics irradiated with vacuum-ultraviolet radiation. Applied Physics Letters, 2016, 109, 122902.	3.3	3
247	Low Dielectric Constant Materials for Nanoelectronics. Materials and Energy, 2016, , 163-271.	0.1	3
248	Dependence of dielectric constant of hydrocarbon bridged low-k films on porosity. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 010601.	1.2	3
249	Effect of methyl terminal and ethylene bridging groups on porous organosilicate glass films: FTIR, ellipsometric porosimetry, luminescence dataset. Data in Brief, 2021, 35, 106895.	1.0	3
250	Analytical Study of Porous Organosilicate Glass Films Prepared from Mixtures of 1,3,5- and 1,3-Alkoxysilylbenzenes. Materials, 2021, 14, 1881.	2.9	3
251	Influence of the UV Cure on Advanced Plasma Enhanced Chemical Vapour Deposition Low-kMaterials. Japanese Journal of Applied Physics, 2011, 50, 05EB05.	1.5	3
252	Atomic Structure and Optical Properties of Plasma Enhanced Chemical Vapor Deposited SiCOH Low-k Dielectric Film. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2021, 129, 645-651.	0.6	3

#	Article	IF	Citations
253	In-Situ Imaging of a Light-Induced Modification Process in Organo-Silica Films via Time-Domain Brillouin Scattering. Nanomaterials, 2022, 12, 1600.	4.1	3
254	Modification of Porous Ultralow- $\langle i \rangle k \langle i \rangle$ Film by Vacuum Ultraviolet Emission. ACS Applied Electronic Materials, 2022, 4, 2760-2776.	4.3	3
255	Modification of Low-K SiCOH Film Porosity by a HF Solution. Solid State Phenomena, 2001, 76-77, 135-138.	0.3	2
256	The etchback approach: Enlarged process window for MuGFET gate etching. Microelectronic Engineering, 2006, 83, 570-576.	2.4	2
257	Zeolite Low-k Film Properties Dependence on Nanocrystal Size. Materials Research Society Symposia Proceedings, 2006, 914, 1.	0.1	2
258	Using Ellipsometry for Assessment of TiN Surface Roughness after Plasma Etch. Journal of the Electrochemical Society, 2008, 155, H108.	2.9	2
259	Optical characteristics and UV modification of low-k materials. , 2008, , .		2
260	Evaluation of plasma damage in blanket and patterned low-k structures by near-field scanning probe microwave microscope: effect of plasma ash chemistry., 2009,,.		2
261	Interaction of O and H Atoms with low-k SiOCH films pretreated in He plasma. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	2
262	Disorder and vortex matching effects in nanoperforated ultrathin TiN films. Physica C: Superconductivity and Its Applications, 2010, 470, S808-S809.	1.2	2
263	Impact of curing condition on chemical stability of ultralow-k PMO material Materials Research Society Symposia Proceedings, 2012, 1428, 7.	0.1	2
264	Nanoporous Dielectric Materials for Advanced Micro- and Nanoelectronics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 3-18.	0.3	2
265	Sealing of low-k dielectric (k=2.0) with self-assembled monolayers (SAMs) for the atomic layer deposition (ALD) of TiN. Materials Research Society Symposia Proceedings, 2013, 1559, 1.	0.1	2
266	Dependence of electric potentials at trench surfaces on ion angular distribution in plasma etching processes. Journal Physics D: Applied Physics, 2016, 49, 105203.	2.8	2
267	Removal of organic template of mesoporous organosilicate thin films using supercritical carbon dioxide fluids. Japanese Journal of Applied Physics, 2017, 56, 07KF02.	1.5	2
268	Charge Transport Mechanism and Trap Origin in Methylâ€Terminated Organosilicate Glass Lowâ€P Dielectrics. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000654.	1.8	2
269	Materials Characterization by Ellipsometry. , 2005, , 461-473.		2
270	Ellipsometric study of the interaction of a germanium monocrystal with bromine. Reaction Kinetics and Catalysis Letters, 1976, 4, 413-418.	0.6	1

#	Article	IF	CITATIONS
271	Universal conductance fluctuations of î´-doped GaAs structures of small size. Solid State Communications, 1989, 70, 773-775.	1.9	1
272	Composition, Structure and Modification of Passivating Films on Semiconductors Deposited at Low Temperatures. Materials Science Forum, 1995, 185-188, 65-72.	0.3	1
273	The role of the negatively charged (Si3â^'Siâ^'F2)â^' complexes in interactions of fluorine with the (111) surface of silicon. Journal of Structural Chemistry, 1996, 37, 11-17.	1.0	1
274	Oscillation of the scattering time in a 2D electron system with oval antidots. Solid-State Electronics, 1996, 40, 441-446.	1.4	1
275	The Optimization of the Cleaning to Remove Residual Bonds of Si-C and Si-F after Fluorocarbon Plasma Etch on the Silicon Surface. Solid State Phenomena, 1999, 65-66, 291-0.	0.3	1
276	Comparative study of porous SOG films with different non-destructive instrumentation. , 2001, , .		1
277	Silicon Surface Cleaning after Spacer Dry Etching. Solid State Phenomena, 2001, 76-77, 303-306.	0.3	1
278	Strength-porosity relationship of nanoporous MSSQ films characterised by Brillouin Light Scattering and Surface Acoustic Wave Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 716, 7171.	0.1	1
279	Aggressive scaling of Cu/low k: impact on metrology. AIP Conference Proceedings, 2005, , .	0.4	1
280	HF Based Solutions for HfO ₂ Removal; Effect of pH and Temperature on HfO ₂ 2 Etch Selectivity. Solid State Phenomena, 2005, 103-104, 97-102.	0.3	1
281	Oxygen chemiluminescence in He plasma as a method for plasma damage evaluation. Microelectronic Engineering, 2008, 85, 2164-2168.	2.4	1
282	Effect of top power on a low-k film during oxygen strip in a TCP etch chamber. Microelectronic Engineering, 2010, 87, 462-465.	2.4	1
283	Influence of the Top Chamber Window Temperature on the STI Etch Process. ECS Transactions, 2010, 27, 731-736.	0.5	1
284	Ultra Low Dielectric Constant Materials for 22 nm Technology Node and Beyond. ECS Transactions, 2011, 35, 717-728.	0.5	1
285	Pore sealing of SiOCH ultra low-k dielectrics with polyimide Langmuir-Blodgett film. Materials Research Society Symposia Proceedings, 2012, 1428, 32.	0.1	1
286	Trap spectroscopy and Ta penetration induced charge trapping in porous SiOCH low-k dielectrics. , 2013, , .		1
287	Optimized pore stuffing for enhanced compatibility with interconnect integration flow., 2015,,.		1
288	Low-k dielectrics for sub 10 nm technology node. , 2016, , .		1

#	Article	IF	CITATIONS
289	Laser anneal of oxycarbosilane low-k film. , 2016, , .		1
290	Review of thin film porosity characterization approaches. , 2017, , .		1
291	New properties of halogen plasma-treated Cu films. International Journal of Materials Research, 2009, 100, 826-829.	0.3	1
292	Ultra-low-k material cryoetching plasma process for interconnects. SPIE Newsroom, 0, , .	0.1	1
293	Charge Transport Mechanism in a PECVD Deposited Low-k SiOCH Dielectric. Journal of Electronic Materials, 2022, 51, 2521-2527.	2.2	1
294	Effect of H atoms and UV wideband radiation on cured low-k OSG films. Journal Physics D: Applied Physics, 2022, 55, 255206.	2.8	1
295	Kinetics of Gas - Solid Interactions. Studies in Surface Science and Catalysis, 1982, 9, 265.	1.5	0
296	Adsorption and consumption of atomic fluorine on SiO2 surface. Reaction Kinetics and Catalysis Letters, 1989, 40, 247-251.	0.6	0
297	Charge capture in heterostructures with disordered antidot lattice. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 35, 322-324.	3.5	0
298	Quantum transport in ultrathin CoSi2 polycrystalline films. Solid State Communications, 1997, 104, 147-150.	1.9	0
299	Evaluation of Post Metal Etch Cleaning by Analyzing the Chemical Compositions and Distributions on the Etched Al Surface. Solid State Phenomena, 1998, 65-66, 177-180.	0.3	0
300	Characterization of HF Cleaning of Ion-Implanted Si Surfaces. Solid State Phenomena, 1999, 65-66, 271-274.	0.3	0
301	XPS Study of the Cleaning Efficiency by Ozone Processes of the Protective Films Formed by Reactive Ion Etching of Co and Ti Silicide. Solid State Phenomena, 1998, 65-66, 139-142.	0.3	0
302	Electric Field Direct Force in Electromigration Mechanism. Materials Research Society Symposia Proceedings, 1998, 516, 195.	0.1	0
303	Applications of in-line oxygen monitoring to a rapid thermal processing tool: diagnosing gas flow dynamics and silicidation processes. Materials Science in Semiconductor Processing, 1999, 2, 341-348.	4.0	0
304	Non-destructive characterisation of porosity and pore size distribution in porous low-k dielectric films. , 0 , , .		0
305	Nanoporous polymer film properties from Brillouin light scattering and surface acoustic wave spectroscopy. , 0, , .		О
306	Nondestructive stiffness and density characterization of porous low-k films by surface acoustic wave spectroscopy. , 0, , .		0

#	Article	IF	Citations
307	<title>Effect of quartz window temperature on plasma composition during STI etch</title> . Proceedings of SPIE, 2008, , .	0.8	O
308	Effects of Silica Sources on Nanoporous Organosilicate Films Templated with Tetraalkylammonium Cations. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	0
309	Influence of Varying Porogen Loads and Different UV Cures on Low- Film Characteristics. Journal of Nanoscience and Nanotechnology, 2011, 11, 8363-8367.	0.9	0
310	Ultra Low-k Materials Based on Self-Assembled Organic Polymers. Materials Research Society Symposia Proceedings, 2011, 1335, 27.	0.1	0
311	Interconnect materials challenges for sub 20 nm technology nodes: Ultra low-k dielectrics. , 2012, , .		0
312	Development and evaluation of a-SiC:H films using a dimethylsilacyclopentane precursor as a low-k Cu capping layer. , $2013, \ldots$		0
313	Electron spin resonance analysis of sputtering-induced defects in advanced low-l̂º insulators (l̂º=2.0–2.5). Microelectronic Engineering, 2013, 109, 240-243.	2.4	0
314	The Diffusion Mechanism of Polymer Transfer Through Nanopores. , 2013, , .		0
315	The chemistry screening for ultra low-k dielectrics plasma etching. Proceedings of SPIE, 2014, , .	0.8	0
316	HF etching mechanisms of advanced low-k films. , 2014, , .		0
317	Near-interfacial thermal donor generation during processing of (100)Si/low-κSi-oxycarbide insulator structures revealed by electron spin resonance. Semiconductor Science and Technology, 2014, 29, 095008.	2.0	0
318	Alternative integration of ultralow-k dielectrics by template replacement approach. , 2015, , .		0
319	Toward successful integration of gap-filling ultralow-k dielectrics. , 2016, , .		0
320	Elastic Scattering of Neutral Fluorine on Si, O, C, and H Atoms in the Range of the Relative Kinetic Energies of 2–200 eV. Technical Physics Letters, 2019, 45, 1187-1190.	0.7	0
321	Mechanical Properties of Low-k Dielectric Deposited on Subtractively Patterned Cu Lines for Advanced Interconnects. , 2021, , .		0
322	Revealing the Porous Structure of Low-k Materials Through Solvent Diffusion., 2005,, 305-314.		0
323	Methylated porous low-k materials: critical properties and plasma resistance. , 2022, , .		0