Arjen Alink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/702607/publications.pdf

Version: 2024-02-01

		567281	501196
32	2,280	15	28
papers	citations	h-index	g-index
39	39	39	2609
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Can expectation suppression be explained by reduced attention to predictable stimuli?. NeuroImage, 2021, 231, 117824.	4.2	21
2	Decoding real-world visual recognition abilities in the human brain. Journal of Vision, 2021, 21, 2604.	0.3	0
3	Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology, 2021, 205, 102121.	5.7	7
4	Noradrenergic arousal after encoding reverses the course of systems consolidation in humans. Nature Communications, 2021, 12, 6054.	12.8	13
5	Reply to $\hat{a}\in $ Forward models of repetition suppression depend critically on assumptions of noise and granularity $\hat{a}\in \mathbb{T}$. Nature Communications, 2020, 11, 4735.	12.8	1
6	Clinically relevant autistic traits predict greater reliance on detail for image recognition. Scientific Reports, 2020, 10, 14239.	3.3	9
7	Valence Encoding Signals in the Human Amygdala and the Willingness to Eat. Journal of Neuroscience, 2020, 40, 5264-5272.	3.6	13
8	Inferring exemplar discriminability in brain representations. PLoS ONE, 2020, 15, e0232551.	2.5	27
9	Multivariate pattern analysis reveals domain-general enhancement of visual representations in individuals with "super-recognition―of faces. Journal of Vision, 2020, 20, 502.	0.3	1
10	Fixation-pattern similarity analysis reveals adaptive changes in face-viewing strategies following aversive learning. ELife, $2019,8,.$	6.0	4
11	The two-faces of recognition ability: better face recognizers extract different physical content from left and right sides of face stimuli. Journal of Vision, 2019, 19, 136d.	0.3	2
12	Forward models demonstrate that repetition suppression is best modelled by local neural scaling. Nature Communications, 2018, 9, 3854.	12.8	31
13	Prospective motion correction improves the sensitivity of fMRI pattern decoding. Human Brain Mapping, 2018, 39, 4018-4031.	3.6	15
14	Task-Dependent Information Compression in Face, Object and Scene Categorization. Journal of Vision, 2018, 18, 325.	0.3	0
15	Preferential use of local visual information in individuals with many autistic traits. Journal of Vision, 2018, 18, 406.	0.3	O
16	Local opposite orientation preferences in V1: fMRI sensitivity to fine-grained pattern information. Scientific Reports, 2017, 7, 7128.	3.3	10
17	Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage, 2016, 137, 188-200.	4.2	413
18	Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nature Neuroscience, 2015, 18, 582-589.	14.8	227

#	Article	IF	CITATIONS
19	Awake reactivation predicts memory in humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21159-21164.	7.1	181
20	Representational dynamics of object vision: The first 1000 ms. Journal of Vision, 2013, 13, 1-1.	0.3	261
21	fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli. Frontiers in Psychology, 2013, 4, 493.	2.1	65
22	Episodic Reinstatement in the Medial Temporal Lobe. Journal of Neuroscience, 2012, 32, 18150-18156.	3.6	191
23	Interaction between Bottom-up Saliency and Top-down Control: How Saliency Maps Are Created in the Human Brain. Cerebral Cortex, 2012, 22, 2943-2952.	2.9	88
24	Auditory Motion Capturing Ambiguous Visual Motion. Frontiers in Psychology, 2012, 2, 391.	2.1	12
25	Auditory motion direction encoding in auditory cortex and highâ€level visual cortex. Human Brain Mapping, 2012, 33, 969-978.	3.6	54
26	Stimulus Predictability Reduces Responses in Primary Visual Cortex. Journal of Neuroscience, 2010, 30, 2960-2966.	3.6	441
27	The Attentional Blink Modulates Activity in the Early Visual Cortex. Journal of Cognitive Neuroscience, 2009, 21, 197-206.	2.3	26
28	Capture of Auditory Motion by Vision Is Represented by an Activation Shift from Auditory to Visual Motion Cortex. Journal of Neuroscience, 2008, 28, 2690-2697.	3.6	78
29	Time-dependent effects of hyperoxia on the BOLD fMRI signal in primate visual cortex and LGN. Neurolmage, 2007, 35, 1044-1063.	4.2	18
30	Competing Neural Responses for Auditory and Visual Decisions. PLoS ONE, 2007, 2, e320.	2. 5	19
31	Neural aspects of cohort-size reduction during visual gating. Brain Research, 2007, 1150, 143-154.	2.2	15
32	A spatio-temporal interaction on the apparent motion trace. Vision Research, 2007, 47, 3424-3433.	1.4	35