Georg Jander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7025546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolic sucrose esters: evolution, regulation, biosynthesis, and biological functions. Plant Molecular Biology, 2022, 109, 369-383.	3.9	5
2	Molecular ecology of plant volatiles in interactions with insect herbivores. Journal of Experimental Botany, 2022, 73, 449-462.	4.8	42
3	Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. Plant Molecular Biology, 2022, 109, 505-522.	3.9	20
4	Characterizing serotonin biosynthesis in Setaria viridis leaves and its effect on aphids. Plant Molecular Biology, 2022, 109, 533-549.	3.9	9
5	Rapid Screening of Myzus persicae (Green Peach Aphid) RNAi Targets Using Tobacco Rattle Virus. Methods in Molecular Biology, 2022, 2360, 105-117.	0.9	0
6	Inhibition of Rhopalosiphum maidis (Corn Leaf Aphid) Growth on Maize by Virus-Induced Gene Silencing with Sugarcane Mosaic Virus. Methods in Molecular Biology, 2022, 2360, 139-153.	0.9	2
7	Insects Co-opt Host Genes to Overcome Plant Defences Faculty Reviews, 2022, 11, 10.	3.9	0
8	Maize resistance to insect herbivory is enhanced by silencing expression of genes for jasmonateâ€isoleucine degradation using sugarcane mosaic virus. Plant Direct, 2022, 6, .	1.9	3
9	Indoleâ€3â€glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize. Plant Journal, 2021, 106, 245-257.	5.7	29
10	Engineering pest tolerance through plant-mediated RNA interference. Current Opinion in Plant Biology, 2021, 60, 102029.	7.1	23
11	Genetic mapping identifies a rice naringenin <i>O</i> â€glucosyltransferase that influences insect resistance. Plant Journal, 2021, 106, 1401-1413.	5.7	15
12	A sugarcane mosaic virus vector for rapid <i>in planta</i> screening of proteins that inhibit the growth of insect herbivores. Plant Biotechnology Journal, 2021, 19, 1713-1724.	8.3	12
13	Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome, 2021, 9, 103.	11.1	57
14	Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae. Communications Biology, 2021, 4, 847.	4.4	55
15	Engineering insect resistance using plant specialized metabolites. Current Opinion in Biotechnology, 2021, 70, 115-121.	6.6	16
16	Acropetal and basipetal cardenolide transport in Erysimum cheiranthoides (wormseed wallflower). Phytochemistry, 2021, 192, 112965.	2.9	3
17	<i>Arabidopsis</i> ADC1 functions as an <i>N</i> ^δ â€acetylornithine decarboxylase. Journal of Integrative Plant Biology, 2020, 62, 601-613.	8.5	16
18	Natural variation in the expression and catalytic activity of a naringenin 7â€ <i>O</i> â€methyltransferase in diverse rice cultivars. Plant Journal, 2020, 101, 1103-1117	5.7	37

#	Article	IF	CITATIONS
19	Comparison of in Vitro and in Planta Toxicity of Vip3A for Lepidopteran Herbivores. Journal of Economic Entomology, 2020, 113, 2959-2971.	1.8	3
20	Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores. Journal of Chemical Ecology, 2020, 46, 1131-1143.	1.8	8
21	Editorial: Physiological Aspects of Non-proteinogenic Amino Acids in Plants. Frontiers in Plant Science, 2020, 11, 519464.	3.6	11

Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum,) Tj ETQq0 0 0 rgBT /Overlock $10.576_{-0.0}$ F 50 622

23	In-planta expression of insecticidal proteins provides protection against lepidopteran insects. Scientific Reports, 2019, 9, 6745.	3.3	15
24	Metabolome-Scale Genome-Wide Association Studies Reveal Chemical Diversity and Genetic Control of Maize Specialized Metabolites. Plant Cell, 2019, 31, 937-955.	6.6	75
25	Genome sequence of the corn leaf aphid (<i>Rhopalosiphum maidis</i> Fitch). GigaScience, 2019, 8, .	6.4	60
26	Silencing cathepsin L expression reduces <i>Myzus persicae</i> protein content and the nutritional value as prey for <i>Coccinella septempunctata</i> . Insect Molecular Biology, 2019, 28, 785-797.	2.0	15
27	12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. Plant Physiology, 2019, 179, 1402-1415.	4.8	61
28	Systemic disruption of the homeostasis of transfer RNA isopentenyltransferase causes growth and development abnormalities in <i>Bombyx mori</i> . Insect Molecular Biology, 2019, 28, 380-391.	2.0	6
29	Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and <i>Fusarium graminearum</i> resistance in maize seedling roots. New Phytologist, 2019, 221, 2096-2111.	7.3	42
30	RNAi-mediated silencing of endogenous Vlnv gene confers stable reduction of cold-induced sweetening in potato (Solanum tuberosum L. cv. Désirée). Plant Biotechnology Reports, 2018, 12, 175-185.	1.5	7
31	A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signaling and Behavior, 2018, 13, e1422462.	2.4	44
32	Beyond Defense: Multiple Functions of Benzoxazinoids in Maize Metabolism. Plant and Cell Physiology, 2018, 59, 1528-1537.	3.1	140
33	Computational and biological characterization of fusion proteins of two insecticidal proteins for control of insect pests. Scientific Reports, 2018, 8, 4837.	3.3	10
34	<i>Fusarium graminearumâ€</i> induced shoot elongation and root reduction in maize seedlings correlate with later seedling blight severity. Plant Direct, 2018, 2, e00075.	1.9	10
35	Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. Science Advances, 2018, 4, eaat6797.	10.3	58
36	Maize Carbohydrate partitioning defective1 impacts carbohydrate distribution, callose accumulation, and phloem function. Journal of Experimental Botany, 2018, 69, 3917-3931.	4.8	38

#	Article	IF	CITATIONS
37	The maize W22 genome provides a foundation for functional genomics and transposon biology. Nature Genetics, 2018, 50, 1282-1288.	21.4	183
38	Erysimum cheiranthoides, an ecological research system with potential as a genetic and genomic model for studying cardiac glycoside biosynthesis. Phytochemistry Reviews, 2018, 17, 1239-1251.	6.5	18
39	Genetic mapping identifies loci that influence tomato resistance against Colorado potato beetles. Scientific Reports, 2018, 8, 7429.	3.3	8
40	Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress. PLoS ONE, 2018, 13, e0198093.	2.5	54
41	<i>Tecia solanivora</i> infestation increases tuber starch accumulation in Pastusa Suprema potatoes. Journal of Integrative Plant Biology, 2018, 60, 1083-1096.	8.5	5
42	RNAi-Mediated Simultaneous Resistance Against Three RNA Viruses in Potato. Molecular Biotechnology, 2017, 59, 73-83.	2.4	49
43	Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biology, 2017, 18, 27.	8.8	624
44	A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants. Plant Cell, 2017, 29, 944-959.	6.6	225
45	Concurrent Overexpression of Arabidopsis thaliana Cystathionine Î ³ -Synthase and Silencing of Endogenous Methionine Î ³ -Lyase Enhance Tuber Methionine Content in Solanum tuberosum. Journal of Agricultural and Food Chemistry, 2017, 65, 2737-2742.	5.2	17
46	Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Scientific Reports, 2017, 7, 15880.	3.3	61
47	Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta, 2017, 246, 737-747.	3.2	134
48	Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. Journal of Experimental Botany, 2017, 68, 4709-4723.	4.8	98
49	Costs and Tradeoffs of Resistance and Tolerance to Belowground Herbivory in Potato. PLoS ONE, 2017, 12, e0169083.	2.5	6
50	Metabolic engineering of Rhodopseudomonas palustris for the obligate reduction of n-butyrate to n-butanol. Biotechnology for Biofuels, 2017, 10, 178.	6.2	22
51	Abscisic acid deficiency increases defence responses against <i><scp>M</scp>yzus persicae</i> in <scp>A</scp> rabidopsis. Molecular Plant Pathology, 2016, 17, 225-235.	4.2	63
52	Aversion and attraction to harmful plant secondary compounds jointly shape the foraging ecology of a specialist herbivore. Ecology and Evolution, 2016, 6, 3256-3268.	1.9	28
53	The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 2016, 14, 110.	3.8	265
54	Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores. Oecologia, 2016, 182, 177-187.	2.0	27

#	Article	IF	CITATIONS
55	Characterization of Biosynthetic Pathways for the Production of the Volatile Homoterpenes DMNT and TMTT in <i>Zea mays</i> . Plant Cell, 2016, 28, 2651-2665.	6.6	105
56	Glucosinolates from Host Plants Influence Growth of the Parasitic Plant <i>Cuscuta gronovii</i> and Its Susceptibility to Aphid Feeding. Plant Physiology, 2016, 172, 181-197.	4.8	38
57	A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. Scientific Reports, 2016, 6, 34706.	3.3	41
58	Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nature Communications, 2016, 7, 12570.	12.8	323
59	Arabidopsis NATA1 acetylates putrescine and decreases defense-related hydrogen peroxide accumulation. Plant Physiology, 2016, 171, pp.00446.2016.	4.8	45
60	Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28, tpc.00065.2016.	6.6	87
61	The glucosinolate breakdown product indoleâ€3â€carbinol acts as an auxin antagonist in roots of <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2015, 82, 547-555.	5.7	98
62	Genetic mapping shows intraspecific variation and transgressive segregation for caterpillarâ€induced aphid resistance in maize. Molecular Ecology, 2015, 24, 5739-5750.	3.9	45
63	ldentification of β-phenylalanine as a non-protein amino acid in cultivated rice, <i>Oryza sativa</i> . Communicative and Integrative Biology, 2015, 8, e1086045.	1.4	1
64	Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in <i>Acyrthosiphon pisum</i> (pea aphids). Journal of Experimental Biology, 2015, 218, 3797-3806.	1.7	23
65	Introducing the USA Plant, Algae and Microbial Metabolomics Research Coordination Network (PAMM-NET). Metabolomics, 2015, 11, 3-5.	3.0	3
66	Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. Journal of Experimental Botany, 2015, 66, 571-578.	4.8	70
67	RNA interference against gut osmoregulatory genes in phloem-feeding insects. Journal of Insect Physiology, 2015, 79, 105-112.	2.0	63
68	Disruption of Ethylene Responses by <i>Turnip mosaic virus</i> Mediates Suppression of Plant Defense against the Green Peach Aphid Vector. Plant Physiology, 2015, 169, 209-218.	4.8	150
69	The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice. Plant Cell, 2015, 27, 1265-1278.	6.6	38
70	Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. Journal of Experimental Botany, 2015, 66, 593-602.	4.8	36
71	Alteration of plant primary metabolism in response to insect herbivory. Plant Physiology, 2015, 169, pp.01405.2015.	4.8	195
72	Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiology, 2015, 169, pp.01039.2015.	4.8	142

#	Article	IF	CITATIONS
73	Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11407-11412.	7.1	128
74	Disrupting Buchnera aphidicola, the endosymbiotic bacteria of Myzus persicae, delays host plant acceptance. Arthropod-Plant Interactions, 2015, 9, 529-541.	1.1	28
75	The raison d'être of chemical ecology. Ecology, 2015, 96, 617-630.	3.2	83
76	Adaptation to Nicotine Feeding in Myzus persicae. Journal of Chemical Ecology, 2014, 40, 869-877.	1.8	42
77	Matching the supply of bacterial nutrients to the nutritional demand of the animal host. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141163.	2.6	49
78	The NIaâ€Pro protein of <i>Turnip mosaic virus</i> improves growth and reproduction of the aphid vector, <i>Myzus persicae</i> (green peach aphid). Plant Journal, 2014, 77, 653-663.	5.7	137
79	Adaptation to nicotine in the facultative tobaccoâ€feeding hemipteran <i>Bemisia tabaci</i> . Pest Management Science, 2014, 70, 1595-1603.	3.4	30
80	The catabolic enzyme methionine gammaâ€lyase limits methionine accumulation in potato tubers. Plant Biotechnology Journal, 2014, 12, 883-893.	8.3	30
81	Suppression of Plant Defenses by a <i>Myzus persicae</i> (Green Peach Aphid) Salivary Effector Protein. Molecular Plant-Microbe Interactions, 2014, 27, 747-756.	2.6	236
82	New Synthesis: Investigating Mutualisms in Virus-Vector Interactions. Journal of Chemical Ecology, 2013, 39, 809-809.	1.8	18
83	The role of protein effectors in plant–aphid interactions. Current Opinion in Plant Biology, 2013, 16, 451-456.	7.1	130
84	Comparative analysis of genome sequences from four strains of the Buchnera aphidicola Mp endosymbion of the green peach aphid, Myzus persicae. BMC Genomics, 2013, 14, 917.	2.8	31
85	Natural Variation in Maize Aphid Resistance Is Associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase Activity Â. Plant Cell, 2013, 25, 2341-2355.	6.6	251
86	Near-isogenic lines for measuring phenotypic effects of DIMBOA-Glc methyltransferase activity in maize. Plant Signaling and Behavior, 2013, 8, e26779.	2.4	16
87	Ecological role of transgenerational resistance against biotic threats. Plant Signaling and Behavior, 2012, 7, 447-449.	2.4	17
88	Herbivory in the Previous Generation Primes Plants for Enhanced Insect Resistance Â. Plant Physiology, 2012, 158, 854-863.	4.8	394
89	Natural Variation in Maize Defense against Insect Herbivores. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 269-283.	1.1	81
90	Timely plant defenses protect against caterpillar herbivory. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4343-4344.	7.1	19

#	Article	IF	CITATIONS
91	Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology and Evolution, 2012, 27, 618-626.	8.7	329
92	meta-Tyrosine in Festuca rubra ssp. commutata (Chewings fescue) is synthesized by hydroxylation of phenylalanine. Phytochemistry, 2012, 75, 60-66.	2.9	31
93	Engineering of benzylglucosinolate in tobacco provides proofâ€ofâ€concept for deadâ€end trap crops genetically modified to attract <i>Plutella xylostella</i> (diamondback moth). Plant Biotechnology Journal, 2012, 10, 435-442.	8.3	51
94	Insecticide Resistance Mechanisms in the Green Peach Aphid Myzus persicae (Hemiptera: Aphididae) I: A Transcriptomic Survey. PLoS ONE, 2012, 7, e36366.	2.5	133
95	Non-protein amino acids in plant defense against insect herbivores: Representative cases and opportunities for further functional analysis. Phytochemistry, 2011, 72, 1531-1537.	2.9	128
96	New Synthesis Plant Defense Signaling: New Opportunities for Studying Chemical Diversity. Journal of Chemical Ecology, 2011, 37, 429-429.	1.8	5
97	Biosynthesis and Defensive Function of <i>N</i> ÂΔ-Acetylornithine, a Jasmonate-Induced <i>Arabidopsis</i> Metabolite Â. Plant Cell, 2011, 23, 3303-3318.	6.6	80
98	Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 2010, 39, 933-947.	2.7	305
99	Differential Effects of Indole and Aliphatic Glucosinolates on Lepidopteran Herbivores. Journal of Chemical Ecology, 2010, 36, 905-913.	1.8	196
100	Volatile communication in plant–aphid interactions. Current Opinion in Plant Biology, 2010, 13, 366-371.	7.1	57
101	Pleiotropic physiological consequences of feedback-insensitive phenylalanine biosynthesis in Arabidopsis thaliana. Plant Journal, 2010, 63, 823-835.	5.7	69
102	Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene. Plant Journal, 2010, 64, 800-811.	5.7	47
103	Genomic insight into the amino acid relations of the pea aphid, <i>Acyrthosiphon pisum</i> , with its symbiotic bacterium <i>Buchnera aphidicola</i> . Insect Molecular Biology, 2010, 19, 249-258.	2.0	219
104	Genomic evidence for complementary purine metabolism in the pea aphid, <i>Acyrthosiphon pisum</i> , and its symbiotic bacterium <i>Buchnera aphidicola</i> . Insect Molecular Biology, 2010, 19, 241-248.	2.0	46
105	Comparative analysis of detoxification enzymes in <i>Acyrthosiphon pisum</i> and <i>Myzus persicae</i> . Insect Molecular Biology, 2010, 19, 155-164.	2.0	203
106	Genome-Enabled Research on the Ecology of Plant-Insect Interactions. Plant Physiology, 2010, 154, 475-478.	4.8	18
107	Alarm pheromone habituation in <i>Myzus persicae</i> has fitness consequences and causes extensive gene expression changes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14673-14678.	7.1	46
108	Recent Progress in Deciphering the Biosynthesis of Aspartate-Derived Amino Acids in Plants. Molecular Plant, 2010, 3, 54-65.	8.3	98

#	Article	IF	CITATIONS
109	Aspartate-Derived Amino Acid Biosynthesis in <i>Arabidopsis thaliana</i> . The Arabidopsis Book, 2009, 7, e0121.	0.5	82
110	Arabidopsis Methionine <i>γ</i> -Lyase Is Regulated According to Isoleucine Biosynthesis Needs But Plays a Subordinate Role to Threonine Deaminase. Plant Physiology, 2009, 151, 367-378.	4.8	80
111	Indole glucosinolate breakdown and its biological effects. Phytochemistry Reviews, 2009, 8, 101-120.	6.5	202
112	Non-Volatile Intact Indole Glucosinolates are Host Recognition Cues for Ovipositing Plutella xylostella. Journal of Chemical Ecology, 2009, 35, 1427-1436.	1.8	89
113	<i>Myzus persicae</i> (green peach aphid) salivary components induce defence responses in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2009, 32, 1548-1560.	5.7	247
114	Glucosinolate Metabolites Required for an <i>Arabidopsis</i> Innate Immune Response. Science, 2009, 323, 95-101.	12.6	1,037
115	Plant Immunity to Insect Herbivores. Annual Review of Plant Biology, 2008, 59, 41-66.	18.7	1,975
116	Reduced activity of <i>Arabidopsis thaliana</i> HMT2, a methionine biosynthetic enzyme, increases seed methionine content. Plant Journal, 2008, 54, 310-320.	5.7	53
117	Identification of indole glucosinolate breakdown products with antifeedant effects on <i>Myzus persicae</i> (green peach aphid). Plant Journal, 2008, 54, 1015-1026.	5.7	219
118	Indole-3-Acetonitrile Production from Indole Glucosinolates Deters Oviposition by <i>Pieris rapae</i> ÂÂ Â. Plant Physiology, 2008, 146, 916-926.	4.8	127
119	Plant Interactions with Arthropod Herbivores: State of the Field. Plant Physiology, 2008, 146, 801-803.	4.8	31
120	Choice and No-Choice Assays for Testing the Resistance of A. thaliana to Chewing Insects. Journal of Visualized Experiments, 2008, , .	0.3	3
121	Testing the Physiological Barriers to Viral Transmission in Aphids Using Microinjection. Journal of Visualized Experiments, 2008, , .	0.3	4
122	Testing Nicotine Tolerance in Aphids Using an Artificial Diet Experiment. Journal of Visualized Experiments, 2008, , .	0.3	3
123	Two Arabidopsis Threonine Aldolases Are Nonredundant and Compete with Threonine Deaminase for a Common Substrate Pool. Plant Cell, 2007, 18, 3564-3575.	6.6	80
124	Plants Under Attack. Plant Signaling and Behavior, 2007, 2, 527-529.	2.4	19
125	Contribution of Glucosinolate Transport to <i>Arabidopsis</i> Defense Responses. Plant Signaling and Behavior, 2007, 2, 282-283.	2.4	29
126	Grass roots chemistry: <i>meta</i> -Tyrosine, an herbicidal nonprotein amino acid. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16964-16969.	7.1	183

#	Article	IF	CITATIONS
127	Tandem gene arrays: a challenge for functional genomics. Trends in Plant Science, 2007, 12, 203-210.	8.8	29
128	Biochemistry and molecular biology of Arabidopsis–aphid interactions. BioEssays, 2007, 29, 871-883.	2.5	124
129	Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant Journal, 2007, 49, 1008-1019.	5.7	327
130	TECHNICAL ADVANCE: Indel arrays: an affordable alternative for genotyping. Plant Journal, 2007, 51, 727-737.	5.7	58
131	Characterization of seedâ€specific benzoyloxyglucosinolate mutations in <i>Arabidopsis thaliana</i> . Plant Journal, 2007, 51, 1062-1076.	5.7	90
132	Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics, 2007, 8, 423.	2.8	116
133	Gene Identification and Cloning by Molecular Marker Mapping. , 2006, 323, 115-126.		19
134	Prevention and Control of Pests and Diseases. , 2006, 323, 13-26.		10
135	Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant Journal, 2006, 46, 549-562.	5.7	380
136	Application of a high-throughput HPLC-MS/MS assay toArabidopsismutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. Plant Journal, 2004, 39, 465-475.	5.7	118
137	Characterization of the Arabidopsis TU8 Glucosinolate Mutation,an Allele of TERMINAL FLOWER2. Plant Molecular Biology, 2004, 54, 671-682.	3.9	51
138	Ethylmethanesulfonate Saturation Mutagenesis in Arabidopsis to Determine Frequency of Herbicide Resistance. Plant Physiology, 2003, 131, 139-146.	4.8	145
139	Arabidopsis Map-Based Cloning in the Post-Genome Era. Plant Physiology, 2002, 129, 440-450.	4.8	603
140	Signals Involved in Arabidopsis Resistance toTrichoplusia ni Caterpillars Induced by Virulent and Avirulent Strains of the Phytopathogen Pseudomonas syringae. Plant Physiology, 2002, 129, 551-564.	4.8	98
141	The TASTY Locus on Chromosome 1 of Arabidopsis Affects Feeding of the Insect Herbivore Trichoplusia ni. Plant Physiology, 2001, 126, 890-898.	4.8	96
142	Positive Correlation between Virulence of <i>Pseudomonas aeruginosa</i> Mutants in Mice and Insects. Journal of Bacteriology, 2000, 182, 3843-3845.	2.2	475
143	Biotinylation in vivo as a sensitive indicator of protein secretion and membrane protein insertion. Journal of Bacteriology, 1996, 178, 3049-3058.	2.2	42
144	Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9895-9899.	7.1	141

#	Article	IF	CITATIONS
145	Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO Journal, 1994, 13, 5121-7.	7.8	46
146	A pathway for disulfide bond formation in vivo Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1038-1042.	7.1	415
147	Regulatory cascade controls virulence in Vibrio cholerae Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5403-5407.	7.1	455
148	Identification of the Serratia marcescens hemolysin determinant by cloning into Escherichia coli. Journal of Bacteriology, 1987, 169, 2113-2120.	2.2	66