Shu Uin Gan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7023717/publications.pdf Version: 2024-02-01

SHILLIN CAN

#	Article	IF	CITATIONS
1	First use of gene therapy to treat growth hormone resistant dwarfism in a mouse model. Gene Therapy, 2022, , .	4.5	3
2	Angiopoietin-1 enhanced myocyte mitosis, engraftment, and the reparability of hiPSC-CMs for treatment of myocardial infarction. Cardiovascular Research, 2021, 117, 1578-1591.	3.8	20
3	Charting the next century of insulin replacement with cell and gene therapies. Med, 2021, 2, 1138-1162.	4.4	3
4	Modification of a Constitutive to Glucose-Responsive Liver-Specific Promoter Resulted in Increased Efficacy of Adeno-Associated Virus Serotype 8-Insulin Gene Therapy of Diabetic Mice. Cells, 2020, 9, 2474.	4.1	5
5	Identification of CD137-Expressing B Cells in Multiple Sclerosis Which Secrete IL-6 Upon Engagement by CD137 Ligand. Frontiers in Immunology, 2020, 11, 571964.	4.8	9
6	Fabrication of vascularized tissue constructs under chemically defined culture conditions. Biofabrication, 2020, 12, 045015.	7.1	10
7	Tissues derived from reprogrammed Wharton's jelly stem cells of the umbilical cord as a platform to study gestational diabetes mellitus. Stem Cell Research, 2020, 47, 101880.	0.7	2
8	Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium. Stem Cell Research and Therapy, 2020, 11, 78.	5.5	14
9	Development of a liverâ€specific Tetâ€off AAV8 vector for improved safety of insulin gene therapy for diabetes. Journal of Gene Medicine, 2019, 21, e3067.	2.8	13
10	Immunosuppression overcomes insulin- and vector-specific immune responses that limit efficacy of AAV2/8-mediated insulin gene therapy in NOD mice. Gene Therapy, 2019, 26, 40-56.	4.5	8
11	Promoter optimisation of lentiviral vectors for efficient insulin gene expression in canine mesenchymal stromal cells: potential surrogate beta cells. Journal of Gene Medicine, 2016, 18, 312-321.	2.8	12
12	Correction of Murine Diabetic Hyperglycaemia With A Single Systemic Administration of An AAV2/8 Vector Containing A Novel Codon Optimized Human Insulin Gene. Current Gene Therapy, 2016, 16, 65-72.	2.0	15
13	Characterization of Insulin-Secreting Porcine Bone Marrow Stromal Cells Ex Vivo and Autologous Cell Therapy in Vivo. Cell Transplantation, 2015, 24, 1205-1220.	2.5	5
14	Visfatin and its genetic variants are associated with obesityâ€related morbidities and cardiometabolic risk in severely obese children. Pediatric Obesity, 2014, 9, 81-91.	2.8	20
15	Human Wharton's Jelly Stem Cells and Its Conditioned Medium Enhance Healing of Excisional and Diabetic Wounds. Journal of Cellular Biochemistry, 2014, 115, 290-302.	2.6	70
16	Post-ischaemic angiogenic therapy usingin vivoprevascularized ascorbic acid-enriched myocardial artificial grafts improves heart function in a rat model. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 203-212.	2.7	8
17	Grafts Enriched with Subamnion-Cord-Lining Mesenchymal Stem Cell Angiogenic Spheroids Induce Post-Ischemic Myocardial Revascularization and Preserve Cardiac Function in Failing Rat Hearts. Stem Cells and Development, 2013, 22, 3087-3099.	2.1	25
18	Cord Lining-Mesenchymal Stem Cells Graft Supplemented with an Omental Flap Induces Myocardial Revascularization and Ameliorates Cardiac Dysfunction in a Rat Model of Chronic Ischemic Heart Failure. Tissue Engineering - Part A, 2013, 19, 1303-1315.	3.1	28

Shu Uin Gan

#	Article	IF	CITATIONS
19	Insulin-Producing Cells from Adult Human Bone Marrow Mesenchymal Stem Cells Control Streptozotocin-Induced Diabetes in Nude Mice. Cell Transplantation, 2013, 22, 133-145.	2.5	94
20	Expression of CD137 on Hodgkin and Reed–Sternberg Cells Inhibits T-cell Activation by Eliminating CD137 Ligand Expression. Cancer Research, 2013, 73, 652-661.	0.9	64
21	Defining the expression hierarchy of latent T-cell epitopes in Epstein-Barr virus infection with TCR-like antibodies. Scientific Reports, 2013, 3, 3232.	3.3	19
22	Human umbilical cord wharton's jelly mesenchymal stem cells do not transform to tumorâ€associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 2012, 113, 1886-1895.	2.6	84
23	One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells. Stem Cell Research, 2012, 9, 87-100.	0.7	81
24	Hydrogen Sulfide Suppresses Outward Rectifier Potassium Currents in Human Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2012, 7, e50641.	2.5	16
25	Stem cell therapy for diabetes. Indian Journal of Endocrinology and Metabolism, 2012, 16, 227.	0.4	10
26	Keloid fibroblasts are more sensitive to Wnt3a treatment in terms of elevated cellular growth and fibronectin expression. Journal of Dermatological Science, 2011, 64, 199-209.	1.9	32
27	Characterization of Human Umbilical Cord Lining-Derived Epithelial Cells and Transplantation Potential. Cell Transplantation, 2011, 20, 1827-1841.	2.5	23
28	The Role of R-Spondin2 in Keratinocyte Proliferation and Epidermal Thickening in Keloid Scarring. Journal of Investigative Dermatology, 2011, 131, 644-654.	0.7	39
29	Stem cell and gene therapies for diabetes mellitus. Nature Reviews Endocrinology, 2010, 6, 173-177.	9.6	27
30	Genetic engineering for haemophilia A. Expert Opinion on Biological Therapy, 2006, 6, 1023-1030.	3.1	8
31	Gene therapy for hemophilia A. Discovery Medicine, 2006, 6, 198-202.	0.5	3
32	Treatment of human breast cancer cells with antisense RNA to the type I insulin-like growth factor receptor inhibits cell growth, suppresses tumorigenesis, alters the metastatic potential, and prolongs survival in vivo. Cancer Gene Therapy, 2000, 7, 384-395.	4.6	77
33	Regulation by retinoids of P2Y ₂ nucleotide receptor mRNA in human uterine cervical cells. American Journal of Physiology - Cell Physiology, 1998, 275, C758-C765.	4.6	27
34	More detailed characterization of some of the HL60 karyotypic features by fluorescence in situ hybridization. Cancer Genetics and Cytogenetics, 1996, 87, 103-106.	1.0	12
35	Gene Therapy for Hemophilia A. , 0, , 226-228.		3