Howard A Stone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7022739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chaotic Mixer for Microchannels. Science, 2002, 295, 647-651.	6.0	2,963
2	Formation of dispersions using "flow focusing―in microchannels. Applied Physics Letters, 2003, 82, 364-366.	1.5	1,998
3	Monodisperse Double Emulsions Generated from a Microcapillary Device. Science, 2005, 308, 537-541.	6.0	1,923
4	Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on A Chip, 2006, 6, 437.	3.1	1,863
5	Microscopic artificial swimmers. Nature, 2005, 437, 862-865.	13.7	1,595
6	Dynamics of Drop Deformation and Breakup in Viscous Fluids. Annual Review of Fluid Mechanics, 1994, 26, 65-102.	10.8	1,001
7	Swimming in Circles: Motion of Bacteria near Solid Boundaries. Biophysical Journal, 2006, 90, 400-412.	0.2	805
8	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 724-728.	7.2	700
9	Effective slip in pressure-driven Stokes flow. Journal of Fluid Mechanics, 2003, 489, 55-77.	1.4	640
10	Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595, 141-161.	1.4	571
11	Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters, 2004, 85, 2649-2651.	1.5	563
12	Coalescence of liquid drops. Journal of Fluid Mechanics, 1999, 401, 293-310.	1.4	554
13	Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops. Physical Review Letters, 2007, 99, 234502.	2.9	484
14	Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature, 2000, 405, 1033-1036.	13.7	481
15	Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions. Physical Review Letters, 2005, 94, 164501.	2.9	480
16	Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Applied Physics Letters, 2000, 76, 2376-2378.	1.5	478
17	Microfluidics: Basic issues, applications, and challenges. AICHE Journal, 2001, 47, 1250-1254.	1.8	459
18	The Mechanical World of Bacteria Cell 2015 161 988-997	13 5	499

anical World of Bacteria. Cell, 2015, 161, 988-997.

#	Article	IF	CITATIONS
19	An experimental study of transient effects in the breakup of viscous drops. Journal of Fluid Mechanics, 1986, 173, 131-158.	1.4	387
20	A simple derivation of the timeâ€dependent convectiveâ€diffusion equation for surfactant transport along a deforming interface. Physics of Fluids A, Fluid Dynamics, 1990, 2, 111-112.	1.6	380
21	Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. Journal of Fluid Mechanics, 1989, 198, 399.	1.4	364
22	A Generalized View of Foam Drainage:Â Experiment and Theory. Langmuir, 2000, 16, 6327-6341.	1.6	364
23	Propulsion of Microorganisms by Surface Distortions. Physical Review Letters, 1996, 77, 4102-4104.	2.9	360
24	The effects of surfactants on drop deformation and breakup. Journal of Fluid Mechanics, 1990, 220, 161-186.	1.4	348
25	Wrinkles and deep folds as photonic structures in photovoltaics. Nature Photonics, 2012, 6, 327-332.	15.6	346
26	The pressure drop along rectangular microchannels containing bubbles. Lab on A Chip, 2007, 7, 1479.	3.1	334
27	Type IV pili mechanochemically regulate virulence factors in <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7563-7568.	3.3	320
28	Microfluidic flow focusing: Drop size and scaling in pressureversus flow-rate-driven pumping. Electrophoresis, 2005, 26, 3716-3724.	1.3	309
29	Solutions to the Public Goods Dilemma in Bacterial Biofilms. Current Biology, 2014, 24, 50-55.	1.8	307
30	Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5, 585-594.	1.0	299
31	Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal Physics D: Applied Physics, 2013, 46, 114002.	1.3	296
32	Inhaling to mitigate exhaled bioaerosols. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17383-17388.	3.3	294
33	Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4345-4350.	3.3	283
34	On self-propulsion of micro-machines at low Reynolds number: Purcells three-link swimmer. Journal of Fluid Mechanics, 2003, 490, 15-35.	1.4	275
35	Imbibition by polygonal spreading on microdecorated surfaces. Nature Materials, 2007, 6, 661-664.	13.3	274
36	Capillary breakup of a viscous thread surrounded by another viscous fluid. Physics of Fluids, 1998, 10, 2758-2764.	1.6	270

#	Article	IF	CITATIONS
37	Satellite and subsatellite formation in capillary breakup. Journal of Fluid Mechanics, 1992, 243, 297.	1.4	262
38	Cell Membranes Resist Flow. Cell, 2018, 175, 1769-1779.e13.	13.5	254
39	Controlled assembly of jammed colloidal shells on fluid droplets. Nature Materials, 2005, 4, 553-556.	13.3	253
40	Short-Time Dynamics of Partial Wetting. Physical Review Letters, 2008, 100, 234501.	2.9	246
41	Shear-Driven Failure of Liquid-Infused Surfaces. Physical Review Letters, 2015, 114, 168301.	2.9	240
42	Dynamics of shear-induced ATP release from red blood cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16432-16437.	3.3	235
43	Non-coalescence of oppositely charged drops. Nature, 2009, 461, 377-380.	13.7	235
44	Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules. Physical Review Letters, 2016, 116, 124501.	2.9	231
45	Wetting of flexible fibre arrays. Nature, 2012, 482, 510-513.	13.7	229
46	Dynamics of Coarsening Foams: Accelerated and Self-Limiting Drainage. Physical Review Letters, 2001, 86, 4704-4707.	2.9	221
47	Hierarchical folding of elastic membranes under biaxial compressive stress. Nature Materials, 2011, 10, 952-957.	13.3	218
48	Scaling laws for the thrust production of flexible pitching panels. Journal of Fluid Mechanics, 2013, 732, 29-46.	1.4	208
49	Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. Biophysical Journal, 2019, 117, 1285-1300.	0.2	208
50	Surface Morphology of Drying Latex Films:Â Multiple Ring Formation. Langmuir, 2002, 18, 3441-3445.	1.6	206
51	Control of interfacial instabilities using flow geometry. Nature Physics, 2012, 8, 747-750.	6.5	198
52	Dynamic self-assembly and control of microfluidic particle crystals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22413-22418.	3.3	193
53	Size-dependent control of colloid transport via solute gradients in dead-end channels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 257-261.	3.3	189
54	Liquid Flow through Aqueous Foams: The Node-Dominated Foam Drainage Equation. Physical Review Letters, 1999, 82, 4232-4235.	2.9	186

#	Article	IF	CITATIONS
55	Geometric Cue for Protein Localization in a Bacterium. Science, 2009, 323, 1354-1357.	6.0	186
56	Daughter bubble cascades produced by folding of ruptured thin films. Nature, 2010, 465, 759-762.	13.7	182
57	Architectural transitions in <i>Vibrio cholerae</i> biofilms at single-cell resolution. Proceedings of the United States of America, 2016, 113, E2066-72.	3.3	178
58	Laminar flow around corners triggers the formation of biofilm streamers. Journal of the Royal Society Interface, 2010, 7, 1293-1299.	1.5	172
59	Electrohydrodynamic deformation and interaction of drop pairs. Journal of Fluid Mechanics, 1998, 368, 359-375.	1.4	171
60	Viscoplastic Matrix Materials for Embedded 3D Printing. ACS Applied Materials & Interfaces, 2018, 10, 23353-23361.	4.0	167
61	Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25237-25245.	3.3	165
62	Ice-Phobic Surfaces That Are Wet. ACS Nano, 2012, 6, 6536-6540.	7.3	163
63	High-speed microfluidic differential manometer for cellular-scale hydrodynamics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 538-542.	3.3	160
64	Cellular-scale hydrodynamics. Biomedical Materials (Bristol), 2008, 3, 034011.	1.7	159
65	<i>Vibrio cholerae</i> biofilm growth program and architecture revealed by single-cell live imaging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5337-43.	3.3	159
66	High-Density Regular Arrays of Nanometer-Scale Rods Formed on Silicon Surfaces via Femtosecond Laser Irradiation in Water. Nano Letters, 2008, 8, 2087-2091.	4.5	157
67	The effect of surfactant on the transient motion of Newtonian drops. Physics of Fluids A, Fluid Dynamics, 1993, 5, 69-79.	1.6	155
68	Imbibition in Porous Membranes of Complex Shape: Quasi-stationary Flow in Thin Rectangular Segments. Langmuir, 2010, 26, 1380-1385.	1.6	154
69	Dissolution Arrest and Stability of Particle-Covered Bubbles. Physical Review Letters, 2007, 99, 188301.	2.9	150
70	Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10986-10991.	3.3	149
71	Shear Stress Increases the Residence Time of Adhesion of Pseudomonas aeruginosa. Biophysical Journal, 2011, 100, 341-350.	0.2	145
72	The dynamic behavior of chemically "stiffened―red blood cells in microchannel flows. Microvascular Research, 2010, 80, 37-43.	1.1	143

#	Article	IF	CITATIONS
73	Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Biorheology, 2006, 43, 147-59.	1.2	143
74	Effect of Microtextured Surface Topography on the Wetting Behavior of Eutectic Gallium–Indium Alloys. Langmuir, 2014, 30, 533-539.	1.6	142
75	Drop formation in viscous flows at a vertical capillary tube. Physics of Fluids, 1997, 9, 2234-2242.	1.6	139
76	Hydrodynamic Dispersion in Shallow Microchannels:  the Effect of Cross-Sectional Shape. Analytical Chemistry, 2006, 78, 387-392.	3.2	139
77	Controllable Microfluidic Production of Microbubbles in Waterâ€inâ€Oil Emulsions and the Formation of Porous Microparticles. Advanced Materials, 2008, 20, 3314-3318.	11.1	139
78	Interfacial Polygonal Nanopatterning of Stable Microbubbles. Science, 2008, 320, 1198-1201.	6.0	137
79	Local and global consequences of flow on bacterial quorum sensing. Nature Microbiology, 2016, 1, 15005.	5.9	137
80	Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. Journal Physics D: Applied Physics, 2007, 40, 1447-1459.	1.3	135
81	An Accurate von Neumann's Law for Three-Dimensional Foams. Physical Review Letters, 2001, 86, 2685-2688.	2.9	134
82	Imbibition in geometries with axial variations. Journal of Fluid Mechanics, 2008, 615, 335-344.	1.4	134
83	Bending and twisting of soft materials by non-homogenous swelling. Soft Matter, 2011, 7, 5188.	1.2	134
84	Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. Journal of Fluid Mechanics, 1998, 369, 151-173.	1.4	132
85	Pumping-out photo-surfactants from an air–water interface using light. Soft Matter, 2011, 7, 7866.	1.2	130
86	On the dynamics of magnetically driven elastic filaments. Journal of Fluid Mechanics, 2006, 554, 167.	1.4	128
87	Breakup of concentric double emulsion droplets in linear flows. Journal of Fluid Mechanics, 1990, 211, 123-156.	1.4	126
88	Buoyancy-driven interactions between two deformable viscous drops. Journal of Fluid Mechanics, 1993, 256, 647-683.	1.4	126
89	A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. Journal of Biomechanics, 2004, 37, 1137-1146.	0.9	122
90	Pinching threads, singularities and the number 0.0304 Physics of Fluids, 1996, 8, 2827-2836.	1.6	121

#	Article	IF	CITATIONS
91	Relaxation Time of the TopologicalT1Process in a Two-Dimensional Foam. Physical Review Letters, 2006, 97, 226101.	2.9	121
92	Axial and lateral particle ordering in finite Reynolds number channel flows. Physics of Fluids, 2010, 22, .	1.6	121
93	Mechanics of surface area regulation in cells examined with confined lipid membranes. Proceedings of the United States of America, 2011, 108, 9084-9088.	3.3	121
94	Fiber coating with surfactant solutions. Physics of Fluids, 2002, 14, 4055-4068.	1.6	119
95	Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. Journal of Fluid Mechanics, 2004, 505, 309-321.	1.4	119
96	Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications, 2017, 8, 327.	5.8	119
97	Critical Angle for Electrically Driven Coalescence of Two Conical Droplets. Physical Review Letters, 2009, 103, 164502.	2.9	118
98	Thermophoresis: microfluidics characterization and separation. Soft Matter, 2010, 6, 3489.	1.2	118
99	Liquid explosions induced by X-ray laser pulses. Nature Physics, 2016, 12, 966-971.	6.5	116
100	Morphology of femtosecond-laser-ablated borosilicate glass surfaces. Applied Physics Letters, 2003, 83, 3030-3032.	1.5	115
101	Drops with conical ends in electric and magnetic fields. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 329-347.	1.0	114
102	Colloidal Crystallization and Banding in a Cylindrical Geometry. Journal of the American Chemical Society, 2004, 126, 5978-5979.	6.6	112
103	Two-Peak and Three-Peak Optimal Complex Networks. Physical Review Letters, 2004, 92, 118702.	2.9	110
104	Microstructure, Morphology, and Lifetime of Armored Bubbles Exposed to Surfactants. Langmuir, 2006, 22, 5986-5990.	1.6	110
105	The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. Journal of Fluid Mechanics, 1989, 206, 223-263.	1.4	109
106	Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. Journal of Fluid Mechanics, 2010, 658, 409-437.	1.4	109
107	Suppressing viscous fingering in structured porous media. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4833-4838.	3.3	107
108	Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science, 2020, 369, 71-77.	6.0	106

#	Article	IF	CITATIONS
109	Secondary Flow as a Mechanism for the Formation of Biofilm Streamers. Biophysical Journal, 2011, 100, 1392-1399.	0.2	101
110	Oilâ€Impregnated Nanoporous Oxide Layer for Corrosion Protection with Selfâ€Healing. Advanced Functional Materials, 2017, 27, 1606040.	7.8	100
111	Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis. Journal of Colloid and Interface Science, 1999, 212, 338-349.	5.0	99
112	Foam drainage on the microscale. Journal of Colloid and Interface Science, 2004, 276, 420-438.	5.0	99
113	Dynamics of wetting: from inertial spreading to viscous imbibition. Journal of Physics Condensed Matter, 2009, 21, 464127.	0.7	98
114	Two-ply channels for faster wicking in paper-based microfluidic devices. Lab on A Chip, 2015, 15, 4461-4466.	3.1	98
115	The effect of surface tension on rimming flows in a partially filled rotating cylinder. Journal of Fluid Mechanics, 2003, 479, 65-98.	1.4	97
116	Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: Macroscopic, two-dimensional classical artificial atoms and molecules. Physical Review E, 2001, 64, 011603.	0.8	95
117	The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nature Communications, 2014, 5, 3824.	5.8	95
118	Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nature Microbiology, 2017, 2, 17080.	5.9	95
119	Pressure-Driven Laminar Flow in Tangential Microchannels:Â an Elastomeric Microfluidic Switch. Analytical Chemistry, 2001, 73, 4682-4687.	3.2	94
120	Spreading of Viscous Fluid Drops on a Solid Substrate Assisted by Thermal Fluctuations. Physical Review Letters, 2005, 95, 244505.	2.9	94
121	Verticalization of bacterial biofilms. Nature Physics, 2018, 14, 954-960.	6.5	92
122	The reciprocal theorem in fluid dynamics and transport phenomena. Journal of Fluid Mechanics, 2019, 879, .	1.4	92
123	Chaotic streamlines inside drops immersed in steady Stokes flows. Journal of Fluid Mechanics, 1991, 232, 629.	1.4	91
124	Mechanics of Interfacial Composite Materials. Langmuir, 2006, 22, 10204-10208.	1.6	91
125	Membraneless water filtration using CO2. Nature Communications, 2017, 8, 15181.	5.8	90
126	Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development (Cambridge), 2017, 144, 4328-4335.	1.2	88

#	Article	IF	CITATIONS
127	Nanoemulsions obtained via bubble-bursting at a compound interface. Nature Physics, 2014, 10, 606-612.	6.5	85
128	Solutal Marangoni flows of miscible liquids drive transport without surface contamination. Nature Physics, 2017, 13, 1105-1110.	6.5	85
129	Splashing on elastic membranes: The importance of early-time dynamics. Physics of Fluids, 2008, 20, .	1.6	84
130	Low Reynolds number motion of bubbles, drops and rigid spheres through fluid–fluid interfaces. Journal of Fluid Mechanics, 1995, 287, 279-298.	1.4	83
131	Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7622-7632.	3.3	82
132	Peristaltically driven channel flows with applications toward micromixing. Physics of Fluids, 2001, 13, 1837-1859.	1.6	80
133	Short and long time drop dynamics on lubricated substrates. Europhysics Letters, 2013, 104, 34008.	0.7	80
134	Marangoni Flow of Soluble Amphiphiles. Physical Review Letters, 2014, 112, .	2.9	80
135	Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. Europhysics Letters, 2007, 79, 66005.	0.7	79
136	Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. Lab on A Chip, 2011, 11, 2312.	3.1	79
137	Controlling viscous fingering in tapered Hele-Shaw cells. Physics of Fluids, 2013, 25, .	1.6	79
138	Flow rate–pressure drop relation for deformable shallow microfluidic channels. Journal of Fluid Mechanics, 2018, 841, 267-286.	1.4	79
139	Dynamics of foam drainage. Physical Review E, 1998, 58, 2097-2106.	0.8	78
140	Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Physics of Fluids, 2014, 26, .	1.6	77
141	Robust liquid-infused surfaces through patterned wettability. Soft Matter, 2015, 11, 5023-5029.	1.2	77
142	Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels. Lab on A Chip, 2015, 15, 1110-1115.	3.1	77
143	Foam drainage on the microscale II. Imaging flow through single Plateau borders. Journal of Colloid and Interface Science, 2004, 276, 439-449.	5.0	76
144	Controlling Viscous Fingering Using Time-Dependent Strategies. Physical Review Letters, 2015, 115, 174501.	2.9	76

#	Article	IF	CITATIONS
145	Flow through beds of porous particles. Chemical Engineering Science, 1993, 48, 3993-4005.	1.9	75
146	Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces. Physical Review Fluids, 2016, 1, .	1.0	75
147	Estimating interfacial tension via relaxation of drop shapes and filament breakup. AICHE Journal, 1994, 40, 385-394.	1.8	74
148	Unexpected trapping of particles at a T junction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4770-4775.	3.3	74
149	Collective hydrodynamics of deformable drops and bubbles in dilute low Reynolds number suspensions. Journal of Fluid Mechanics, 1995, 300, 231-263.	1.4	72
150	Flow-induced phase separation of active particles is controlled by boundary conditions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5403-5408.	3.3	72
151	Flow Directs Surface-Attached Bacteria to Twitch Upstream. Biophysical Journal, 2012, 103, 146-151.	0.2	70
152	Ordered Clusters and Dynamical States of Particles in a Vibrated Fluid. Physical Review Letters, 2002, 88, 234301.	2.9	69
153	Purcell's "rotatorâ€i mechanical rotation at low Reynolds number. European Physical Journal B, 2005, 47, 161-164.	0.6	69
154	Do magnetic micro-swimmers move like eukaryotic cells?. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464, 877-904.	1.0	69
155	Clinical Implications of a Mathematical Model of Benign Paroxysmal Positional Vertigo. Annals of the New York Academy of Sciences, 2005, 1039, 384-394.	1.8	68
156	Extensional deformation of Newtonian liquid bridges. Physics of Fluids, 1996, 8, 2568-2579.	1.6	67
157	An "off-the-shelf―capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. Lab on A Chip, 2013, 13, 4507.	3.1	67
158	Mechanical instability and interfacial energy drive biofilm morphogenesis. ELife, 2019, 8, .	2.8	67
159	Study of the Flow Field in the Magnetic Rod Interfacial Stress Rheometer. Langmuir, 2011, 27, 9345-9358.	1.6	66
160	Dynamics of self assembly of magnetized disks rotating at the liquid-air interface. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4147-4151.	3.3	65
161	Dip coating for the alignment of carbon nanotubes on curved surfaces. Journal of Materials Chemistry, 2004, 14, 1299.	6.7	65
162	Enzymatic Reactions in Microfluidic Devices:  Michaelisâ^'Menten Kinetics. Analytical Chemistry, 2008, 80, 3270-3276.	3.2	65

#	Article	IF	CITATIONS
163	A reciprocal theorem for Marangoni propulsion. Journal of Fluid Mechanics, 2014, 741, .	1.4	65
164	Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations. Europhysics Letters, 2010, 92, 54002.	0.7	63
165	Stretching and break-up of saliva filaments during speech: A route for pathogen aerosolization and its potential mitigation. Physical Review Fluids, 2020, 5, .	1.0	63
166	Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matter, 2008, 4, 1403.	1.2	62
167	Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. Advanced Materials, 2018, 30, e1804153.	11.1	62
168	Philip Saffman and viscous flow theory. Journal of Fluid Mechanics, 2000, 409, 165-183.	1.4	61
169	Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics. Soft Matter, 2016, 12, 9142-9150.	1.2	61
170	Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface. Journal of Fluid Mechanics, 2016, 790, 607-618.	1.4	60
171	Spatial gene drives and pushed genetic waves. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8452-8457.	3.3	60
172	In-Fiber Semiconductor Filament Arrays. Nano Letters, 2008, 8, 4265-4269.	4.5	59
173	A new wrinkle on liquid sheets: Turning the mechanism of viscous bubble collapse upside down. Science, 2020, 369, 685-688.	6.0	59
174	Propagation of a topological transition: The Rayleigh instability. Physics of Fluids, 1998, 10, 1052-1057.	1.6	58
175	The role of surface rheology in liquid film formation. Europhysics Letters, 2010, 90, 24002.	0.7	58
176	Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. Physical Review Letters, 2017, 119, 084501.	2.9	58
177	Cornered drops and rivulets. Physics of Fluids, 2007, 19, 042104.	1.6	57
178	Fabricating Shaped Microfibers with Inertial Microfluidics. Advanced Materials, 2014, 26, 3712-3717.	11.1	57
179	Cleaning by Surfactant Gradients: Particulate Removal from Porous Materials and the Significance of Rinsing in Laundry Detergency. Physical Review Applied, 2018, 9, .	1.5	57
180	Coated Gas Bubbles for the Continuous Synthesis of Hollow Inorganic Particles. Langmuir, 2012, 28, 37-41.	1.6	56

#	Article	IF	CITATIONS
181	Wetting on two parallel fibers: drop to column transitions. Soft Matter, 2013, 9, 271-276.	1.2	56
182	Hydrodynamically Driven Colloidal Assembly in Dip Coating. Physical Review Letters, 2013, 110, 188302.	2.9	56
183	Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. Soft Matter, 2014, 10, 4789-4794.	1.2	56
184	Towards improved social distancing guidelines: Space and time dependence of virus transmission from speech-driven aerosol transport between two individuals. Physical Review Fluids, 2020, 5, .	1.0	56
185	Minimization of thermodynamic costs in cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1686-1691.	3.3	55
186	Flow regimes for fluid injection into a confined porous medium. Journal of Fluid Mechanics, 2015, 767, 881-909.	1.4	55
187	Heat/mass transfer from surface films to shear flows at arbitrary Peclet numbers. Physics of Fluids A, Fluid Dynamics, 1989, 1, 1112-1122.	1.6	54
188	Dynamics of elastocapillary rise. Journal of Fluid Mechanics, 2011, 679, 641-654.	1.4	54
189	Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. Journal of Fluid Mechanics, 2014, 753, 535-552.	1.4	54
190	Oscillatory motions of circular disks and nearly spherical particles in viscous flows. Journal of Fluid Mechanics, 1998, 367, 329-358.	1.4	53
191	Hydraulic design of pine needles: one-dimensional optimization for single-vein leaves. Plant, Cell and Environment, 2006, 29, 803-809.	2.8	53
192	Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing. Nature Microbiology, 2019, 4, 1274-1281.	5.9	53
193	Breakup of double emulsions in constrictions. Soft Matter, 2011, 7, 2345.	1.2	52
194	Bending of elastic fibres in viscous flows: the influence of confinement. Journal of Fluid Mechanics, 2013, 720, 517-544.	1.4	52
195	Touch―and Brush‧pinning of Nanofibers. Advanced Materials, 2015, 27, 6526-6532.	11.1	52
196	Low ost Zeta Potentiometry Using Solute Gradients. Advanced Materials, 2017, 29, 1701516.	11.1	52
197	Flow-induced gelation of microfiber suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8557-E8564.	3.3	52
198	Spatiotemporal organization of branched microtubule networks. ELife, 2019, 8, .	2.8	52

#	Article	IF	CITATIONS
199	Conformal coating of particles in microchannels by magnetic forcing. Applied Physics Letters, 2011, 99,	1.5	51
200	Three-dimensional flows in slowly varying planar geometries. Physics of Fluids, 2004, 16, 3051-3062.	1.6	50
201	Drop Production and Tip-Streaming Phenomenon in a Microfluidic Flow-Focusing Device via an Interfacial Chemical Reaction. Langmuir, 2010, 26, 9233-9239.	1.6	50
202	Filaments in curved streamlines: rapid formation of <i>Staphylococcus aureus</i> biofilm streamers. New Journal of Physics, 2014, 16, 065024.	1.2	50
203	Damping of liquid sloshing by foams. Physics of Fluids, 2015, 27, 022103.	1.6	50
204	A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches. Nature Physics, 2021, 17, 493-498.	6.5	50
205	Diffusiophoretic and diffusioosmotic velocities for mixtures of valence-asymmetric electrolytes. Physical Review Fluids, 2019, 4, .	1.0	50
206	Separation-driven coalescence of droplets: an analytical criterion for the approach to contact. Journal of Fluid Mechanics, 2009, 632, 97-107.	1.4	49
207	The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. Microvascular Research, 2012, 83, 347-351.	1.1	49
208	Colonization, Competition, and Dispersal of Pathogens in Fluid Flow Networks. Current Biology, 2015, 25, 1201-1207.	1.8	49
209	Diffusiophoresis in one-dimensional solute gradients. Soft Matter, 2017, 13, 9015-9023.	1.2	49
210	Nearby boundaries create eddies near microscopic filter feeders. Journal of the Royal Society Interface, 2010, 7, 851-862.	1.5	48
211	Drop impact on a flexible fiber. Soft Matter, 2016, 12, 200-208.	1.2	48
212	Bubble-Driven Detachment of Bacteria from Confined Microgeometries. Environmental Science & Technology, 2017, 51, 1340-1347.	4.6	48
213	Lubrication analysis and boundary integral simulations of a viscous micropump. Journal of Fluid Mechanics, 2000, 416, 197-216.	1.4	47
214	The influence of the gas phase on liquid imbibition in capillary tubes. Journal of Fluid Mechanics, 2011, 678, 600-606.	1.4	47
215	Dynamic Fracture of Nonglassy Suspensions. Physical Review Letters, 2013, 110, 148304.	2.9	47
216	Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion–Ion Correlations. Langmuir, 2018, 34, 11971-11985.	1.6	47

#	Article	IF	CITATIONS
217	Source-like Solution for Radial Imbibition into a Homogeneous Semi-infinite Porous Medium. Langmuir, 2012, 28, 4208-4212.	1.6	46
218	Control and manipulation of microfluidic flow via elastic deformations. Soft Matter, 2013, 9, 7049-7053.	1.2	46
219	Charging Dynamics of Overlapping Double Layers in a Cylindrical Nanopore. Physical Review Letters, 2020, 125, 076001.	2.9	46
220	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	0.8	46
221	Imbibition in layered systems of packed beads. Europhysics Letters, 2009, 86, 56002.	0.7	45
222	Interfaces: in fluid mechanics and across disciplines. Journal of Fluid Mechanics, 2010, 645, 1-25.	1.4	45
223	The transition state and regulation of \hat{I}^3 -TuRC-mediated microtubule nucleation revealed by single molecule microscopy. ELife, 2020, 9, .	2.8	45
224	The Motion of Small Particles and Droplets in Quadratic Flows. Studies in Applied Mathematics, 1991, 85, 53-73.	1.1	44
225	Fluid motion of monomolecular films in a channel flow geometry. Physics of Fluids, 1995, 7, 2931-2937.	1.6	44
226	Heterogeneity and the Role of Normal Stresses during the Extensional Thinning of Non-Brownian Shear-Thickening Fluids. Physical Review Letters, 2011, 107, 134503.	2.9	43
227	Microfluidic tailoring of the two-dimensional morphology of crimped microfibers. Soft Matter, 2013, 9, 4227.	1.2	43
228	Diffusiophoresis in Multivalent Electrolytes. Langmuir, 2020, 36, 7014-7020.	1.6	43
229	Diffusiophoresis: from dilute to concentrated electrolytes. Soft Matter, 2020, 16, 6975-6984.	1.2	43
230	Dynamics of the formation of antibubbles. Europhysics Letters, 2008, 83, 54001.	0.7	42
231	Three-dimensional lubrication model of a contact line corner singularity. Europhysics Letters, 2004, 65, 365-371.	0.7	41
232	Glycans pattern the phase behaviour of lipid membranes. Nature Materials, 2013, 12, 128-133.	13.3	41
233	A soft microchannel decreases polydispersity of droplet generation. Lab on A Chip, 2014, 14, 4029-4034.	3.1	41
234	Experimental characterization of hydrodynamic dispersion in shallow microchannels. Lab on A Chip, 2006, 6, 930-935.	3.1	40

#	Article	IF	CITATIONS
235	Buckling transitions of an elastic filament in a viscous stagnation point flow. Physics of Fluids, 2012, 24, .	1.6	40
236	Fluid drainage from the edge of a porous reservoir. Journal of Fluid Mechanics, 2013, 718, 558-568.	1.4	40
237	Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel. Lab on A Chip, 2014, 14, 2428.	3.1	40
238	Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves. Journal of Physical Chemistry Letters, 2016, 7, 2055-2062.	2.1	40
239	Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing. Physical Review Letters, 2018, 120, 074501.	2.9	40
240	Diffusiophoresis in narrow channel flows. Journal of Fluid Mechanics, 2018, 854, 420-448.	1.4	40
241	Direct measurement of selective evaporation of binary mixture droplets by dissolving materials. Journal of Fluid Mechanics, 2018, 850, 769-783.	1.4	40
242	Particle/Fluid Interface Replication as a Means of Producing Topographically Patterned Polydimethylsiloxane Surfaces for Deposition of Lipid Bilayers. Advanced Materials, 2010, 22, 2142-2147.	11.1	39
243	Probing the invasiveness of prostate cancer cells in a 3D microfabricated landscape. Proceedings of the United States of America, 2011, 108, 6853-6856.	3.3	39
244	Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. Journal of Fluid Mechanics, 2014, 747, 218-246.	1.4	39
245	Overflow cascades in liquid-infused substrates. Physics of Fluids, 2015, 27, .	1.6	39
246	Force generation by groups of migrating bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7266-7271.	3.3	39
247	Membrane-induced hydroelastic migration of a particle surfing its own wave. Nature Physics, 2018, 14, 1211-1215.	6.5	39
248	Particle entrainment in dead-end pores by diffusiophoresis. Soft Matter, 2019, 15, 3879-3885.	1.2	39
249	4D imaging reveals mechanisms of clay-carbon protection and release. Nature Communications, 2021, 12, 622.	5.8	39
250	Semi-permeable vesicles composed of natural clay. Soft Matter, 2011, 7, 2600.	1.2	38
251	Breakup of Double Emulsion Droplets in a Tapered Nozzle. Langmuir, 2011, 27, 4324-4327.	1.6	38
252	Microfluidic ultralow interfacial tensiometry with magnetic particles. Lab on A Chip, 2013, 13, 119-125.	3.1	38

#	Article	IF	CITATIONS
253	The Race of Nanowires: Morphological Instabilities and a Control Strategy. Nano Letters, 2014, 14, 4395-4399.	4.5	38
254	Optimization of Pathogen Capture in Flowing Fluids with Magnetic Nanoparticles. Small, 2015, 11, 5657-5666.	5.2	38
255	A note on the breathing mode of an elastic sphere in Newtonian and complex fluids. Physics of Fluids, 2015, 27, .	1.6	38
256	A microfluidic device and automatic counting system for the study of C. elegans reproductive aging. Lab on A Chip, 2015, 15, 524-531.	3.1	38
257	Motion of a rigid particle in a rotating viscous flow: an integral equation approach. Journal of Fluid Mechanics, 1994, 275, 225-256.	1.4	37
258	A portable device for temperature control along microchannels. Lab on A Chip, 2010, 10, 795.	3.1	37
259	Elastocapillary imbibition. International Journal of Non-Linear Mechanics, 2011, 46, 648-656.	1.4	37
260	Gas-core triple emulsions for ultrasound triggered release. Soft Matter, 2013, 9, 38-42.	1.2	37
261	Capillary Bridges between Soft Substrates. Physical Review Letters, 2014, 112, 066102.	2.9	37
262	Diffusiophoresis of a charged drop. Journal of Fluid Mechanics, 2018, 852, 37-59.	1.4	37
263	Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting. Cell Reports Physical Science, 2021, 2, 100387.	2.8	37
264	Rotation of an immersed cylinder sliding near a thin elastic coating. Physical Review Fluids, 2017, 2, .	1.0	37
265	Self-Assembly of Gears at a Fluid/Air Interface. Journal of the American Chemical Society, 2003, 125, 7948-7958.	6.6	36
266	Eddies in a bottleneck: An arbitrary Debye length theory for capillary electroosmosis. Journal of Colloid and Interface Science, 2006, 297, 832-839.	5.0	36
267	On the thickness of soap films: an alternative to Frankel's law. Journal of Fluid Mechanics, 2008, 602, 119-127.	1.4	36
268	Spatial-temporal dynamics of collective chemosensing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7753-7758.	3.3	36
269	The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels. Lab on A Chip, 2013, 13, 365-376.	3.1	36
270	Vortex-Breakdown-Induced Particle Capture in Branching Junctions. Physical Review Letters, 2016, 117, 084501.	2.9	36

#	Article	IF	CITATIONS
271	Mass Transfer at a Microelectrode in Channel Flow. The Journal of Physical Chemistry, 1996, 100, 9462-9464.	2.9	35
272	Shear-Induced Diffusion of Platelike Particles in Microchannels. Physical Review Letters, 2008, 101, 254502.	2.9	35
273	The shape of an elastic filament in a two-dimensional corner flow. Physics of Fluids, 2011, 23, .	1.6	35
274	Control of the length of microfibers. Lab on A Chip, 2012, 12, 2301.	3.1	35
275	Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis. Physical Review X, 2017, 7, .	2.8	35
276	A geometric criterion for the optimal spreading of active polymers in porous media. Nature Communications, 2021, 12, 7088.	5.8	35
277	Note on the capillary thread instability for fluids of equal viscosities. Journal of Fluid Mechanics, 1996, 318, 373.	1.4	34
278	Flow along two dimensions of liquid pulses in foams: Experiment and theory. Europhysics Letters, 2001, 54, 335-341.	0.7	34
279	Fluidic Ratchet Based on Marangoniâ^'Bénard Convection. Langmuir, 2003, 19, 4358-4362.	1.6	34
280	Motion of large bubbles in curved channels. Journal of Fluid Mechanics, 2007, 570, 455-466.	1.4	34
281	Coating flows of non-Newtonian fluids: weakly and strongly elastic limits. Journal of Engineering Mathematics, 2008, 60, 17-41.	0.6	34
282	Microfluidic immunomagnetic multi-target sorting $\hat{a} \in $ a model for controlling deflection of paramagnetic beads. Lab on A Chip, 2011, 11, 2577.	3.1	34
283	Water-Based Peeling of Thin Hydrophobic Films. Physical Review Letters, 2017, 119, 154502.	2.9	34
284	Curvature suppresses the Rayleigh-Taylor instability. Physics of Fluids, 2014, 26, .	1.6	33
285	Mobility of membrane-trapped particles. Journal of Fluid Mechanics, 2015, 781, 494-505.	1.4	33
286	Axisymmetric flows from fluid injection into a confined porous medium. Physics of Fluids, 2016, 28, .	1.6	33
287	Undulations on the surface of elongated bubbles in confined gas-liquid flows. Physical Review Fluids, 2017, 2, .	1.0	33
288	Electrophoresis of a thin charged disk. Physics of Fluids, 1995, 7, 697-705.	1.6	32

#	Article	IF	CITATIONS
289	Bubbles navigating through networks of microchannels. Lab on A Chip, 2011, 11, 3970.	3.1	32
290	Motion of a hot particle in viscous fluids. Physical Review Fluids, 2016, 1, .	1.0	32
291	Dispersion in Flows with Streamwise Variations of Mean Velocity: Radial Flowâ€. Industrial & Engineering Chemistry Research, 1999, 38, 851-854.	1.8	31
292	Continuum approach to self-similarity and scaling in morphological relaxation of a crystal with a facet. Physical Review B, 2005, 71, .	1.1	31
293	Thin-Film Fluid Flows over Microdecorated Surfaces: Observation of Polygonal Hydraulic Jumps. Physical Review Letters, 2009, 102, 194503.	2.9	31
294	Failure mechanisms of air entrainment in drop impact on lubricated surfaces. Soft Matter, 2017, 13, 2402-2409.	1.2	31
295	Electrohydrodynamic size stratification and flow separation of giant vesicles. Applied Physics Letters, 2008, 92, .	1.5	30
296	Axial dispersion via shear-enhanced diffusion in colloidal suspensions. Europhysics Letters, 2012, 97, 58005.	0.7	30
297	Plate Coating: Influence of Concentrated Surfactants on the Film Thickness. Langmuir, 2012, 28, 3821-3830.	1.6	30
298	Magnetospinning of Nano―and Microfibers. Advanced Materials, 2015, 27, 3560-3565.	11.1	30
299	Modern Classical Physics Through the Work of G. I. Taylor. Physics Today, 2000, 53, 30-35.	0.3	29
300	Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film. Physics of Fluids, 2009, 21, .	1.6	29
301	Resolving a paradox of anomalous scalings in the diffusion of granular materials. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16012-16017.	3.3	29
302	A New Angle on Microscopic Suspension Feeders near Boundaries. Biophysical Journal, 2013, 105, 1796-1804.	0.2	29
303	Experimental study on penny-shaped fluid-driven cracks in an elastic matrix. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150255.	1.0	29
304	Dynamics and topology of a flexible chain: knots in steady shear flow. New Journal of Physics, 2015, 17, 053009.	1.2	29
305	Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions. Applied Physics Letters, 2018, 112, .	1.5	29
306	Shape of the growing front of biofilms. New Journal of Physics, 2017, 19, 125007.	1.2	28

#	Article	IF	CITATIONS
307	Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model. Physical Review Letters, 2020, 125, 188004.	2.9	28
308	Tuned-in flow control. Nature Physics, 2009, 5, 178-179.	6.5	27
309	Flow dependent performance of microfluidic microbial fuel cells. Physical Chemistry Chemical Physics, 2014, 16, 12535.	1.3	27
310	Gating of a mechanosensitive channel due to cellular flows. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9822-9827.	3.3	27
311	Evaporation of Binary-Mixture Liquid Droplets: The Formation of Picoliter Pancakelike Shapes. Physical Review Letters, 2021, 127, 024501.	2.9	27
312	Introduction to Fluid Dynamics for Microfluidic Flows. Integrated Circuits and Systems, 2007, , 5-30.	0.2	27
313	Energy absorption in a bamboo foam. Europhysics Letters, 2008, 84, 36001.	0.7	26
314	Thickness of the rim of an expanding lamella near the splash threshold. Physics of Fluids, 2010, 22, 022104.	1.6	26
315	Evaporation of Drops on Two Parallel Fibers: Influence of the Liquid Morphology and Fiber Elasticity. Langmuir, 2013, 29, 7857-7863.	1.6	26
316	On the hydrodynamic interaction between a particle and a permeable surface. Physics of Fluids, 2013, 25, 073103.	1.6	26
317	Wetting of crossed fibers: Multiple steady states and symmetry breaking. Europhysics Letters, 2014, 105, 56006.	0.7	26
318	Extended lubrication theory: improved estimates of flow in channels with variable geometry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170234.	1.0	26
319	Convection, Heaping, and Cracking in Vertically Vibrated Granular Slurries. Physical Review Letters, 2001, 86, 3016-3019.	2.9	25
320	Reactive spreading and recoil of oil on water. Physics of Fluids, 2006, 18, 038105.	1.6	25
321	Mechanical properties and motion of the cupula of the human semicircular canal. Journal of Vestibular Research: Equilibrium and Orientation, 2010, 19, 95-110.	0.8	25
322	Three-dimensional features in low-Reynolds-number confined corner flows. Journal of Fluid Mechanics, 2011, 668, 33-57.	1.4	25
323	Farming and public goods production in <i>Caenorhabditis elegans</i> populations. Proceedings of the United States of America, 2017, 114, 2289-2294.	3.3	25
324	Dynamic regimes of electrified liquid filaments. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6159-6164.	3.3	25

#	Article	IF	CITATIONS
325	Corrugated interfaces in multiphase core-annular flow. Physics of Fluids, 2010, 22, 082002.	1.6	24
326	Microfluidic generation of a high volume fraction of bubbles in droplets. Soft Matter, 2010, 6, 4677.	1.2	24
327	Generation of Antibubbles from Core–Shell Double Emulsion Templates Produced by Microfluidics. Langmuir, 2013, 29, 8782-8787.	1.6	24
328	Sonication–Microfluidics for Fabrication of Nanoparticle-Stabilized Microbubbles. Langmuir, 2014, 30, 4262-4266.	1.6	24
329	Wetting morphologies on an array of fibers of different radii. Soft Matter, 2015, 11, 4034-4040.	1.2	24
330	Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow. Physical Review Letters, 2016, 117, 268001.	2.9	24
331	Dynamics of a bubble bouncing at a liquid/liquid/gas interface. Journal of Fluid Mechanics, 2016, 807, 324-352.	1.4	24
332	Diffusion of multiple electrolytes cannot be treated independently: model predictions with experimental validation. Soft Matter, 2019, 15, 9965-9973.	1.2	24
333	Role of extensional rheology on droplet bouncing. Physical Review Fluids, 2019, 4, .	1.0	24
334	Transverse motion of a disk through a rotating viscous fluid. Journal of Fluid Mechanics, 1995, 301, 295-324.	1.4	23
335	Inertia dominated thin-film flows over microdecorated surfaces. Physics of Fluids, 2010, 22, .	1.6	23
336	Buckling dynamics of a solvent-stimulated stretched elastomeric sheet. Soft Matter, 2014, 10, 2800.	1.2	23
337	Viscous fluid injection into a confined channel. Physics of Fluids, 2015, 27, .	1.6	23
338	Armoring confined bubbles in the flow of colloidal suspensions. Soft Matter, 2017, 13, 2857-2865.	1.2	23
339	Healing capillary films. Journal of Fluid Mechanics, 2018, 838, 404-434.	1.4	23
340	A note on swimming using internally generated traveling waves. Physics of Fluids, 1999, 11, 1275-1277.	1.6	22
341	Multicompartment microfibers: fabrication and selective dissolution of composite droplet-in-fiber structures. Journal of Materials Chemistry B, 2014, 2, 7866-7871.	2.9	22
342	Vortex breakdown, linear global instability and sensitivity of pipe bifurcation flows. Journal of Fluid Mechanics, 2017, 815, 257-294.	1.4	22

#	Article	IF	CITATIONS
343	Sinking a Granular Raft. Physical Review Letters, 2017, 118, 108001.	2.9	22
344	Dewetting of Thin Liquid Films Surrounding Air Bubbles in Microchannels. Langmuir, 2018, 34, 1363-1370.	1.6	22
345	Characterization of surface–solute interactions by diffusioosmosis. Soft Matter, 2019, 15, 1582-1596.	1.2	22
346	Plasmodesmata and the problems with size: Interpreting the confusion. Journal of Plant Physiology, 2021, 257, 153341.	1.6	22
347	Diffusiophoresis and diffusioosmosis in tandem: Two-dimensional particle motion in the presence of multiple electrolytes. Physical Review Fluids, 2021, 6, .	1.0	22
348	On the absence of marginal pinching in thin free films. European Journal of Applied Mathematics, 2005, 16, 569.	1.4	21
349	Flow-Driven Rapid Vesicle Fusion via Vortex Trapping. Langmuir, 2015, 31, 7178-7182.	1.6	21
350	Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. Proceedings of the United States of America, 2017, 114, 6233-6237.	3.3	21
351	Reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane. Physical Review Fluids, 2018, 3, .	1.0	21
352	On the rotation of porous ellipsoids in simple shear flows. Journal of Fluid Mechanics, 2013, 733, .	1.4	20
353	An experimental and theoretical investigation of particle–wall impacts in a T-junction. Journal of Fluid Mechanics, 2013, 727, 236-255.	1.4	20
354	Wetting morphologies on randomly oriented fibers. European Physical Journal E, 2015, 38, 62.	0.7	20
355	Flow regime analysis for geologic CO2 sequestration and other subsurface fluid injections. International Journal of Greenhouse Gas Control, 2016, 53, 284-291.	2.3	20
356	Bénard-Marangoni instability driven by moisture absorption. Europhysics Letters, 2016, 113, 24002.	0.7	20
357	Laboratory layered latte. Nature Communications, 2017, 8, 1960.	5.8	20
358	Foam-driven fracture. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8082-8086.	3.3	20
359	Introduction: Microfluidics. Chemical Reviews, 2022, 122, 6919-6920.	23.0	20
360	On boundary-layer flows induced by the motion of stretching surfaces. Journal of Fluid Mechanics, 2012, 706, 597-606.	1.4	19

#	Article	IF	CITATIONS
361	Gelation Chemistries for the Encapsulation of Nanoparticles in Composite Gel Microparticles for Lung Imaging and Drug Delivery. Biomacromolecules, 2014, 15, 252-261.	2.6	19
362	Converging gravity currents over a permeableÂsubstrate. Journal of Fluid Mechanics, 2015, 778, 669-690.	1.4	19
363	Early-time free-surface flow driven by a deforming boundary. Journal of Fluid Mechanics, 2015, 767, 811-841.	1.4	19
364	A Scalable Platform for Functional Nanomaterials via Bubbleâ€Bursting. Advanced Materials, 2016, 28, 4047-4052.	11.1	19
365	The influence of capillary effects on the drainage of a viscous gravity current into a deep porousÂmedium. Journal of Fluid Mechanics, 2017, 817, 514-559.	1.4	19
366	Dynamic switching enables efficient bacterial colonization in flow. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5438-5443.	3.3	19
367	Start-up flow in shallow deformable microchannels. Journal of Fluid Mechanics, 2020, 885, .	1.4	19
368	What Is the Use of Elephant Hair?. PLoS ONE, 2012, 7, e47018.	1.1	19
369	Added mass of a disc accelerating within a pipe. Physics of Fluids, 1997, 9, 3141-3148.	1.6	18
370	An Integral Equation Solution for the Steady-State Current at a Periodic Array of Surface Microelectrodes. SIAM Journal on Applied Mathematics, 1997, 57, 1615-1638.	0.8	18
371	On the (de)stabilization of draw resonance due to cooling. Journal of Fluid Mechanics, 2009, 636, 155-176.	1.4	18
372	Shear dispersion in dense granular flows. Granular Matter, 2014, 16, 509-515.	1.1	18
373	Deposition of Quantum Dots in a Capillary Tube. Langmuir, 2015, 31, 12560-12566.	1.6	18
374	Restoring universality to the pinch-off of a bubble. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13780-13784.	3.3	18
375	Identification of a Molecular Latch that Regulates Staphylococcal Virulence. Cell Chemical Biology, 2019, 26, 548-558.e4.	2.5	18
376	Universal features of the shape of elastic fibres in shear flow. Journal of Fluid Mechanics, 2021, 914, .	1.4	18
377	Dynamics of long gas bubbles rising in a vertical tube in a cocurrent liquid flow. Physical Review Fluids, 2019, 4, .	1.0	18
378	Axial drop motion in rotating fluids. Journal of Fluid Mechanics, 1995, 282, 247-278.	1.4	17

#	Article	IF	CITATIONS
379	Evaporatively controlled growth of salt trees. Physical Review E, 1996, 53, 1994-1997.	0.8	17
380	Transverse Instability of Bubbles in Viscoelastic Channel Flows. Physical Review Letters, 2008, 101, 244503.	2.9	17
381	Ice lubrication for moving heavy stones to the Forbidden City in 15th- and 16th-century China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20023-20027.	3.3	17
382	Adhesion of moving droplets in microchannels. Applied Physics Letters, 2013, 103, .	1.5	17
383	Downstream decay of fully developed Dean flow. Journal of Fluid Mechanics, 2015, 777, 219-244.	1.4	17
384	Ions in an AC Electric Field: Strong Long-Range Repulsion between Oppositely Charged Surfaces. Physical Review Letters, 2020, 125, 056001.	2.9	17
385	Evaporation of multiple droplets. Journal of Fluid Mechanics, 2021, 927, .	1.4	17
386	Propulsion driven by self-oscillation via an electrohydrodynamic instability. Physical Review Fluids, 2019, 4, .	1.0	17
387	Particle motion nearby rough surfaces. Physical Review Fluids, 2020, 5, .	1.0	17
388	The Influence of Boundaries on Gravity Currents and Thin Films: Drainage, Confinement, Convergence, and Deformation Effects. Annual Review of Fluid Mechanics, 2022, 54, 27-56.	10.8	17
389	An interpretation of the translation of drops and bubbles at high Reynolds numbers in terms of the vorticity field. Physics of Fluids A, Fluid Dynamics, 1993, 5, 2567-2569.	1.6	16
390	Microfluidic Generation of Droplets with a High Loading of Nanoparticles. Langmuir, 2012, 28, 13143-13148.	1.6	16
391	Fluid-driven cracks in an elastic matrix in the toughness-dominated limit. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150425.	1.6	16
392	Dynamics of viscous backflow from a model fracture network. Journal of Fluid Mechanics, 2018, 836, 828-849.	1.4	16
393	Invisible Anchors Trap Particles in Branching Junctions. Physical Review Letters, 2018, 121, 054502.	2.9	16
394	Separation of particles by size from a suspension using the motion of a confined bubble. Applied Physics Letters, 2018, 112, .	1.5	16
395	Hierarchical transitions and fractal wrinkling drive bacterial pellicle morphogenesis. Proceedings of the United States of America, 2021, 118, .	3.3	16
396	Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge. Physical Review Fluids, 2017, 2, .	1.0	16

#	Article	IF	CITATIONS
397	Directed assembly of fluidic networks by buckle delamination of films on patterned substrates. International Journal of Materials Research, 2007, 98, 1203-1208.	0.1	15
398	The effect of double-chain surfactants on armored bubbles: a surfactant-controlled route to colloidosomes. Physical Chemistry Chemical Physics, 2007, 9, 6476.	1.3	15
399	Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment. Soft Matter, 2013, 9, 8600.	1.2	15
400	Network Characteristics of Collective Chemosensing. Physical Review Letters, 2013, 110, 158103.	2.9	15
401	Analytical Model for the Deformation of a Fluid–Fluid Interface Beneath an AFM Probe. Langmuir, 2013, 29, 1427-1434.	1.6	15
402	Combinatorial generation of droplets by controlled assembly and coalescence. Lab on A Chip, 2013, 13, 4674.	3.1	15
403	Variation in polydispersity in pump- and pressure-driven micro-droplet generators. Journal of Micromechanics and Microengineering, 2015, 25, 115015.	1.5	15
404	Tunable transport of drops on a vibrating inclined fiber. Applied Physics Letters, 2015, 107, .	1.5	15
405	Homogeneous deposition of particles by absorption on hydrogels. Europhysics Letters, 2015, 112, 48004.	0.7	15
406	Building Supracolloidal Fibers from Zwitterion‣tabilized Adhesive Emulsions. Advanced Functional Materials, 2018, 28, 1804325.	7.8	15
407	Harnessing elasticity to generate self-oscillation via an electrohydrodynamic instability. Journal of Fluid Mechanics, 2020, 888, .	1.4	15
408	CO ₂ -Driven diffusiophoresis for maintaining a bacteria-free surface. Soft Matter, 2021, 17, 2568-2576.	1.2	15
409	Reciprocal theorem for calculating the flow rate–pressure drop relation for complex fluids in narrow geometries. Physical Review Fluids, 2021, 6, .	1.0	15
410	Crossover from shear-driven to thermally activated drainage of liquid-infused microscale capillaries. Physical Review Fluids, 2016, 1, .	1.0	15
411	The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces. Physics of Fluids, 2011, 23, .	1.6	14
412	Imbibition of concentrated suspensions in capillaries. Physics of Fluids, 2011, 23, .	1.6	14
413	Swelling dynamics of a thin elastomeric sheet under uniaxial pre-stretch. Journal of Applied Physics, 2014, 115, 083505.	1.1	14
414	Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells. Journal of the Royal Society Interface, 2015, 12, 20150140.	1.5	14

#	Article	IF	CITATIONS
415	Mechanical Tuning of the Evaporation Rate of Liquid on Crossed Fibers. Langmuir, 2015, 31, 3094-3100.	1.6	14
416	Inertial gravity currents produced by fluid drainage from an edge. Journal of Fluid Mechanics, 2017, 827, 640-663.	1.4	14
417	Design of a microfluidic device for the measurement of the elastic modulus of deformable particles. Soft Matter, 2019, 15, 880-889.	1.2	14
418	Flexible fibers in shear flow approach attracting periodic solutions. Physical Review E, 2020, 101, 023104.	0.8	14
419	Influence of Salt on the Viscosity of Polyelectrolyte Solutions. Physical Review Letters, 2020, 124, 177801.	2.9	14
420	Pressure-driven flow of the viscoelastic Oldroyd-B fluid in narrow non-uniform geometries: analytical results and comparison with simulations. Journal of Fluid Mechanics, 2022, 936, .	1.4	14
421	Time-dependent viscous deformation of a drop in a rapidly rotating denser fluid. Journal of Fluid Mechanics, 1996, 317, 275-299.	1.4	13
422	Piston flow in a two-dimensional channel. Physics of Fluids, 2000, 12, 1240-1243.	1.6	13
423	Bubble formation via multidrop impacts. Physics of Fluids, 2010, 22, .	1.6	13
424	Fracture Propagation Driven by Fluid Outflow from a Low-Permeability Aquifer. Transport in Porous Media, 2013, 100, 69-82.	1.2	13
425	Gravity-driven thin-film flow on a flexible substrate. Journal of Fluid Mechanics, 2013, 732, 190-213.	1.4	13
426	Tuning the Receding Contact Angle on Hydrogels by Addition of Particles. Langmuir, 2016, 32, 5573-5579.	1.6	13
427	Formation of sea ice bridges in narrow straits in response to wind and water stresses. Journal of Geophysical Research: Oceans, 2017, 122, 5588-5610.	1.0	13
428	Drop morphologies on flexible fibers: influence of elastocapillary effects. Soft Matter, 2017, 13, 134-140.	1.2	13
429	Uniform Coating of Self-Assembled Noniridescent Colloidal Nanostructures using the Marangoni Effect and Polymers. Physical Review Applied, 2018, 10, .	1.5	13
430	Rapid Spreading of a Droplet on a Thin Soap Film. Langmuir, 2019, 35, 14855-14860.	1.6	13
431	Diffusiophoresis in ionic surfactants: effect of micelle formation. Soft Matter, 2019, 15, 278-288.	1.2	13
432	Chemically controlled shape-morphing of elastic sheets. Materials Horizons, 2020, 7, 2314-2327.	6.4	13

#	Article	IF	CITATIONS
433	Hydraulic transmissivity inferred from ice-sheet relaxation following Greenland supraglacial lake drainages. Nature Communications, 2021, 12, 3955.	5.8	13
434	Flow rate–pressure drop relation for shear-thinning fluids in narrow channels: approximate solutions and comparison with experiments. Journal of Fluid Mechanics, 2021, 923, .	1.4	13
435	Quantifying the effect of a mask on expiratory flows. Physical Review Fluids, 2021, 6, .	1.0	13
436	Diffusioosmosis-driven dispersion of colloids: a Taylor dispersion analysis with experimental validation. Journal of Fluid Mechanics, 2022, 942, .	1.4	13
437	Spongy all-in-liquid materials by in-situ formation of emulsions at oil-water interfaces. Nature Communications, 2022, 13, .	5.8	13
438	The motion of an inviscid drop in a bounded rotating fluid. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1142-1147.	1.6	12
439	Capillary wave scattering from a surfactant domain. Physics of Fluids, 1995, 7, 1872-1885.	1.6	12
440	Experimental measurement of shearâ€induced diffusion in suspensions using long time data. Physics of Fluids, 1996, 8, 2011-2018.	1.6	12
441	Your wetting day. Physics Today, 2007, 60, 84-85.	0.3	12
442	Lateral shaping and stability of a stretching viscous sheet. European Physical Journal B, 2009, 68, 487-494.	0.6	12
443	Traveling wave-induced aerodynamic propulsive forces using piezoelectrically deformed substrates. Applied Physics Letters, 2011, 99, .	1.5	12
444	Self-crumpling elastomers: Bending induced by the drying stimulus of a nanoparticle suspension. Europhysics Letters, 2014, 108, 19001.	0.7	12
445	Propagation of a viscous thin film over an elastic membrane. Journal of Fluid Mechanics, 2015, 784, 443-464.	1.4	12
446	Effect of the Polydispersity of a Colloidal Drop on Drying Induced Stress as Measured by the Buckling of a Floating Sheet. Physical Review Letters, 2016, 116, 238001.	2.9	12
447	Liquid Imbibition in Ceramic-Coated Carbon Nanotube Films. Langmuir, 2016, 32, 12686-12692.	1.6	12
448	Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow. Journal of Fluid Mechanics, 2017, 818, 407-434.	1.4	12
449	Visualization of Surfactant Dynamics to and along Oil–Water Interfaces Using Solvatochromic Fluorescent Surfactants. Langmuir, 2018, 34, 10512-10522.	1.6	12
450	Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion. Proceedings of the United States of America, 2021, 118, .	3.3	12

#	Article	IF	CITATIONS
451	Instability of a rotating thread in a second immiscible liquid. Physics of Fluids, 2004, 16, 29-38.	1.6	11
452	Impact Dynamics for Elastic Membranes. Physical Review Letters, 2006, 97, 244301.	2.9	11
453	Role of the Membrane for Mechanosensing by Tethered Channels. Physical Review Letters, 2016, 116, 258101.	2.9	11
454	High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry. Experiments in Fluids, 2017, 58, 1.	1.1	11
455	Laser-induced forward transfer from healing silver paste films. Applied Physics Letters, 2018, 113, .	1.5	11
456	Effect of buoyancy on the motion of long bubbles in horizontal tubes. Physical Review Fluids, 2017, 2, .	1.0	11
457	Shear-induced migration of confined flexible fibers. Soft Matter, 2022, 18, 514-525.	1.2	11
458	Continuum description of profile scaling in nanostructure decay. Physical Review B, 2004, 69, .	1.1	10
459	Stability of a Flat Gasâ^'Liquid Interface Containing Nonidentical Spheres to Gas Transport:Â Toward an Explanation of Particle Stabilization of Gas Bubbles. Langmuir, 2005, 21, 4526-4531.	1.6	10
460	Grooving of a grain boundary by evaporation–condensation below the roughening transition. Journal of Applied Physics, 2005, 97, 113535.	1.1	10
461	Critical insulation thickness of a rectangular slab embedded with a periodic array of isothermal strips. International Journal of Heat and Mass Transfer, 2011, 54, 180-185.	2.5	10
462	Stokes flow in a drop evaporating from a liquid subphase. Physics of Fluids, 2013, 25, 102102.	1.6	10
463	Preferential flow penetration in a network of identical channels. Physics of Fluids, 2014, 26, 042110.	1.6	10
464	Stability of a bi-layer free film: simultaneous or individual rupture events?. Journal of Fluid Mechanics, 2015, 777, 27-49.	1.4	10
465	Shape Transformations of Lipid Bilayers Following Rapid Cholesterol Uptake. Biophysical Journal, 2016, 111, 2651-2657.	0.2	10
466	Entry and exit flows in curved pipes. Journal of Fluid Mechanics, 2017, 815, 570-591.	1.4	10
467	Flow past finite cylinders of constant curvature. Journal of Fluid Mechanics, 2018, 837, 896-915.	1.4	10
468	Time-dependent motion of a confined bubble in a tube: transition between two steady states. Journal of Fluid Mechanics, 2018, 857, .	1.4	10

#	Article	IF	CITATIONS
469	CO2-leakage-driven diffusiophoresis causes spontaneous accumulation of charged materials in channel flow. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25985-25990.	3.3	10
470	Thermodynamics of Electrical Double Layers with Electrostatic Correlations. Journal of Physical Chemistry C, 2020, 124, 26830-26842.	1.5	10
471	Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators. Nature Communications, 2020, 11, 5221.	5.8	10
472	Silver-Based Self-Powered pH-Sensitive Pump and Sensor. Langmuir, 2020, 36, 7948-7955.	1.6	10
473	Rotation of a submerged finite cylinder moving down a soft incline. Soft Matter, 2020, 16, 4000-4007.	1.2	10
474	CO ₂ -Driven diffusiophoresis and water cleaning: similarity solutions for predicting the exclusion zone in a channel flow. Lab on A Chip, 2021, 21, 3387-3400.	3.1	10
475	Electrostatics, conformation, and rheology of unentangled semidilute polyelectrolyte solutions. Journal of Rheology, 2021, 65, 507-526.	1.3	10
476	Evidence for biosurfactant-induced flow in corners and bacterial spreading in unsaturated porous media. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111060118.	3.3	10
477	Membrane science emerging as a convergent scientific field with molecular origins and understanding, and global impact. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
478	Universality in the nonlinear leveling of capillary films. Physical Review Fluids, 2018, 3, .	1.0	10
479	Fountain mixing in a filling box at low Reynolds numbers. Physical Review Fluids, 2019, 4, .	1.0	10
480	Study of polygonal water bells: inertia-dominated thin-film flows over microtextured surfaces. Journal of Fluid Mechanics, 2013, 721, 46-57.	1.4	9
481	Point-source imbibition into dry aqueous foams. Europhysics Letters, 2016, 113, 44002.	0.7	9
482	Diffusiophoretic manipulation of particles in a drop deposited on a hydrogel. Soft Matter, 2017, 13, 5122-5129.	1.2	9
483	The effects of a horizontal magnetic field on the Rayleigh–Taylor instability. Nuclear Materials and Energy, 2019, 18, 175-181.	0.6	9
484	Pressure-driven flow across a hyperelastic porous membrane. Journal of Fluid Mechanics, 2019, 871, 742-754.	1.4	9
485	Colliding respiratory jets as a mechanism of air exchange and pathogen transport during conversations. Journal of Fluid Mechanics, 2022, 930, .	1.4	9
486	The Science of Chocolate: Interactive Activities on Phase Transitions, Emulsification, and Nucleation. Journal of Chemical Education, 2011, 88, 29-33.	1.1	8

#	Article	IF	CITATIONS
487	Interactions between two deformable droplets in tandem subjected to impulsive acceleration by surrounding flows. Journal of Fluid Mechanics, 2011, 684, 384-406.	1.4	8
488	Thermocapillary-assisted pulling of contact-free liquid films. Physics of Fluids, 2012, 24, 032107.	1.6	8
489	Rivulet flow over a flexible beam. Journal of Fluid Mechanics, 2016, 796, 285-305.	1.4	8
490	Capillary Leveling of Freestanding Liquid Nanofilms. Physical Review Letters, 2016, 117, 167801.	2.9	8
491	Hygromorphic actuator from a metal oxide film driven by a nano-capillary forest structure. NPG Asia Materials, 2017, 9, e417-e417.	3.8	8
492	Autophoresis of two adsorbing/desorbing particles in an electrolyte solution. Journal of Fluid Mechanics, 2019, 865, 440-459.	1.4	8
493	Chemically Triggered Coalescence and Reactivity of Droplet Fibers. Journal of the American Chemical Society, 2021, 143, 5558-5564.	6.6	8
494	Leakage through filtercake into a fluid sampling probe. Physics of Fluids, 2001, 13, 1151-1159.	1.6	7
495	Newtonian pizza: spinning a viscous sheet. Journal of Fluid Mechanics, 2010, 659, 1-23.	1.4	7
496	Thermocapillary-assisted pulling of thin films: Application to molten metals. Applied Physics Letters, 2010, 97, .	1.5	7
497	Lubrication analysis of interacting rigid cylindrical particles in confined shear flow. Physics of Fluids, 2015, 27, .	1.6	7
498	Damping of liquid sloshing by foams: from everyday observations to liquid transport. Journal of Visualization, 2015, 18, 269-271.	1.1	7
499	Experimental investigation of the Faraday instability on a patterned surface. Experiments in Fluids, 2016, 57, 1.	1.1	7
500	The dynamics of interacting folds under biaxial compressive stresses. Soft Matter, 2016, 12, 3502-3506.	1.2	7
501	Submicron aerosols of liquid fuels: Method of production, experimental characterization and a semi-empirical model. Applied Energy, 2019, 235, 1651-1663.	5.1	7
502	Backflow from a model fracture network: anÂasymptotic investigation. Journal of Fluid Mechanics, 2019, 864, 899-924.	1.4	7
503	Microswimmers near corrugated, periodic surfaces. Soft Matter, 2021, 17, 3322-3332.	1.2	7
504	Draining and spreading along geometries that cause converging flows: Viscous gravity currents on a downward-pointing cone and a bowl-shaped hemisphere. Physical Review Fluids, 2021, 6, .	1.0	7

#	Article	IF	CITATIONS
505	Long-wave dynamics of an elastic sheet lubricated by a thin liquid film on a wetting substrate. Physical Review Fluids, 2017, 2, .	1.0	7
506	Deposition-on-contact regime and the effect of donor-acceptor distance during laser-induced forward transfer of viscoelastic liquids. Optical Materials Express, 2019, 9, 2738.	1.6	7
507	Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nature Communications, 2021, 12, 5937.	5.8	7
508	On the thickness of soap films: an alternative to Frankel's law – CORRIGENDUM. Journal of Fluid Mechanics, 2009, 630, 443-443.	1.4	6
509	Dynamic Angular Segregation of Vesicles in Electrohydrodynamic Flows. Langmuir, 2010, 26, 9429-9436.	1.6	6
510	Noncircular Stable Displacement Patterns in a Meshed Porous Layer. Langmuir, 2015, 31, 5684-5688.	1.6	6
511	Stratified thin-film flow in a rheometer. Physics of Fluids, 2015, 27, .	1.6	6
512	Effect of Hydrodynamic Interactions on Reaction Rates in Membranes. Biophysical Journal, 2017, 113, 440-447.	0.2	6
513	Inertial gravity current produced by the drainage of a cylindrical reservoir from an outer orÂinnerÂedge. Journal of Fluid Mechanics, 2019, 874, 185-209.	1.4	6
514	Selfâ€Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets. Macromolecular Rapid Communications, 2020, 41, e2000334.	2.0	6
515	Self-Similar Draining near a Vertical Edge. Physical Review Letters, 2020, 125, 064502.	2.9	6
516	Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow. Physical Review Letters, 2020, 124, 184502.	2.9	6
517	Marangoni-driven film climbing on a draining pre-wetted film. Journal of Fluid Mechanics, 2020, 886, .	1.4	6
518	Electrostatic wrapping of a microfiber around a curved particle. Soft Matter, 2021, 17, 3609-3618.	1.2	6
519	Effect of gravity on the shape of a droplet on a fiber: Nearly axisymmetric profiles with experimental validation. Physical Review Fluids, 2021, 6, .	1.0	6
520	Tracking the air exhaled by an opera singer. Physical Review Fluids, 2021, 6, .	1.0	6
521	Time-dependent drop deformation in a rotating high viscosity fluid. Quarterly of Applied Mathematics, 1996, 54, 551-556.	0.5	5
522	The Science of Pizza: The Molecular Origins of Cheese, Bread, and Digestion Using Interactive Activities for the General Public. Journal of Food Science Education, 2010, 9, 106-112.	1.0	5

#	Article	IF	CITATIONS
523	The role of the membrane confinement in the surface area regulation of cells. Communicative and Integrative Biology, 2011, 4, 616-618.	0.6	5
524	Experimental characterization of three-dimensional corner flows at low Reynolds numbers. Journal of Fluid Mechanics, 2012, 707, 37-52.	1.4	5
525	Vortex and structural dynamics of a flexible cylinder in cross-flow. Physics of Fluids, 2014, 26, .	1.6	5
526	Reactive Magnetospinning of Nano―and Microfibers. Angewandte Chemie - International Edition, 2015, 54, 13613-13616.	7.2	5
527	Protocol to perform pressurized blister tests on thin elastic films. European Physical Journal E, 2017, 40, 64.	0.7	5
528	Non-unique bubble dynamics in a vertical capillary with an external flow. Journal of Fluid Mechanics, 2021, 911, .	1.4	5
529	Pinch-off of liquid jets at the finite scale of an interface. Physical Review Fluids, 2022, 7, .	1.0	5
530	Motion of asymmetric bodies in two-dimensional shear flow. Journal of Fluid Mechanics, 2022, 939, .	1.4	5
531	On the deviatoric normal stress on a slip surface. Physics of Fluids, 2000, 12, 3280-3281.	1.6	4
532	The aerodynamics of jumping rope. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 720-730.	1.0	4
533	Michaelis-Menten kinetics in shear flow: Similarity solutions for multi-step reactions. Biomicrofluidics, 2012, 6, 14108-141089.	1.2	4
534	A pinned or free-floating rigid plate on a thin viscous film. Journal of Fluid Mechanics, 2014, 760, 407-430.	1.4	4
535	For a few drops more. Nature Physics, 2014, 10, 87-88.	6.5	4
536	Oscillatory Marangoni flows with inertia. Journal of Fluid Mechanics, 2016, 803, 94-118.	1.4	4
537	Regime Map and Triple Point in Selective Withdrawal. Physical Review Letters, 2020, 125, 264502.	2.9	4
538	Surface Instability Spikes. Physics Today, 2000, 53, 14-14.	0.3	3
539	Rodeo in a Petri dish. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, N10001.	0.9	3
540	Wind-Driven Formation of Ice Bridges in Straits. Physical Review Letters, 2017, 118, 128701.	2.9	3

#	Article	IF	CITATIONS
541	Representative subsampling of sedimenting blood. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190223.	1.0	3
542	A quantitative study of the effect of flow on the photopolymerization of fibers. Soft Matter, 2019, 15, 9553-9564.	1.2	3
543	Formation, Rupture, and Healing of an Annular Viscous Film. Physical Review Letters, 2020, 124, 224501.	2.9	3
544	Relaxation of a fluid-filled blister on a porous substrate. Physical Review Fluids, 2021, 6, .	1.0	3
545	Motion of a tightly fitting axisymmetric object through a lubricated elastic tube. Journal of Fluid Mechanics, 2021, 926, .	1.4	3
546	Confinement size determines the architecture of Ran-induced microtubule networks. Soft Matter, 2021, 17, 5921-5931.	1.2	3
547	Rotating tensiometer for the measurement of the elastic modulus of deformable particles. Physical Review Fluids, 2020, 5, .	1.0	3
548	The effect of rigid cells on blood viscosity: linking rheology and sickle cell anemia. Soft Matter, 2022, 18, 554-565.	1.2	3
549	Buckling of elastic fibers in a shear flow. New Journal of Physics, 2022, 24, 013013.	1.2	3
550	Inexpensive Multipatient Respiratory Monitoring System for Helmet Ventilation During COVID-19 Pandemic. Journal of Medical Devices, Transactions of the ASME, 2022, 16, .	0.4	3
551	Mechanical Inhibition of Foam Formation via a Rotating Nozzle. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	0.8	2
552	Surfactant- and Aqueous-Foam-Driven Oil Extraction from Micropatterned Surfaces. Langmuir, 2016, 32, 13149-13158.	1.6	2
553	Rotation of a low-Reynolds-number watermill: theory and simulations. Journal of Fluid Mechanics, 2018, 849, 57-75.	1.4	2
554	Chemotaxis in shear flow: Similarity solutions of the steadyâ€state chemoattractant and bacterial distributions. AICHE Journal, 2019, 65, e16713.	1.8	2
555	Simulation of impulsively induced viscoelastic jets using the Oldroyd-B model. Journal of Fluid Mechanics, 2021, 911, .	1.4	2
556	Diffusion and flow across shape-perturbed plasmodesmata nanopores in plants. European Physical Journal Plus, 2021, 136, 1.	1.2	2
557	Effect of streamwise cross-sectional variation on liquid retention in liquid-infused substrates under an external flow. Physical Review Fluids, 2019, 4, .	1.0	2
558	Buoyancy and capillary effects on floating liquid lenses. Physical Review Fluids, 2020, 5, .	1.0	2

#	Article	IF	CITATIONS
559	The role of the membrane confinement in the surface area regulation of cells. Communicative and Integrative Biology, 2011, 4, 616-8.	0.6	2
560	Coupling of translation and rotation in the motion of finite-length rods near solid boundaries. Journal of Fluid Mechanics, 2022, 938, .	1.4	2
561	Generating Resonant and Repeated Root Solutions to Ordinary Differential Equations Using Perturbation Methods. SIAM Review, 2022, 64, 485-499.	4.2	2
562	Impact of diversity of morphological characteristics and Reynolds number on local hemodynamics in basilar aneurysms. AICHE Journal, 2018, 64, 2792-2802.	1.8	1
563	Free-Surface Liquid Lithium Flow Modeling and Stability Analysis for Fusion Applications. Journal of Fusion Energy, 2020, 39, 455-461.	0.5	1
564	Viscous backflow from a model fracture network: influence of a permeable boundary. Journal of Fluid Mechanics, 2021, 911, .	1.4	1
565	10.1063/1.3397851.1.,2010,,.		1
566	Pattern formation in oil-in-water emulsions exposed to a salt gradient. Physical Review Fluids, 2019, 4,	1.0	1
567	Symmetry breaking of a parallel two-phase flow in a finite length channel. Physical Review Fluids, 2022, 7, .	1.0	1
568	The effects of surface hydration on capillary adhesion under nanoscale confinement. Soft Matter, 2022, 18, 4786-4791.	1.2	1
569	Solutal-buoyancy-driven intertwining and rotation of patterned elastic sheets. , 2022, 1, .		1
570	Possible, impossible, and expected diameters and production rates of droplets in aerosols and sprays. Physical Review Fluids, 2022, 7, .	1.0	1
571	Modelling with Differential and Difference Equations. By G. FULFORD, P. FORRESTER & A. JONES. Cambridge University Press, 1997. 405 pp. ISBN 0 521 44618 X. £19.95 (paperback) Journal of Fluid Mechanics, 2000, 408, 346-346.	1.4	0
572	The Mechanical World of MicroorganismsLiving at Micro Scale: The Unexpected Physics of Being Small. David B. Dusenbery . Harvard University Press. 2009. 448 pp., illus. \$51.50 (ISBN 9780674031166) Tj ETC) იდდ 0 rg	BT Øverlock
573	Understanding Fluid Flow. By Grae Worster . Cambridge University Press, 2010. 102Âpp. 38 figures. ISBN: 9780521132893 Journal of Fluid Mechanics, 2011, 684, 509-510.	1.4	0
574	Studies in the Three-Dimensional World of a Cancer Community of Cells. Biophysical Journal, 2012, 102, 599a.	0.2	0
575	Reply to the Comment by Christopher Hall. Europhysics Letters, 2012, 98, 56004.	0.7	0
576	Coupling a Mechanosensitive Channel with a Vesicle under Shear Flow. Biophysical Journal, 2015, 108, 458a.	0.2	0

#	Article	IF	CITATIONS
577	Design Of An Optofluidic Device For The Measurement Of The Elastic Modulus Of Deformable Particles. EPJ Web of Conferences, 2019, 215, 14003.	0.1	Ο
578	Stability of force-driven shear flows in nonequilibrium molecular simulations with periodic boundaries. Journal of Chemical Physics, 2020, 152, 214113.	1.2	0
579	10.1063/1.4907048.1.,2015,,.		0
580	10.1063/1.4935251.1.,2015,,.		0
581	Gravitational drainage on a vertical substrate of a narrow width. Physical Review Fluids, 2022, 7, .	1.0	0
582	From dynamic self-organization to avalanching instabilities in soft-granular threads. Soft Matter, 2022, 18, 1801-1818.	1.2	0