
Georg K S Andersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7022569/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
2	Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—A proof of concept from the field. Environmental DNA, 2022, 4, 790-807.	5.8	45
3	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	2.6	43
4	Effects of farm type on food production, landscape openness, grassland biodiversity, and greenhouse gas emissions in mixed agricultural-forestry regions. Agricultural Systems, 2021, 189, 103071.	6.1	14
5	Opportunities to reduce pollination deficits and address production shortfalls in an important insectâ€pollinated crop. Ecological Applications, 2021, 31, e02445.	3.8	24
6	Editorial: Habitat Modification and Landscape Fragmentation in Agricultural Ecosystems: Implications for Biodiversity and Landscape Multi-Functionality. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	0
7	The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 2020, 57, 599-608.	4.0	39
8	Citizen science in developing countries: how to improve volunteer participation. Frontiers in Ecology and the Environment, 2020, 18, 101-108.	4.0	27
9	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
10	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
11	Complementarity and synergisms among ecosystem services supporting crop yield. Global Food Security, 2018, 17, 38-47.	8.1	66
12	A framework to identify indicator species for ecosystem services in agricultural landscapes. Ecological Indicators, 2018, 91, 278-286.	6.3	21
13	Perspectives from the Survey of Honey Bee Colony Losses During 2015–2016 in Argentina. Bee World, 2018, 95, 9-12.	0.8	11
14	Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biological Conservation, 2018, 218, 247-253.	4.1	68
15	The impact of sown flower strips on plant reproductive success in Southern Sweden varies with landscape context. Agriculture, Ecosystems and Environment, 2018, 259, 127-134.	5.3	10
16	Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nature Communications, 2018, 9, 5446.	12.8	45
17	Organic management in apple orchards: Higher impacts on biological control than on pollination. Journal of Applied Ecology, 2018, 55, 2779-2789.	4.0	58

18 Integrated Pollination Management. , 2018, , .

GEORG K S ANDERSSON

#	Article	IF	CITATIONS
19	Towards an integrated species and habitat management of crop pollination. Current Opinion in Insect Science, 2017, 21, 105-114.	4.4	66
20	Ecosystem services across the aquatic–terrestrial boundary: Linking ponds to pollination. Basic and Applied Ecology, 2017, 18, 13-20.	2.7	43
21	Ignoring Ecosystem-Service Cascades Undermines Policy for Multifunctional Agricultural Landscapes. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	9
22	Sparing Land for Biodiversity at Multiple Spatial Scales. Frontiers in Ecology and Evolution, 2016, 3, .	2.2	119
23	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	7.1	618
24	Sown flower strips in southern Sweden increase abundances of wild bees and hoverflies in the wider landscape. Biological Conservation, 2015, 184, 51-58.	4.1	92
25	Pollinator communities in strawberry crops – variation at multiple spatial scales. Bulletin of Entomological Research, 2015, 105, 497-506.	1.0	12
26	Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 2015, 521, 77-80.	27.8	816
27	Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agriculture, Ecosystems and Environment, 2014, 184, 145-148.	5.3	51
28	Landscape heterogeneity and farming practice alter the species composition and taxonomic breadth of pollinator communities. Basic and Applied Ecology, 2013, 14, 540-546.	2.7	55
29	Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 2012, 22, 1925-1931.	3.9	290
30	Organic Farming Improves Pollination Success in Strawberries. PLoS ONE, 2012, 7, e31599.	2.5	69
31	Field scale organic farming does not counteract landscape effects on butterfly trait composition. Agriculture, Ecosystems and Environment, 2012, 158, 66-71.	5.3	12
32	Assessing the effect of the time since transition to organic farming on plants and butterflies. Journal of Applied Ecology, 2011, 48, 543-550.	4.0	64