Elisa Thébault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7022486/publications.pdf

Version: 2024-02-01

59 papers

6,878 citations

32 h-index 53 g-index

60 all docs 60 docs citations

60 times ranked

9205 citing authors

#	Article	IF	Citations
1	Seasonal dynamics of competition between honey bees and wild bees in a protected Mediterranean scrubland. Oikos, 2022, 2022, .	2.7	11
2	Interplay between the paradox of enrichment and nutrient cycling in food webs. Oikos, 2021, 130, 95-109.	2.7	5
3	Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Global Change Biology, 2021, 27, 1266-1280.	9.5	27
4	Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Molecular Ecology, 2021, 30, 2162-2177.	3.9	15
5	Phenological traits foster persistence of mutualistic networks by promoting facilitation. Ecology Letters, 2021, 24, 2088-2099.	6.4	8
6	Species richness and foodâ€web structure jointly drive community biomass and its temporal stability in fish communities. Ecology Letters, 2021, 24, 2364-2377.	6.4	19
7	Spatiotemporal beta diversity of plankton species and their interactions in permanent and temporal waterholes in a semiarid savannah. Inland Waters, 2021, 11, 508-521.	2.2	0
8	Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nature Ecology and Evolution, 2020, 4, 115-121.	7.8	55
9	Longâ€term effects of global change on occupancy and flight period of wild bees in Belgium. Global Change Biology, 2020, 26, 6753-6766.	9.5	36
10	Urbanization and agricultural intensification destabilize animal communities differently than diversity loss. Nature Communications, 2020, 11, 2686.	12.8	39
11	Advancing our understanding of ecological stability. Ecology Letters, 2019, 22, 1349-1356.	6.4	147
12	Seeing the forest for the trees: Putting multilayer networks to work for community ecology. Functional Ecology, 2019, 33, 206-217.	3.6	57
13	Trophic redundancy reduces vulnerability to extinction cascades. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2419-2424.	7.1	99
14	Alien plants have greater impact than habitat fragmentation on native insect flower visitation networks. Diversity and Distributions, 2018, 24, 58-68.	4.1	24
15	Indirect interactions between crops and natural vegetation through flower visitors: the importance of temporal as well as spatial spillover. Agriculture, Ecosystems and Environment, 2018, 253, 148-156.	5.3	19
16	There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology. Food Webs, 2018, 17, e00100.	1.2	47
17	Vicinal land use change strongly drives stream bacterial community in a tropical montane catchment. FEMS Microbiology Ecology, 2018, 94, .	2.7	10
18	Predicting the consequences of species loss using sizeâ€structured biodiversity approaches. Biological Reviews, 2017, 92, 684-697.	10.4	108

#	Article	IF	Citations
19	A major subtropical fruit pest accumulates in crop fields and spills over to a wild host. Agriculture, Ecosystems and Environment, 2017, 242, 102-109.	5.3	7
20	Density dependence and environmental factors affect population stability of an agricultural pest and its specialist parasitoid. BioControl, 2017, 62, 175-184.	2.0	13
21	Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agriculture, Ecosystems and Environment, 2017, 250, 72-80.	5.3	10
22	Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions. Advances in Ecological Research, 2017, 57, 147-199.	2.7	125
23	How plants connect pollination and herbivory networks and their contribution to community stability. Ecology, 2016, 97, 908-917.	3.2	55
24	Interactions between the green and brown food web determine ecosystem functioning. Functional Ecology, 2016, 30, 1454-1465.	3.6	97
25	Spatiotemporal changes in flying insect abundance and their functional diversity as a function of distance to natural habitats in a mass flowering crop. Agriculture, Ecosystems and Environment, 2016, 229, 21-29.	5.3	39
26	Stability of a diamond-shaped module with multiple interaction types. Theoretical Ecology, 2016, 9, 27-37.	1.0	15
27	How plants connect pollination and herbivory networks and their contribution to community stability. Ecology, 2016, , .	3.2	1
28	How plants connect pollination and herbivory networks and their contribution to community stability. Ecology, 2016, 97, 908-17.	3.2	29
29	Natural vegetation benefits synergistic control of the three main insect and pathogen pests of a fruit crop in southern Africa. Journal of Applied Ecology, 2015, 52, 1092-1101.	4.0	30
30	Trophic groups and modules: two levels of group detection in food webs. Journal of the Royal Society Interface, 2015, 12, 20141176.	3.4	32
31	Comparing the conservatism of ecological interactions in plant–pollinator and plant–herbivore networks. Population Ecology, 2015, 57, 29-36.	1.2	31
32	Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landscape Ecology, 2015, 30, 1225-1239.	4.2	52
33	Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21, 973-985.	9.5	641
34	Structure–stability relationships in networks combining mutualistic and antagonistic interactions. Oikos, 2014, 123, 378-384.	2.7	101
35	Integrating ecosystem engineering and food webs. Oikos, 2014, 123, 513-524.	2.7	87
36	Functionally and phylogenetically diverse plant communities key to soil biota. Ecology, 2013, 94, 1878-1885.	3.2	80

#	Article	IF	Citations
37	Soil and Freshwater and Marine Sediment Food Webs: Their Structure and Function. BioScience, 2013, 63, 35-42.	4.9	34
38	Identifying compartments in presence–absence matrices and bipartite networks: insights into modularity measures. Journal of Biogeography, 2013, 40, 759-768.	3.0	88
39	Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14296-14301.	7.1	520
40	Species richness can decrease with altitude but not with habitat diversity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2149-50.	7.1	64
41	Plant Pollinator Networks along a Gradient of Urbanisation. PLoS ONE, 2013, 8, e63421.	2.5	163
42	Soil Food Web Changes during Spontaneous Succession at Post Mining Sites: A Possible Ecosystem Engineering Effect on Food Web Organization?. PLoS ONE, 2013, 8, e79694.	2.5	46
43	Ecophylogenetics: advances and perspectives. Biological Reviews, 2012, 87, 769-785.	10.4	341
44	The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 2011, 14, 1170-1181.	6.4	332
45	Plant diversity enhances the reliability of belowground processes. Soil Biology and Biochemistry, 2010, 42, 2102-2110.	8.8	39
46	Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks. Science, 2010, 329, 853-856.	12.6	1,306
47	Are insect pollinators more generalist than insect herbivores?. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3027-3033.	2.6	75
48	Island Species Richness Increases with Habitat Diversity. American Naturalist, 2009, 174, E205-E217.	2.1	219
49	Does asymmetric specialization differ between mutualistic and trophic networks?. Oikos, 2008, 117, 555-563.	2.7	43
50	Cascading extinctions and ecosystem functioning: contrasting effects of diversity depending on food web structure. Oikos, 2007, 116, 163-173.	2.7	85
51	The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 2007, 10, 522-538.	6.4	808
52	The relationship between biodiversity and ecosystem functioning in food webs. Ecological Research, 2006, 21, 17-25.	1.5	121
53	Trophic Interactions and the Relationship between Species Diversity and Ecosystem Stability. American Naturalist, 2005, 166, E95-E114.	2.1	154
54	FOOD WEBS AND THE RELATIONSHIP BETWEEN BIODIVERSITY AND ECOSYSTEM FUNCTIONING. , 2005, , 270-282.		6

#	Article	IF	CITATIONS
55	Food-web constraints on biodiversity-ecosystem functioning relationships. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14949-14954.	7.1	253
56	Merging Antagonistic and Mutualistic Bipartite Webs: A First Step to Integrate Interaction Diversity into Network Approaches., 0,, 62-72.		1
57	Toward Multiplex Ecological Networks: Accounting for Multiple Interaction Types to Understand Community Structure and Dynamics., 0,, 73-87.		6
58	Uncertain predictions of species responses to perturbations lead to underestimate changes at ecosystem level in diverse systems. Peer Community in Ecology, 0, , .	0.0	1
59	On the importance of stoichiometric constraints for understanding global change effects on food web dynamics. Peer Community in Ecology, 0, , 100039.	0.0	O