S C Anenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7022046/publications.pdf

Version: 2024-02-01

117625 118850 7,084 72 34 62 citations g-index h-index papers 86 86 86 8693 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Outside in: the relationship between indoor and outdoor particulate air quality during wildfire smoke events in western US cities., 2023, 1, 015003.		11
2	Global urban temporal trends in fine particulate matter (PM2·5) and attributable health burdens: estimates from global datasets. Lancet Planetary Health, The, 2022, 6, e139-e146.	11.4	159
3	Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets. Lancet Planetary Health, The, 2022, 6, e49-e58.	11.4	95
4	Global Health Impacts for Economic Models of Climate Change: A Systematic Review and Meta-Analysis. Annals of the American Thoracic Society, 2022, 19, 1203-1212.	3.2	14
5	Estimates of ozone concentrations and attributable mortality in urban, peri-urban and rural areas worldwide in 2019. Environmental Research Letters, 2022, 17, 054023.	5.2	38
6	Environmental, Health, and Equity Co-benefits in Urban Climate Action Plans: A Descriptive Analysis for 27 C40 Member Cities. Frontiers in Sustainable Cities, 2022, 4, .	2.4	1
7	Thank You to Our 2021 Peer Reviewers. GeoHealth, 2022, 6, e2022GH000639.	4.0	0
8	Health and Clinical Impacts of Air Pollution and Linkages with Climate Change. , 2022, 1, .		26
9	Diesel passenger vehicle shares influenced COVID-19 changes in urban nitrogen dioxide pollution. Environmental Research Letters, 2022, 17, 074010.	5.2	2
10	Sources of ambient PM2.5 exposure in 96 global cities. Atmospheric Environment, 2022, 286, 119234.	4.1	15
11	Thank You to Our 2020 Peer Reviewers. GeoHealth, 2021, 5, e2021GH000404.	4.0	O
12	Assessing the Distribution of Air Pollution Health Risks within Cities: A Neighborhood-Scale Analysis Leveraging High-Resolution Data Sets in the Bay Area, California. Environmental Health Perspectives, 2021, 129, 37006.	6.0	40
13	Estimating PM2.5-related premature mortality and morbidity associated with future wildfire emissions in the western US. Environmental Research Letters, 2021, 16, 035019.	5.2	34
14	TROPOMI NO ₂ in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO ₂ Concentrations. Earth's Future, 2021, 9, e2020EF001665.	6.3	66
15	Shaping the Future of Science: COVIDâ€19 Highlighting the Importance of GeoHealth. GeoHealth, 2021, 5, e2021GH000412.	4.0	5
16	COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
17	Satellite Monitoring for Air Quality and Health. Annual Review of Biomedical Data Science, 2021, 4, 417-447.	6.5	25
18	Integrated assessment of global climate, air pollution, and dietary, malnutrition and obesity health impacts of food production and consumption between 2014 and 2018. Environmental Research Communications, 2021, 3, 075001.	2.3	15

#	Article	IF	Citations
19	Urban NO _x emissions around the world declined faster than anticipated between 2005 and 2019. Environmental Research Letters, 2021, 16, 115004.	5.2	17
20	Sensitivity of estimated NO \langle sub \rangle 2 \langle /sub \rangle -attributable pediatric asthma incidence to grid resolution and urbanicity. Environmental Research Letters, 2021, 16, 014019.	5.2	14
21	Estimating Intraâ€Urban Inequities in PM _{2.5} â€Attributable Health Impacts: A Case Study for Washington, DC. GeoHealth, 2021, 5, e2021GH000431.	4.0	28
22	Quantifying the Health Benefits of Urban Climate Mitigation Actions: Current State of the Epidemiological Evidence and Application in Health Impact Assessments. Frontiers in Sustainable Cities, 2021, 3, .	2.4	10
23	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
24	Development of the Low Emissions Analysis Platform – Integrated Benefits Calculator (LEAP-IBC) tool to assess air quality and climate co-benefits: Application for Bangladesh. Environment International, 2020, 145, 106155.	10.0	30
25	Disentangling the Impact of the COVIDâ€19 Lockdowns on Urban NO ₂ From Natural Variability. Geophysical Research Letters, 2020, 47, e2020GL089269.	4.0	144
26	Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions. Environmental Health Perspectives, 2020, 128, 115001.	6.0	40
27	Synergistic health effects of air pollution, temperature, and pollen exposure: a systematic review of epidemiological evidence. Environmental Health, 2020, 19, 130.	4.0	86
28	Using Satellites to Track Indicators of Global Air Pollution and Climate Change Impacts: Lessons Learned From a NASAâ€Supported Scienceâ€Stakeholder Collaborative. GeoHealth, 2020, 4, e2020GH000270.	4.0	25
29	Thank You to Our 2019 Peer Reviewers. GeoHealth, 2020, 4, e2020GH000250.	4.0	0
30	New Approaches to Identifying and Reducing the Global Burden of Disease From Pollution. GeoHealth, 2020, 4, e2018GH000167.	4.0	24
31	Nature and Well-Being: Estimating the Effects of Exposure to Green Space on Health Disparities across Washington, DC. ISEE Conference Abstracts, 2020, 2020, .	0.0	0
32	Estimates of Ozone-Attributable Burden of Disease in Urban Areas Worldwide. ISEE Conference Abstracts, 2020, 2020, .	0.0	0
33	Particulate matter-attributable mortality and relationships with carbon dioxide in 250 urban areas worldwide. Scientific Reports, 2019, 9, 11552.	3.3	89
34	Toward a Resilient Global Society: Air, Sea Level, Earthquakes, and Weather. Earth's Future, 2019, 7, 854-864.	6.3	7
35	Improving and Expanding Estimates of the Global Burden of Disease Due to Environmental Health Risk Factors. Environmental Health Perspectives, 2019, 127, 105001.	6.0	73
36	The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015. Environmental Research Letters, 2019, 14, 094012.	5 . 2	74

#	Article	IF	Citations
37	Effects of Increasing Aridity on Ambient Dust and Public Health in the U.S. Southwest Under Climate Change. GeoHealth, 2019, 3, 127-144.	4.0	56
38	Extreme Weather, Chemical Facilities, and Vulnerable Communities in the U.S. Gulf Coast: A Disastrous Combination. GeoHealth, 2019, 3, 122-126.	4.0	15
39	Thank You to Our 2018 Peer Reviewers. GeoHealth, 2019, 3, 82-83.	4.0	0
40	Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. Lancet Planetary Health, The, 2019, 3, e166-e178.	11.4	260
41	Estimates of Present and Future Asthma Emergency Department Visits Associated With Exposure to Oak, Birch, and Grass Pollen in the United States. GeoHealth, 2019, 3, 11-27.	4.0	33
42	Drought-sensitivity of fine dust in the US Southwest: Implications for air quality and public health under future climate change. Environmental Research Letters, 2018, 13, 054025.	5.2	66
43	Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. GeoHealth, 2018, 2, 229-247.	4.0	176
44	Local Arctic Air Pollution: A Neglected but Serious Problem. Earth's Future, 2018, 6, 1385-1412.	6.3	96
45	Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Environmental Health Perspectives, 2018, 126, 107004.	6.0	209
46	Valuing the Ozone-Related Health Benefits of Methane Emission Controls. Environmental and Resource Economics, 2017, 66, 45-63.	3.2	31
47	Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature, 2017, 545, 467-471.	27.8	487
48	Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change. GeoHealth, 2017, 1, 80-92.	4.0	42
49	Impacts of oak pollen on allergic asthma in the USA and potential effect of future climate change: a modelling analysis. Lancet, The, 2017, 389, S2.	13.7	4
50	Cobenefits of global and domestic greenhouse gas emissions for air quality and human health. Lancet, The, 2017, 389, S23.	13.7	13
51	Air pollution-related health and climate benefits of clean cookstove programs in Mozambique. Environmental Research Letters, 2017, 12, 025006.	5.2	24
52	Updated Global Estimates of Respiratory Mortality in Adults ≥30Years of Age Attributable to Long-Term Ozone Exposure. Environmental Health Perspectives, 2017, 125, 087021.	6.0	195
53	Survey of Ambient Air Pollution Health Risk Assessment Tools. Risk Analysis, 2016, 36, 1718-1736.	2.7	66
54	Eighteen years of recommendations to prevent industrial chemical incidents: results and lessons learned of the US Chemical Safety Board. Public Health, 2016, 139, 183-188.	2.9	6

#	Article	IF	CITATIONS
55	The geographic distribution and economic value of climate change-related ozone health impacts in the United States in 2030. Journal of the Air and Waste Management Association, 2015, 65, 570-580.	1.9	85
56	Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality. Air Quality, Atmosphere and Health, 2014, 7, 369-379.	3.3	64
57	Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 2013, 8, 034005.	5.2	381
58	Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits. Environmental Science & Economic Rechnology, 2013, 47, 3944-3952.	10.0	160
59	Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nature Climate Change, 2013, 3, 885-889.	18.8	505
60	Letter in Response to Fraas & Dutter Article: "Uncertain Benefits Estimates for Reductions in Fine Particle Concentrations― Risk Analysis, 2013, 33, 755-756.	2.7	2
61	Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls. Environmental Health Perspectives, 2012, 120, 831-839.	6.0	340
62	P-306. Epidemiology, 2012, 23, 1.	2.7	0
63	Clean stoves benefit climate and health. Nature, 2012, 490, 343-343.	27.8	12
64	Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science, 2012, 335, 183-189.	12.6	1,107
65	Estimating the National Public Health Burden Associated with Exposure to Ambient PM _{2.5} and Ozone. Risk Analysis, 2012, 32, 81-95.	2.7	472
66	Response to Cox Letter: "Miscommunicating Risk, Uncertainty, and Causation: Fine Particulate Air Pollution and Mortality Risk as an Example†Risk Analysis, 2012, 32, 768-770.	2.7	2
67	Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality. Atmospheric Chemistry and Physics, 2011, 11, 7253-7267.	4.9	80
68	Climate, health, agricultural and economic impacts of tighter vehicle-emission standards. Nature Climate Change, 2011, 1, 59-66.	18.8	153
69	The Global Burden of Air Pollution on Mortality: Anenberg et al. Respond. Environmental Health Perspectives, 2011, 119, 158-159.	6.0	9
70	The Global Burden of Air Pollution on Mortality: Anenberg et al. respond. Environmental Health Perspectives, 2010, 118, .	6.0	1
71	An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling. Environmental Health Perspectives, 2010, 118, 1189-1195.	6.0	604
72	Enhanced Integration of Health, Climate, and Air Quality Management Planning at the Urban Scale. Frontiers in Sustainable Cities, 0, 4, .	2.4	3