Shinobu Takizawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7021854/publications.pdf

Version: 2024-02-01

76326 102487 5,130 128 40 66 citations h-index g-index papers 183 183 183 3529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bayesian optimization with constraint on passed charge for multiparameter screening of electrochemical reductive carboxylation in a flow microreactor. Chemical Communications, 2022, 58, 3893-3896.	4.1	22
2	Photoswitchable Chiral Cation-Binding Catalyst: Photocontrol of Catalytic Activity on Enantioselective Aminal Synthesis. Organic Letters, 2022, 24, 2670-2674.	4.6	5
3	Chemo- and enantioselective hetero-coupling of hydroxycarbazoles catalyzed by a chiral vanadium(<scp>v</scp>) complex. Organic Chemistry Frontiers, 2021, 8, 4878-4885.	4.5	20
4	Energy-, time-, and labor-saving synthesis of \hat{l}_{\pm} -ketiminophosphonates: machine-learning-assisted simultaneous multiparameter screening for electrochemical oxidation. Green Chemistry, 2021, 23, 5825-5831.	9.0	18
5	Photoswitchable Chiral Phase Transfer Catalyst. ACS Catalysis, 2021, 11, 1863-1867.	11.2	27
6	Azopyridine-based chiral oxazolines with rare-earth metals for photoswitchable catalysis. Chemical Communications, 2021, 57, 7414-7417.	4.1	14
7	Practical Stereoselective Synthesis of C3â€Spirooxindole―and C2â€Spiropseudoindoxylâ€Pyrrolidines <i>via</i> Organocatalyzed Pictetâ€Spengler Reaction/Oxidative Rearrangement Sequence. Advanced Synthesis and Catalysis, 2021, 363, 2648-2663.	4.3	7
8	Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. Journal of Organic Chemistry, 2021, 86, 16035-16044.	3. 2	19
9	Chiral Vanadium(V)-catalyzed Oxidative Coupling of 4-Hydroxycarbazoles. Chemistry Letters, 2021, 50, 1755-1757.	1.3	9
10	Preparation of Optically Pure Dinuclear Cobalt(III) Complex with \hat{l} -Configuration as a Dianionic Chiral Catalyst. Heterocycles, 2021, 103, 225.	0.7	2
11	Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium. RSC Advances, 2021, 11, 35342-35350.	3 . 6	7
12	Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut–Currier and [3+2] annulation sequence. Chemical Communications, 2020, 56, 1259-1262.	4.1	39
13	Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence. Catalysts, 2020, 10, 860.	3.5	8
14	Catalytic and enantioselective oxa-Piancatelli reaction using a chiral vanadium complex. Chemical Communications, 2020, 56, 10151-10154.	4.1	14
15	Chiral vanadium complex-catalyzed oxidative coupling of arenols. Tetrahedron, 2020, 76, 131645.	1.9	21
16	Synthesis of Allylamine Derivatives <i>via</i> Intermolecular Azaâ€Wackerâ€Type Reaction Promoted by Palladiumâ€SPRIX Catalyst. Advanced Synthesis and Catalysis, 2020, 362, 3558-3563.	4.3	0
17	Enantioselective Oneâ€pot Synthesis of 3â€Azabicyclo[3.1.0]hexanes via Allylic Substitution and Oxidative Cyclization. Advanced Synthesis and Catalysis, 2020, 362, 1537-1547.	4.3	9
18	Organocatalytic Synthesis of Highly Functionalized Heterocycles by Enantioselective aza-Morita–Baylis–Hillman-Type Domino Reactions. Chemical and Pharmaceutical Bulletin, 2020, 68, 299-315.	1.3	9

#	Article	IF	Citations
19	Roomâ€Temperature, Metalâ€Free, and Oneâ€Pot Preparation of 2 H â€Indazoles through a Mills Reaction and Cyclization Sequence. Chemistry - A European Journal, 2019, 25, 9866-9869.	3.3	13
20	A Concise, Catalyst-Free Synthesis of Davis' Oxaziridines using Sodium Hypochlorite. SynOpen, 2019, 03, 21-25.	1.7	6
21	Chiral Dinuclear Vanadium Complex-Mediated Oxidative Coupling of Resorcinols. Journal of Organic Chemistry, 2019, 84, 1580-1587.	3.2	28
22	Asymmetric oxidative coupling of hydroxycarbazoles: Facile synthesis of (+)-bi-2-hydroxy-3-methylcarbazole. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2751-2753.	2.2	24
23	Phosphine-Catalyzed Dual Umpolung Domino Michael Reaction: Facile Synthesis of Hydroindole- and Hydrobenzofuran-2-Carboxylates. ACS Catalysis, 2018, 8, 5228-5232.	11.2	37
24	Vanadium-Catalyzed Dehydrogenation of <i>N</i> -Heterocycles in Water. Organic Letters, 2018, 20, 4723-4727.	4.6	36
25	Chiral Vanadium Complex-catalyzed Enantioselective Oxidative Coupling Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 874-884.	0.1	2
26	Enantioselective Synthesis of Spiro (Isoxazole-Isoxazoline) Hybrid Ligand. Heterocycles, 2018, 97, 493.	0.7	0
27	Short Syntheses of 4â€Deoxycarbazomycin B, Sorazolon E, and (+)â€Sorazolon E2. Chemistry - an Asian Journal, 2017, 12, 1305-1308.	3.3	27
28	Determination of the absolute configuration of compounds bearing chiral quaternary carbon centers using the crystalline sponge method. Chemical Science, 2017, 8, 5132-5136.	7.4	40
29	Enantioselective synthesis of tetrahydrocyclopenta[b]indole bearing a chiral quaternary carbon center via Pd(<scp>ii</scp>)–SPRIX-catalyzed C–H activation. Chemical Communications, 2017, 53, 6887-6890.	4.1	22
30	Multifunctional catalysis: stereoselective construction of α-methylidene-γ-lactams via an amidation/Rauhutâ€"Currier sequence. Chemical Communications, 2017, 53, 7724-7727.	4.1	45
31	Enantio- and Diastereoselective Betti/aza-Michael Sequence: Single Operated Preparation of Chiral 1,3-Disubstituted Isoindolines. Organic Letters, 2017, 19, 5426-5429.	4.6	22
32	Facile Synthesis of Spirooxindoles via an Enantioselective Organocatalyzed Sequential Reaction of Oxindoles with Ynone. Heterocycles, 2017, 95, 761.	0.7	19
33	Reversal of Enantioselectivity Approach to BINOLs via Single and Dual 2-Naphthol Activation Modes. Organic Letters, 2017, 19, 3867-3870.	4.6	39
34	Chiral Organocatalyzed Intermolecular Rauhutâ€"Currier Reaction of Nitroalkenes with Ethyl Allenoate. Chemical and Pharmaceutical Bulletin, 2017, 65, 997-999.	1.3	6
35	Copper-catalyzed divergent oxidative pathways of 2-naphthol derivatives: ortho-naphthoquinones versus 2-BINOLs. Organic and Biomolecular Chemistry, 2016, 14, 7191-7196.	2.8	24
36	Efficient Enantioselective Synthesis of Oxahelicenes Using Redox/Acid Cooperative Catalysts. Journal of the American Chemical Society, 2016, 138, 11481-11484.	13.7	104

#	Article	IF	CITATIONS
37	Organocatalyzed [4+2] Annulation of Allâ€Carbon Tetrasubstituted Alkenes with Allenoates: Synthesis of Highly Functionalized 2 <i>H</i> à€•and 4 <i>H</i> èaf•Pyran Derivatives ChemistrySelect, 2016, 1, 5414-5420.	1.5	10
38	Enantioselective organocatalytic oxidation of ketimine. Organic and Biomolecular Chemistry, 2016, 14, 761-767.	2.8	10
39	Phosphineâ€Catalyzed β,γâ€Umpolung Domino Reaction of Allenic Esters: Facile Synthesis of Tetrahydrobenzofuranones Bearing a Chiral Tetrasubstituted Stereogenic Carbon Center. Angewandte Chemie - International Edition, 2015, 54, 15511-15515.	13.8	106
40	Structural Features and Asymmetric Environment of <i>i</i> i>â€Pr‧PRIX Ligand. Chirality, 2015, 27, 532-537.	2.6	3
41	Vanadium in Asymmetric Synthesis: Emerging Concepts in Catalyst Design and Applications. Chemistry - A European Journal, 2015, 21, 8992-8997.	3.3	49
42	Pd(II)-catalyzed diastereoselective and enantioselective domino cyclization/cycloaddition reactions of alkenyl oximes for polycyclic heterocycles with four chiral stereogenic centers. Tetrahedron Letters, 2015, 56, 4316-4319.	1.4	11
43	Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water. Tetrahedron: Asymmetry, 2015, 26, 613-616.	1.8	31
44	An enantioselective organocatalyzed aza-Morita–Baylis–Hillman reaction of isatin-derived ketimines with acrolein. Organic and Biomolecular Chemistry, 2015, 13, 9022-9028.	2.8	31
45	Pd-catalyzed enantioselective intramolecular \hat{l} ±-arylation of \hat{l} ±-substituted cyclic ketones: facile synthesis of functionalized chiral spirobicycles. Organic and Biomolecular Chemistry, 2015, 13, 4837-4840.	2.8	21
46	C3-Symmetric chiral trisimidazoline-catalyzed Friedel–Crafts (FC)-type reaction. Organic and Biomolecular Chemistry, 2014, 12, 5827-5830.	2.8	36
47	Enantioselective oxidative-coupling of polycyclic phenols. Tetrahedron, 2014, 70, 1786-1793.	1.9	41
48	Enantioselective Organocatalyzed Formal [4+2] Cycloaddition of Ketimines with Allenoates: Easy Access to a Tetrahydropyridine Framework with a Chiral Tetrasubstituted Stereogenic Carbon Center. Asian Journal of Organic Chemistry, 2014, 3, 412-415.	2.7	57
49	Facile Regio- and Stereoselective Metal-Free Synthesis of All-Carbon Tetrasubstituted Alkenes Bearing a C(sp3)–F Unit via Dehydroxyfluorination of Morita–Baylis–Hillman (MBH) Adducts. Organic Letters, 2014, 16, 4162-4165.	4.6	22
50	Enantioselective Acid-Base Organocatalyzed Domino Reactions Based on aza-Morita-Baylis-Hillman Process. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 781-796.	0.1	2
51	Pd(ii)â€"SDP-catalyzed enantioselective 5-exo-dig cyclization of \hat{I}^3 -alkynoic acids: application to the synthesis of functionalized dihydofuran-2(3H)-ones containing a chiral quaternary carbon center. Organic and Biomolecular Chemistry, 2013, 11, 5936.	2.8	19
52	P-chirogenic organocatalysts: application to the aza-Morita–Baylis–Hillman (aza-MBH) reaction of ketimines. Chemical Communications, 2013, 49, 8392.	4.1	80
53	Organocatalyzed Formal [2 + 2] Cycloaddition of Ketimines with Allenoates: Facile Access to Azetidines with a Chiral Tetrasubstituted Carbon Stereogenic Center. Organic Letters, 2013, 15, 4142-4145.	4.6	70
54	Vanadium-catalyzed enantioselective Friedel–Crafts-type reactions. Dalton Transactions, 2013, 42, 11787-11790.	3.3	45

#	Article	IF	CITATIONS
55	Chiral bifunctional organocatalysts bearing a 1,3-propanediamine unit for the aza-MBH reaction. Tetrahedron: Asymmetry, 2013, 24, 1189-1192.	1.8	8
56	DFT Study of a 5-endo-trig-Type Cyclization of 3-Alkenoic Acids by Using Pd-Spiro-bis(isoxazoline) as Catalyst: Importance of the Rigid Spiro Framework for Both Selectivity and Reactivity. Chemistry - A European Journal, 2013, 19, 9518-9525.	3.3	15
57	<i>o</i> -(Hydroxyalkyl)phenyl P-Chirogenic Phosphines as Functional Chiral Lewis Bases. Organic Letters, 2013, 15, 1870-1873.	4.6	37
58	Facile synthesis of α-methylidene-γ-butyrolactones: intramolecular Rauhut–Currier reaction promoted by chiral acid–base organocatalysts. Tetrahedron, 2013, 69, 1202-1209.	1.9	63
59	Design and synthesis of spiro bis $(1,2,3$ -triazolium) salts as chiral ionic liquids. Tetrahedron: Asymmetry, 2012, 23, 843-851.	1.8	21
60	Enantioselective Synthesis of αâ€Alkylideneâ€Î³â€Butyrolactones: Intramolecular Rauhut–Currier Reaction Promoted by Acid/Base Organocatalysts. Angewandte Chemie - International Edition, 2012, 51, 5423-5426.	13.8	176
61	A bifunctional spiro-type organocatalyst with high enantiocontrol: application to the aza-Morita–Baylis–Hillman reactions. Chemical Communications, 2011, 47, 9227.	4.1	51
62	Enantioselective Cyclization of 4-Alkenoic Acids via an Oxidative Allylic C–H Esterification. Organic Letters, 2011, 13, 3506-3509.	4.6	98
63	Synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron Letters, 2011, 52, 6877-6879.	1.4	13
64	Chlorinative Cyclization of 1,6â€Enynes by Enantioselective Palladium(II)/Palladium(IV) Catalysis. Advanced Synthesis and Catalysis, 2011, 353, 1067-1070.	4.3	38
65	An enantioselective organocatalyzed aza-MBH domino process: application to the facile synthesis of tetrahydropyridines. Tetrahedron Letters, 2011, 52, 377-380.	1.4	40
66	Asymmetric synthesis of chiral spiro bis(isoxazoline) and spiro (isoxazole–isoxazoline) ligands. Tetrahedron: Asymmetry, 2010, 21, 379-381.	1.8	15
67	Enantioselective 6-endo-trig Wacker-type cyclization of 2-geranylphenols: application to a facile synthesis of (â^')-cordiachromene. Tetrahedron: Asymmetry, 2010, 21, 767-770.	1.8	40
68	Enantioselective Synthesis of Isoindolines: An Organocatalyzed Domino Process Based On the azaâ€Morita–Baylis–Hillman Reaction. Angewandte Chemie - International Edition, 2010, 49, 9725-9729.	13.8	110
69	Acid–base organocatalysts for the aza-Morita–Baylis–Hillman reaction of nitroalkenes. Tetrahedron: Asymmetry, 2010, 21, 891-894.	1.8	29
70	Enantioselective Wacker-Type Cyclization of 2-Alkenyl-1,3-diketones Promoted by Pd-SPRIX Catalyst. Organic Letters, 2010, 12, 3480-3483.	4.6	45
71	Pd-catalyzed 5-endo-trig-type cyclization of \hat{l}^2 , \hat{l}^3 -unsaturated carbonyl compounds: an efficient ring closing reaction to give \hat{l}^3 -butenolides and 3-pyrrolin-2-ones. Chemical Communications, 2010, 46, 9064.	4.1	42
72	One-Pot Preparation of Chiral Dinuclear Vanadium(V) Complex. Synlett, 2009, 2009, 1667-1669.	1.8	12

#	Article	IF	Citations
73	Dicationic Palladium(II)-Spiro bis(isoxazoline) Complex for Highly Enantioselective Isotactic Copolymerization of CO with Styrene Derivatives. Synlett, 2009, 2009, 310-314.	1.8	3
74	Total Synthesis of Chloropeptin II (Complestatin) and Chloropeptin I. Journal of the American Chemical Society, 2009, 131, 16036-16038.	13.7	99
75	Enantioselective Intramolecular Oxidative Aminocarbonylation of Alkenylureas Catalyzed by Palladiumâ^`Spiro Bis(isoxazoline) Complexes. Journal of Organic Chemistry, 2009, 74, 9274-9279.	3.2	94
76	Development of Dinuclear Vanadium Catalysts for Enantioselective Coupling of 2-Naphthols via a Dual Activation Mechanism. Chemical and Pharmaceutical Bulletin, 2009, 57, 1179-1188.	1.3	37
77	Development of Chiral Spiro Ligands for Metal-Catalyzed Asymmetric Reactions. Bulletin of the Chemical Society of Japan, 2009, 82, 285-302.	3.2	96
78	Development of Novel Immobilization Methods for Multicomponent Asymmetric Catalyst (MAC). Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 194-207.	0.1	3
79	Dual activation in oxidative coupling of 2-naphthols catalyzed by chiral dinuclear vanadium complexes. Tetrahedron, 2008, 64, 3361-3371.	1.9	63
80	Dinuclear chiral vanadium catalysts for oxidative coupling of 2-naphthols via a dual activation mechanism. Chemical Communications, 2008, , 4113.	4.1	101
81	Chiral dinuclear vanadium(v) catalysts for oxidative coupling of 2-naphthols. Chemical Communications, 2008, , 1810.	4.1	60
82	Bifunctional Organocatalysts for Enantioselective aza-Morita-Baylis-Hillman (aza-MBH) Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 1089-1098.	0.1	17
83	Development of new methods toward efficient immobilization of chiral catalysts. Tetrahedron, 2007, 63, 6512-6528.	1.9	20
84	Synthesis of novel spiro imidazolium salts as chiral ionic liquids. Tetrahedron, 2007, 63, 12702-12711.	1.9	14
85	Optical resolution of tetra isopropyl-substituted spiro bis(isoxazoline)i-Pr-SPRIX. Journal of Organometallic Chemistry, 2007, 692, 495-498.	1.8	8
86	Enantioselective glyoxylate-ene reaction using a novel spiro bis(isoxazoline) ligand in copper catalysis. Tetrahedron: Asymmetry, 2007, 18, 372-376.	1.8	24
87	Development of efficient methods for the immobilisation of multicomponent asymmetric catalysts. Journal of Experimental Nanoscience, 2006, 1, 477-510.	2.4	15
88	Conformational lock in a Brønsted acid–Lewis base organocatalyst for the aza-Morita–Baylis–Hillman reaction. Tetrahedron: Asymmetry, 2006, 17, 578-583.	1.8	92
89	Design and Synthesis of Novel Chiral Spiro Ionic Liquids. Organic Letters, 2006, 8, 227-230.	4.6	55
90	A Brønsted Acid and Lewis Base Organocatalyst for the Aza-Morita-Baylis-Hillman Reaction. Synlett, 2006, 2006, 0761-0765.	1.8	7

#	Article	IF	CITATIONS
91	Enantioselective Morita–Baylis–Hillman (MBH) reaction promoted by a heterobimetallic complex with a Lewis base. Tetrahedron Letters, 2005, 46, 1943-1946.	1.4	40
92	Micelle-derived polymer supports for enantioselective catalysts. Tetrahedron Letters, 2005, 46, 1193-1197.	1.4	13
93	Fragmentation of tertiary cyclopropanol compounds catalyzed by vanadyl acetylacetonate. Tetrahedron, 2005, 61, 4831-4839.	1.9	33
94	Development of a Novel Chiral Spiro Ligand Bearing Oxazoline ChemInform, 2005, 36, no.	0.0	0
95	Enantioselective Aldol-Type Reaction Using Diketene ChemInform, 2005, 36, no.	0.0	0
96	Enantioselective Morita—Baylis—Hillman (MBH) Reaction Promoted by a Heterobimetallic Complex with a Lewis Base ChemInform, 2005, 36, no.	0.0	0
97	Bifunctional Organocatalysts for Enantioselective aza-Morita—Baylis—Hillman Reaction ChemInform, 2005, 36, no.	0.0	0
98	Fragmentation of Tertiary Cyclopropanol Compounds Catalyzed by Vanadyl Acetylacetonate ChemInform, 2005, 36, no.	0.0	0
99	Spiro Crown Ethers Bearing (S)-1,1'-Spirobiindanes as Chiral Backbones. Heterocycles, 2005, 66, 639.	0.7	14
100	Bifunctional Organocatalysts for Enantioselective aza-Moritaâ^'Baylisâ^'Hillman Reaction. Journal of the American Chemical Society, 2005, 127, 3680-3681.	13.7	276
101	Development of a novel chiral spiro ligand bearing oxazoline. Tetrahedron: Asymmetry, 2004, 15, 3693-3697.	1.8	38
102	Metal-Bridged Polymers as Insoluble Multicomponent Asymmetric Catalysts with High Enantiocontrol: An Approach for the Immobilization of Catalysts Without Using Any Support ChemInform, 2004, 35, no.	0.0	0
103	Dual Activation in a Homolytic Coupling Reaction Promoted by an Enantioselective Dinuclear Vanadium(IV) Catalyst ChemInform, 2004, 35, no.	0.0	0
104	Dual activation in a homolytic coupling reaction promoted by an enantioselective dinuclear vanadium(IV) catalyst. Tetrahedron Letters, 2004, 45, 1841-1844.	1.4	103
105	Enantioselective Aldol‶ype Reaction Using Diketene. Synthetic Communications, 2004, 34, 4487-4492.	2.1	10
106	Enantioselective Synthesis of \hat{I}_{\pm} -Methylene- \hat{I}_{\pm} -butyrolactones Using Chiral Pd(II)-SPRIX Catalyst ChemInform, 2003, 34, no.	0.0	0
107	"Catalyst Analogue― A Concept for Constructing Multicomponent Asymmetric Catalysts (MAC) by Using a Polymer Support. Angewandte Chemie - International Edition, 2003, 42, 2144-2147.	13.8	41
108	Metal-Bridged Polymers as Insoluble Multicomponent Asymmetric Catalysts with High Enantiocontrol: An Approach for the Immobilization of Catalysts without Using any Support. Angewandte Chemie - International Edition, 2003, 42, 5711-5714.	13.8	124

#	Article	IF	CITATIONS
109	Enantioselective synthesis of $\hat{I}\pm$ -methylene- \hat{I}^3 -butyrolactones using chiral Pd(II)-SPRIX catalyst. Tetrahedron Letters, 2003, 44, 5201-5204.	1.4	53
110	Monolayer-Protected Au Cluster (MPC)-Supported Tiâ^'BINOLate Complex. Organic Letters, 2003, 5, 4409-4412.	4.6	55
111	Polymer-Supported BisBINOL Ligands for the Immobilization of Multicomponent Asymmetric Catalysts. Organic Letters, 2003, 5, 2647-2650.	4.6	50
112	Synthesis of Novel Chiral Spiro Bis(pyrazole) Ligands. Heterocycles, 2003, 60, 2551.	0.7	14
113	Design and Synthesis of Novel Spiro Pyridinium and Quinolinium Salts. Heterocycles, 2003, 61, 581.	0.7	5
114	Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Advanced Synthesis and Catalysis, 2002, 344, 328-337.	4.3	93
115	A dendrimer-supported heterobimetallic asymmetric catalyst. Tetrahedron: Asymmetry, 2002, 13, 2083-2087.	1.8	44
116	Efficient oxidative biaryl coupling reaction of phenol ether derivatives using hypervalent iodine(III) reagents. Tetrahedron, 2001, 57, 345-352.	1.9	177
117	Novel Catalytic Asymmetric Sulfoxidation in Water Using the Hypervalent Iodine Reagent Iodoxybenzene Chemical and Pharmaceutical Bulletin, 2000, 48, 445-446.	1.3	38
118	Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Angewandte Chemie - International Edition, 2000, 39, 1306-1308.	13.8	161
119	Indium-Mediated Reaction of 3-Bromo-3,3-difluoropropene and Bromodifluoromethylacetylene Derivatives with Aldehydes. Tetrahedron, 2000, 56, 8275-8280.	1.9	48
120	Aerobic deprotection of monothioacetals catalyzed by trichlorooxyvanadium. Tetrahedron Letters, 1999, 40, 9055-9057.	1.4	20
121	Hypervalent Iodine(V)-Induced Asymmetric Oxidation of Sulfides to Sulfoxides Mediated by Reversed Micelles:Â Novel Nonmetallic Catalytic System. Journal of Organic Chemistry, 1999, 64, 3519-3523.	3.2	127
122	Aerobic oxidation of \hat{l} ±-hydroxycarbonyls catalysed by trichlorooxyvanadium: efficient synthesis of \hat{l} ±-dicarbonyl compounds. Chemical Communications, 1999, , 1387-1388.	4.1	119
123	Hypervalent iodine(III) oxidation catalyzed by quaternary ammonium salt in micellar systems. Tetrahedron Letters, 1998, 39, 4547-4550.	1.4	88
124	Highly chemoselective, oxyvanadium-catalysed cleavage of \hat{l}_{\pm} -hydroxy ketones. Journal of the Chemical Society Perkin Transactions 1, 1998, , 7-8.	0.9	21
125	Tertiary cyclopropanol systems as synthetic intermediates: novel ring-cleavage of tertiary cyclopropanol systems using vanadyl acetylacetonate. Chemical Communications, 1998, , 1691-1692.	4.1	27
126	Bicyclo[3.3.1]nonanes as Synthetic Intermediates. XXIII. ¹ A Breakthrough by Lanthanoid Mediation in Nucleophilic Addition of Carbanions to the Inert "Fork Head―Carbonyl in Bicyclo[3.3.1]nonan-3-ones. Synthetic Communications, 1997, 27, 3313-3320.	2.1	5

SHINOBU TAKIZAWA

#	Article	IF	CITATIONS
127	$\hat{l}_{\pm}, \hat{l}_{\pm}$ -difluoroallyl carbanion: Indium-mediation in its facile coupling with aldehydes. Tetrahedron Letters, 1997, 38, 2853-2854.	1.4	42
128	Metal-free C(aryl)–P bond cleavage: experimental and computational studies of the Michael addition/aryl migration of triarylphosphines to alkynyl esters. Organic Chemistry Frontiers, 0, , .	4.5	1