List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7021854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bifunctional Organocatalysts for Enantioselective aza-Moritaâ^'Baylisâ^'Hillman Reaction. Journal of the American Chemical Society, 2005, 127, 3680-3681.	13.7	276
2	Efficient oxidative biaryl coupling reaction of phenol ether derivatives using hypervalent iodine(III) reagents. Tetrahedron, 2001, 57, 345-352.	1.9	177
3	Enantioselective Synthesis of αâ€Alkylideneâ€Î³â€Butyrolactones: Intramolecular Rauhut–Currier Reaction Promoted by Acid/Base Organocatalysts. Angewandte Chemie - International Edition, 2012, 51, 5423-5426.	13.8	176
4	Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Angewandte Chemie - International Edition, 2000, 39, 1306-1308.	13.8	161
5	Hypervalent Iodine(V)-Induced Asymmetric Oxidation of Sulfides to Sulfoxides Mediated by Reversed Micelles:Â Novel Nonmetallic Catalytic System. Journal of Organic Chemistry, 1999, 64, 3519-3523.	3.2	127
6	Metal-Bridged Polymers as Insoluble Multicomponent Asymmetric Catalysts with High Enantiocontrol: An Approach for the Immobilization of Catalysts without Using any Support. Angewandte Chemie - International Edition, 2003, 42, 5711-5714.	13.8	124
7	Aerobic oxidation of α-hydroxycarbonyls catalysed by trichlorooxyvanadium: efficient synthesis of α-dicarbonyl compounds. Chemical Communications, 1999, , 1387-1388.	4.1	119
8	Enantioselective Synthesis of Isoindolines: An Organocatalyzed Domino Process Based On the azaâ€Morita–Baylis–Hillman Reaction. Angewandte Chemie - International Edition, 2010, 49, 9725-9729.	13.8	110
9	Phosphine atalyzed β,γâ€Umpolung Domino Reaction of Allenic Esters: Facile Synthesis of Tetrahydrobenzofuranones Bearing a Chiral Tetrasubstituted Stereogenic Carbon Center. Angewandte Chemie - International Edition, 2015, 54, 15511-15515.	13.8	106
10	Efficient Enantioselective Synthesis of Oxahelicenes Using Redox/Acid Cooperative Catalysts. Journal of the American Chemical Society, 2016, 138, 11481-11484.	13.7	104
11	Dual activation in a homolytic coupling reaction promoted by an enantioselective dinuclear vanadium(IV) catalyst. Tetrahedron Letters, 2004, 45, 1841-1844.	1.4	103
12	Dinuclear chiral vanadium catalysts for oxidative coupling of 2-naphthols via a dual activation mechanism. Chemical Communications, 2008, , 4113.	4.1	101
13	Total Synthesis of Chloropeptin II (Complestatin) and Chloropeptin I. Journal of the American Chemical Society, 2009, 131, 16036-16038.	13.7	99
14	Enantioselective Cyclization of 4-Alkenoic Acids via an Oxidative Allylic C–H Esterification. Organic Letters, 2011, 13, 3506-3509.	4.6	98
15	Development of Chiral Spiro Ligands for Metal-Catalyzed Asymmetric Reactions. Bulletin of the Chemical Society of Japan, 2009, 82, 285-302.	3.2	96
16	Enantioselective Intramolecular Oxidative Aminocarbonylation of Alkenylureas Catalyzed by Palladiumâ~'Spiro Bis(isoxazoline) Complexes. Journal of Organic Chemistry, 2009, 74, 9274-9279.	3.2	94
17	Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Advanced Synthesis and Catalysis, 2002, 344, 328-337.	4.3	93
18	Conformational lock in a BrÃ,nsted acid–Lewis base organocatalyst for the aza-Morita–Baylis–Hillman reaction. Tetrahedron: Asymmetry, 2006, 17, 578-583.	1.8	92

#	Article	IF	CITATIONS
19	Hypervalent iodine(III) oxidation catalyzed by quaternary ammonium salt in micellar systems. Tetrahedron Letters, 1998, 39, 4547-4550.	1.4	88
20	P-chirogenic organocatalysts: application to the aza-Morita–Baylis–Hillman (aza-MBH) reaction of ketimines. Chemical Communications, 2013, 49, 8392.	4.1	80
21	Organocatalyzed Formal [2 + 2] Cycloaddition of Ketimines with Allenoates: Facile Access to Azetidines with a Chiral Tetrasubstituted Carbon Stereogenic Center. Organic Letters, 2013, 15, 4142-4145.	4.6	70
22	Dual activation in oxidative coupling of 2-naphthols catalyzed by chiral dinuclear vanadium complexes. Tetrahedron, 2008, 64, 3361-3371.	1.9	63
23	Facile synthesis of α-methylidene-γ-butyrolactones: intramolecular Rauhut–Currier reaction promoted by chiral acid–base organocatalysts. Tetrahedron, 2013, 69, 1202-1209.	1.9	63
24	Chiral dinuclear vanadium(v) catalysts for oxidative coupling of 2-naphthols. Chemical Communications, 2008, , 1810.	4.1	60
25	Enantioselective Organocatalyzed Formal [4+2] Cycloaddition of Ketimines with Allenoates: Easy Access to a Tetrahydropyridine Framework with a Chiral Tetrasubstituted Stereogenic Carbon Center. Asian Journal of Organic Chemistry, 2014, 3, 412-415.	2.7	57
26	Monolayer-Protected Au Cluster (MPC)-Supported Tiâ^'BINOLate Complex. Organic Letters, 2003, 5, 4409-4412.	4.6	55
27	Design and Synthesis of Novel Chiral Spiro Ionic Liquids. Organic Letters, 2006, 8, 227-230.	4.6	55
28	Enantioselective synthesis of α-methylene-γ-butyrolactones using chiral Pd(II)-SPRIX catalyst. Tetrahedron Letters, 2003, 44, 5201-5204.	1.4	53
29	A bifunctional spiro-type organocatalyst with high enantiocontrol: application to the aza-Morita–Baylis–Hillman reactions. Chemical Communications, 2011, 47, 9227.	4.1	51
30	Polymer-Supported BisBINOL Ligands for the Immobilization of Multicomponent Asymmetric Catalysts. Organic Letters, 2003, 5, 2647-2650.	4.6	50
31	Vanadium in Asymmetric Synthesis: Emerging Concepts in Catalyst Design and Applications. Chemistry - A European Journal, 2015, 21, 8992-8997.	3.3	49
32	Indium-Mediated Reaction of 3-Bromo-3,3-difluoropropene and Bromodifluoromethylacetylene Derivatives with Aldehydes. Tetrahedron, 2000, 56, 8275-8280.	1.9	48
33	Enantioselective Wacker-Type Cyclization of 2-Alkenyl-1,3-diketones Promoted by Pd-SPRIX Catalyst. Organic Letters, 2010, 12, 3480-3483.	4.6	45
34	Vanadium-catalyzed enantioselective Friedel–Crafts-type reactions. Dalton Transactions, 2013, 42, 11787-11790.	3.3	45
35	Multifunctional catalysis: stereoselective construction of \hat{I} -methylidene- \hat{I} -lactams via an amidation/Rauhutâ \in Currier sequence. Chemical Communications, 2017, 53, 7724-7727.	4.1	45
36	A dendrimer-supported heterobimetallic asymmetric catalyst. Tetrahedron: Asymmetry, 2002, 13, 2083-2087.	1.8	44

#	Article	IF	CITATIONS
37	α,α-difluoroallyl carbanion: Indium-mediation in its facile coupling with aldehydes. Tetrahedron Letters, 1997, 38, 2853-2854.	1.4	42
38	Pd-catalyzed 5-endo-trig-type cyclization of β,Ĵ³-unsaturated carbonyl compounds: an efficient ring closing reaction to give l³-butenolides and 3-pyrrolin-2-ones. Chemical Communications, 2010, 46, 9064.	4.1	42
39	"Catalyst Analogue― A Concept for Constructing Multicomponent Asymmetric Catalysts (MAC) by Using a Polymer Support. Angewandte Chemie - International Edition, 2003, 42, 2144-2147.	13.8	41
40	Enantioselective oxidative-coupling of polycyclic phenols. Tetrahedron, 2014, 70, 1786-1793.	1.9	41
41	Enantioselective Morita–Baylis–Hillman (MBH) reaction promoted by a heterobimetallic complex with a Lewis base. Tetrahedron Letters, 2005, 46, 1943-1946.	1.4	40
42	Enantioselective 6-endo-trig Wacker-type cyclization of 2-geranylphenols: application to a facile synthesis of (â^')-cordiachromene. Tetrahedron: Asymmetry, 2010, 21, 767-770.	1.8	40
43	An enantioselective organocatalyzed aza-MBH domino process: application to the facile synthesis of tetrahydropyridines. Tetrahedron Letters, 2011, 52, 377-380.	1.4	40
44	Determination of the absolute configuration of compounds bearing chiral quaternary carbon centers using the crystalline sponge method. Chemical Science, 2017, 8, 5132-5136.	7.4	40
45	Reversal of Enantioselectivity Approach to BINOLs via Single and Dual 2-Naphthol Activation Modes. Organic Letters, 2017, 19, 3867-3870.	4.6	39
46	Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut–Currier and [3+2] annulation sequence. Chemical Communications, 2020, 56, 1259-1262.	4.1	39
47	Novel Catalytic Asymmetric Sulfoxidation in Water Using the Hypervalent Iodine Reagent Iodoxybenzene Chemical and Pharmaceutical Bulletin, 2000, 48, 445-446.	1.3	38
48	Development of a novel chiral spiro ligand bearing oxazoline. Tetrahedron: Asymmetry, 2004, 15, 3693-3697.	1.8	38
49	Chlorinative Cyclization of 1,6â€Enynes by Enantioselective Palladium(II)/Palladium(IV) Catalysis. Advanced Synthesis and Catalysis, 2011, 353, 1067-1070.	4.3	38
50	Development of Dinuclear Vanadium Catalysts for Enantioselective Coupling of 2-Naphthols via a Dual Activation Mechanism. Chemical and Pharmaceutical Bulletin, 2009, 57, 1179-1188.	1.3	37
51	<i>>o</i> -(Hydroxyalkyl)phenyl P-Chirogenic Phosphines as Functional Chiral Lewis Bases. Organic Letters, 2013, 15, 1870-1873.	4.6	37
52	Phosphine-Catalyzed Dual Umpolung Domino Michael Reaction: Facile Synthesis of Hydroindole- and Hydrobenzofuran-2-Carboxylates. ACS Catalysis, 2018, 8, 5228-5232.	11.2	37
53	C3-Symmetric chiral trisimidazoline-catalyzed Friedel–Crafts (FC)-type reaction. Organic and Biomolecular Chemistry, 2014, 12, 5827-5830.	2.8	36
54	Vanadium-Catalyzed Dehydrogenation of <i>N</i> -Heterocycles in Water. Organic Letters, 2018, 20, 4723-4727.	4.6	36

#	Article	IF	CITATIONS
55	Fragmentation of tertiary cyclopropanol compounds catalyzed by vanadyl acetylacetonate. Tetrahedron, 2005, 61, 4831-4839.	1.9	33
56	Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water. Tetrahedron: Asymmetry, 2015, 26, 613-616.	1.8	31
57	An enantioselective organocatalyzed aza-Morita–Baylis–Hillman reaction of isatin-derived ketimines with acrolein. Organic and Biomolecular Chemistry, 2015, 13, 9022-9028.	2.8	31
58	Acid–base organocatalysts for the aza-Morita–Baylis–Hillman reaction of nitroalkenes. Tetrahedron: Asymmetry, 2010, 21, 891-894.	1.8	29
59	Chiral Dinuclear Vanadium Complex-Mediated Oxidative Coupling of Resorcinols. Journal of Organic Chemistry, 2019, 84, 1580-1587.	3.2	28
60	Tertiary cyclopropanol systems as synthetic intermediates: novel ring-cleavage of tertiary cyclopropanol systems using vanadyl acetylacetonate. Chemical Communications, 1998, , 1691-1692.	4.1	27
61	Short Syntheses of 4â€Deoxycarbazomycin B, Sorazolon E, and (+)‧orazolon E2. Chemistry - an Asian Journal, 2017, 12, 1305-1308.	3.3	27
62	Photoswitchable Chiral Phase Transfer Catalyst. ACS Catalysis, 2021, 11, 1863-1867.	11.2	27
63	Enantioselective glyoxylate-ene reaction using a novel spiro bis(isoxazoline) ligand in copper catalysis. Tetrahedron: Asymmetry, 2007, 18, 372-376.	1.8	24
64	Copper-catalyzed divergent oxidative pathways of 2-naphthol derivatives: ortho-naphthoquinones versus 2-BINOLs. Organic and Biomolecular Chemistry, 2016, 14, 7191-7196.	2.8	24
65	Asymmetric oxidative coupling of hydroxycarbazoles: Facile synthesis of (+)-bi-2-hydroxy-3-methylcarbazole. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2751-2753.	2.2	24
66	Facile Regio- and Stereoselective Metal-Free Synthesis of All-Carbon Tetrasubstituted Alkenes Bearing a C(sp3)–F Unit via Dehydroxyfluorination of Morita–Baylis–Hillman (MBH) Adducts. Organic Letters, 2014, 16, 4162-4165.	4.6	22
67	Enantioselective synthesis of tetrahydrocyclopenta[b]indole bearing a chiral quaternary carbon center via Pd(<scp>ii</scp>)–SPRIX-catalyzed C–H activation. Chemical Communications, 2017, 53, 6887-6890.	4.1	22
68	Enantio- and Diastereoselective Betti/aza-Michael Sequence: Single Operated Preparation of Chiral 1,3-Disubstituted Isoindolines. Organic Letters, 2017, 19, 5426-5429.	4.6	22
69	Bayesian optimization with constraint on passed charge for multiparameter screening of electrochemical reductive carboxylation in a flow microreactor. Chemical Communications, 2022, 58, 3893-3896.	4.1	22
70	Highly chemoselective, oxyvanadium-catalysed cleavage of α-hydroxy ketones. Journal of the Chemical Society Perkin Transactions 1, 1998, , 7-8.	0.9	21
71	Design and synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron: Asymmetry, 2012, 23, 843-851.	1.8	21
72	Pd-catalyzed enantioselective intramolecular α-arylation of α-substituted cyclic ketones: facile synthesis of functionalized chiral spirobicycles. Organic and Biomolecular Chemistry, 2015, 13, 4837-4840.	2.8	21

#	Article	IF	CITATIONS
73	Chiral vanadium complex-catalyzed oxidative coupling of arenols. Tetrahedron, 2020, 76, 131645.	1.9	21
74	Aerobic deprotection of monothioacetals catalyzed by trichlorooxyvanadium. Tetrahedron Letters, 1999, 40, 9055-9057.	1.4	20
75	Development of new methods toward efficient immobilization of chiral catalysts. Tetrahedron, 2007, 63, 6512-6528.	1.9	20
76	Chemo- and enantioselective hetero-coupling of hydroxycarbazoles catalyzed by a chiral vanadium(<scp>v</scp>) complex. Organic Chemistry Frontiers, 2021, 8, 4878-4885.	4.5	20
77	Pd(ii)–SDP-catalyzed enantioselective 5-exo-dig cyclization of γ-alkynoic acids: application to the synthesis of functionalized dihydofuran-2(3H)-ones containing a chiral quaternary carbon center. Organic and Biomolecular Chemistry, 2013, 11, 5936.	2.8	19
78	Facile Synthesis of Spirooxindoles via an Enantioselective Organocatalyzed Sequential Reaction of Oxindoles with Ynone. Heterocycles, 2017, 95, 761.	0.7	19
79	Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. Journal of Organic Chemistry, 2021, 86, 16035-16044.	3.2	19
80	Energy-, time-, and labor-saving synthesis of α-ketiminophosphonates: machine-learning-assisted simultaneous multiparameter screening for electrochemical oxidation. Green Chemistry, 2021, 23, 5825-5831.	9.0	18
81	Bifunctional Organocatalysts for Enantioselective aza-Morita-Baylis-Hillman (aza-MBH) Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 1089-1098.	0.1	17
82	Development of efficient methods for the immobilisation of multicomponent asymmetric catalysts. Journal of Experimental Nanoscience, 2006, 1, 477-510.	2.4	15
83	Asymmetric synthesis of chiral spiro bis(isoxazoline) and spiro (isoxazole–isoxazoline) ligands. Tetrahedron: Asymmetry, 2010, 21, 379-381.	1.8	15
84	DFT Study of a 5-endo-trig-Type Cyclization of 3-Alkenoic Acids by Using Pd-Spiro-bis(isoxazoline) as Catalyst: Importance of the Rigid Spiro Framework for Both Selectivity and Reactivity. Chemistry - A European Journal, 2013, 19, 9518-9525.	3.3	15
85	Synthesis of Novel Chiral Spiro Bis(pyrazole) Ligands. Heterocycles, 2003, 60, 2551.	0.7	14
86	Spiro Crown Ethers Bearing (S)-1,1'-Spirobiindanes as Chiral Backbones. Heterocycles, 2005, 66, 639.	0.7	14
87	Synthesis of novel spiro imidazolium salts as chiral ionic liquids. Tetrahedron, 2007, 63, 12702-12711.	1.9	14
88	Catalytic and enantioselective oxa-Piancatelli reaction using a chiral vanadium complex. Chemical Communications, 2020, 56, 10151-10154.	4.1	14
89	Azopyridine-based chiral oxazolines with rare-earth metals for photoswitchable catalysis. Chemical Communications, 2021, 57, 7414-7417.	4.1	14
90	Micelle-derived polymer supports for enantioselective catalysts. Tetrahedron Letters, 2005, 46, 1193-1197.	1.4	13

#	Article	IF	CITATIONS
91	Synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron Letters, 2011, 52, 6877-6879.	1.4	13
92	Roomâ€Temperature, Metalâ€Free, and Oneâ€Pot Preparation of 2 H â€Indazoles through a Mills Reaction and Cyclization Sequence. Chemistry - A European Journal, 2019, 25, 9866-9869.	3.3	13
93	One-Pot Preparation of Chiral Dinuclear Vanadium(V) Complex. Synlett, 2009, 2009, 1667-1669.	1.8	12
94	Pd(II)-catalyzed diastereoselective and enantioselective domino cyclization/cycloaddition reactions of alkenyl oximes for polycyclic heterocycles with four chiral stereogenic centers. Tetrahedron Letters, 2015, 56, 4316-4319.	1.4	11
95	Enantioselective Aldolâ€Type Reaction Using Diketene. Synthetic Communications, 2004, 34, 4487-4492.	2.1	10
96	Organocatalyzed [4+2] Annulation of Allâ€Carbon Tetrasubstituted Alkenes with Allenoates: Synthesis of Highly Functionalized 2 <i>H</i> ―and 4 <i>H</i> â€Pyran Derivatives ChemistrySelect, 2016, 1, 5414-5420.	1.5	10
97	Enantioselective organocatalytic oxidation of ketimine. Organic and Biomolecular Chemistry, 2016, 14, 761-767.	2.8	10
98	Enantioselective Oneâ€pot Synthesis of 3â€Azabicyclo[3.1.0]hexanes via Allylic Substitution and Oxidative Cyclization. Advanced Synthesis and Catalysis, 2020, 362, 1537-1547.	4.3	9
99	Organocatalytic Synthesis of Highly Functionalized Heterocycles by Enantioselective aza-Morita–Baylis–Hillman-Type Domino Reactions. Chemical and Pharmaceutical Bulletin, 2020, 68, 299-315.	1.3	9
100	Chiral Vanadium(V)-catalyzed Oxidative Coupling of 4-Hydroxycarbazoles. Chemistry Letters, 2021, 50, 1755-1757.	1.3	9
101	Optical resolution of tetra isopropyl-substituted spiro bis(isoxazoline)i-Pr-SPRIX. Journal of Organometallic Chemistry, 2007, 692, 495-498.	1.8	8
102	Chiral bifunctional organocatalysts bearing a 1,3-propanediamine unit for the aza-MBH reaction. Tetrahedron: Asymmetry, 2013, 24, 1189-1192.	1.8	8
103	Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence. Catalysts, 2020, 10, 860.	3.5	8
104	A BrÃ,nsted Acid and Lewis Base Organocatalyst for the Aza-Morita-Baylis-Hillman Reaction. Synlett, 2006, 2006, 0761-0765.	1.8	7
105	Practical Stereoselective Synthesis of C3â€Spirooxindole―and C2â€Spiropseudoindoxylâ€Pyrrolidines <i>via</i> Organocatalyzed Pictetâ€Spengler Reaction/Oxidative Rearrangement Sequence. Advanced Synthesis and Catalysis, 2021, 363, 2648-2663.	4.3	7
106	Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium. RSC Advances, 2021, 11, 35342-35350.	3.6	7
107	Chiral Organocatalyzed Intermolecular Rauhut–Currier Reaction of Nitroalkenes with Ethyl Allenoate. Chemical and Pharmaceutical Bulletin, 2017, 65, 997-999.	1.3	6
108	A Concise, Catalyst-Free Synthesis of Davis' Oxaziridines using Sodium Hypochlorite. SynOpen, 2019, 03, 21-25.	1.7	6

#	Article	IF	CITATIONS
109	Bicyclo[3.3.1]nonanes as Synthetic Intermediates. XXIII. ¹ A Breakthrough by Lanthanoid Mediation in Nucleophilic Addition of Carbanions to the Inert "Fork Head―Carbonyl in Bicyclo[3.3.1]nonan-3-ones. Synthetic Communications, 1997, 27, 3313-3320.	2.1	5
110	Design and Synthesis of Novel Spiro Pyridinium and Quinolinium Salts. Heterocycles, 2003, 61, 581.	0.7	5
111	Photoswitchable Chiral Cation-Binding Catalyst: Photocontrol of Catalytic Activity on Enantioselective Aminal Synthesis. Organic Letters, 2022, 24, 2670-2674.	4.6	5
112	Dicationic Palladium(II)-Spiro bis(isoxazoline) Complex for Highly Enantioselective Isotactic Copolymerization of CO with Styrene Derivatives. Synlett, 2009, 2009, 310-314.	1.8	3
113	Structural Features and Asymmetric Environment of <i>i</i> â€Prâ€6PRIX Ligand. Chirality, 2015, 27, 532-537.	2.6	3
114	Development of Novel Immobilization Methods for Multicomponent Asymmetric Catalyst (MAC). Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 194-207.	0.1	3
115	Preparation of Optically Pure Dinuclear Cobalt(III) Complex with Î>-Configuration as a Dianionic Chiral Catalyst. Heterocycles, 2021, 103, 225.	0.7	2
116	Enantioselective Acid-Base Organocatalyzed Domino Reactions Based on aza-Morita-Baylis-Hillman Process. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 781-796.	0.1	2
117	Chiral Vanadium Complex-catalyzed Enantioselective Oxidative Coupling Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 874-884.	0.1	2
118	Metal-free C(aryl)–P bond cleavage: experimental and computational studies of the Michael addition/aryl migration of triarylphosphines to alkynyl esters. Organic Chemistry Frontiers, 0, , .	4.5	1
119	Enantioselective Synthesis of α-Methylene-γ-butyrolactones Using Chiral Pd(II)-SPRIX Catalyst ChemInform, 2003, 34, no.	0.0	0
120	Metal-Bridged Polymers as Insoluble Multicomponent Asymmetric Catalysts with High Enantiocontrol: An Approach for the Immobilization of Catalysts Without Using Any Support ChemInform, 2004, 35, no.	0.0	0
121	Dual Activation in a Homolytic Coupling Reaction Promoted by an Enantioselective Dinuclear Vanadium(IV) Catalyst ChemInform, 2004, 35, no.	0.0	0
122	Development of a Novel Chiral Spiro Ligand Bearing Oxazoline ChemInform, 2005, 36, no.	0.0	0
123	Enantioselective Aldol-Type Reaction Using Diketene ChemInform, 2005, 36, no.	0.0	0
124	Enantioselective Morita—Baylis—Hillman (MBH) Reaction Promoted by a Heterobimetallic Complex with a Lewis Base ChemInform, 2005, 36, no.	0.0	0
125	Bifunctional Organocatalysts for Enantioselective aza-Morita—Baylis—Hillman Reaction ChemInform, 2005, 36, no.	0.0	0
126	Fragmentation of Tertiary Cyclopropanol Compounds Catalyzed by Vanadyl Acetylacetonate ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
127	Synthesis of Allylamine Derivatives <i>via</i> Intermolecular Azaâ€Wackerâ€Type Reaction Promoted by Palladiumâ€SPRIX Catalyst. Advanced Synthesis and Catalysis, 2020, 362, 3558-3563.	4.3	0
128	Enantioselective Synthesis of Spiro (Isoxazole-Isoxazoline) Hybrid Ligand. Heterocycles, 2018, 97, 493.	0.7	0