
Perry A Gerakines

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7021559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ammonia Ices Revisited: New IR Intensities and Optical Constants for Solid NH ₃ . Astrophysical Journal, 2022, 925, 156.	4.5	8
2	Infrared Spectral Intensities of Amine Ices, Precursors to Amino Acids. Astrobiology, 2022, 22, 452-461.	3.0	4
3	Gas Analyzer for Monitoring H ₂ O and CO ₂ Partial Pressures in Space Instrumentation. IEEE Sensors Journal, 2022, 22, 12576-12587.	4.7	1
4	Benzene Vapor Pressures at Titan Temperatures: First Microbalance Results. Planetary Science Journal, 2022, 3, 120.	3.6	8
5	Infrared spectra and optical constants of astronomical ices: III. Propane, propylene, and propyne. Icarus, 2021, 354, 114033.	2.5	26
6	A New Method for Simulating Photoprocesses in Astrochemical Models. Astrophysical Journal, 2021, 910, 72.	4.5	5
7	Sublimation of Laboratory Ices Millimeter/Submillimeter Experiment (SubLIME): Structure-specific Identifications of Products from UV-photolyzed Methanol Ice. Astrophysical Journal, 2021, 913, 61.	4.5	12
8	Direct measurements of infrared intensities of HCN and H2OÂ+ÂHCN ices for laboratory and observational astrochemistry. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3515-3522.	4.4	24
9	Radiolytic Destruction of Uracil in Interstellar and Solar System Ices. Astrobiology, 2021, , .	3.0	5
10	Laboratory Studies of Astronomical Ices: Reaction Chemistry and Spectroscopy. Accounts of Chemical Research, 2021, 54, 280-290.	15.6	15
11	Testing Densities and Refractive Indices of Extraterrestrial Ice Components Using Molecular Structures—Organic Compounds and Molar Refractions. Astrophysical Journal, 2020, 891, 22.	4.5	20
12	The Radiation Stability of Thymine in Solid H ₂ O. Astrobiology, 2020, 20, 956-963.	3.0	7
13	A Modified Algorithm and Open-source Computational Package for the Determination of Infrared Optical Constants Relevant to Astrophysics. Astrophysical Journal, 2020, 901, 52.	4.5	26
14	Propanal, an interstellar aldehyde – first infrared band strengths and other properties of the amorphous and crystalline forms. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4606-4615.	4.4	13
15	Millimeter/Submillimeter Spectroscopic Detection of Desorbed Ices: A New Technique in Laboratory Astrochemistry. Journal of Physical Chemistry A, 2019, 123, 8702-8708.	2.5	22
16	Molecular identifications in experiments with astronomical ice analogues: new data, old strategies, and the N2Â+Âacetone system. Monthly Notices of the Royal Astronomical Society, 2019, 485, 861-871.	4.4	5
17	Propynal, an interstellar molecule with an exceptionally strong C \$equiv\$ C infrared band – laboratory infrared data and applications. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4009-4017.	4.4	16
18	IR spectra and properties of solid acetone, an interstellar and cometary molecule. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 33-39.	3.9	37

PERRY A GERAKINES

#	Article	IF	CITATIONS
19	Infrared Spectra and Interstellar Sulfur: New Laboratory Results for H ₂ S and Four Malodorous Thiol Ices. Astrophysical Journal, 2018, 867, 138.	4.5	22
20	THE EFFECTS OF EXPERIMENTAL CONDITIONS ON THE REFRACTIVE INDEX AND DENSITY OF LOW-TEMPERATURE ICES: SOLID CARBON DIOXIDE. Astrophysical Journal, 2016, 827, 98.	4.5	28
21	Activation of weak IR fundamentals of two species of astrochemical interest in the T _d point group – the importance of amorphous ices. Physical Chemistry Chemical Physics, 2015, 17, 12545-12552.	2.8	19
22	INFRARED SPECTRA AND OPTICAL CONSTANTS OF ELUSIVE AMORPHOUS METHANE. Astrophysical Journal Letters, 2015, 805, L20.	8.3	49
23	The radiation stability of glycine in solid CO2 – In situ laboratory measurements with applications to Mars. Icarus, 2015, 252, 466-472.	2.5	13
24	Metabolic precursors in astrophysical ice analogs: implications for meteorites and comets. Chemical Communications, 2015, 51, 11787-11790.	4.1	6
25	FIRST INFRARED BAND STRENGTHS FOR AMORPHOUS CO ₂ , AN OVERLOOKED COMPONENT OF INTERSTELLAR ICES. Astrophysical Journal Letters, 2015, 808, L40.	8.3	48
26	Observations of the Icy Universe. Annual Review of Astronomy and Astrophysics, 2015, 53, 541-581.	24.3	654
27	Infrared spectra and optical constants of astronomical ices: II. Ethane and ethylene. Icarus, 2014, 243, 148-157.	2.5	74
28	Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes. Geochimica Et Cosmochimica Acta, 2014, 136, 1-12.	3.9	47
29	Glycine's Radiolytic Destruction in Ices: First <i>in situ</i> Laboratory Measurements for Mars. Astrobiology, 2013, 13, 647-655.	3.0	34
30	Irradiated benzene ice provides clues to meteoritic organic chemistry. Icarus, 2013, 226, 1201-1209.	2.5	23
31	NEAR-INFRARED BAND STRENGTHS OF MOLECULES DILUTED IN N ₂ AND H ₂ O ICE MIXTURES RELEVANT TO INTERSTELLAR AND PLANETARY ICES. Astrophysical Journal, 2012, 759, 74.	4.5	11
32	In situ measurements of the radiation stability of amino acids at 15–140 K. Icarus, 2012, 220, 647-659.	2.5	56
33	THE THERMAL EVOLUTION OF ICES IN THE ENVIRONMENTS OF NEWLY FORMED STARS: THE CO ₂ DIAGNOSTIC. Astrophysical Journal, 2011, 730, 124.	4.5	23
34	Simultaneous fitting of Mars Mössbauer data. Hyperfine Interactions, 2009, 188, 113-120.	0.5	15
35	THE NATURE OF CARBON DIOXIDE BEARING ICES IN QUIESCENT MOLECULAR CLOUDS. Astrophysical Journal, 2009, 695, 94-100.	4.5	42
36	Fully Sampled Maps of Ices and Silicates in Front of Cepheus A East with theSpitzer Space Telescope. Astrophysical Journal, 2008, 672, 361-370.	4.5	9

PERRY A GERAKINES

#	Article	IF	CITATIONS
37	The Abundance of Carbon Dioxide Ice in the Quiescent Intracloud Medium. Astrophysical Journal, 2007, 655, 332-341.	4.5	111
38	Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains. Astrophysical Journal, 2006, 645, 324-336.	4.5	35
39	Sp i t zer Observations of CO 2 Ice toward Field Stars in the Taurus Molecular Cloud. Astrophysical Journal, 2005, 627, L33-L36.	4.5	78
40	The Strengths of Nearâ€Infrared Absorption Features Relevant to Interstellar and Planetary Ices. Astrophysical Journal, 2005, 620, 1140-1150.	4.5	89
41	Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide. Icarus, 2004, 170, 202-213.	2.5	159
42	Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface. Astrophysical Journal, 2001, 547, 872-884.	4.5	236
43	The Formation of Cyanate Ion (OCNâ^') in Interstellar Ice Analogs. Astrophysical Journal, 2001, 550, 1140-1150.	4.5	101
44	Solid Carbon Dioxide in Regions of Lowâ€Mass Star Formation. Astrophysical Journal, 2001, 558, 185-193.	4.5	78
45	Carbon Suboxide in Astrophysical Ice Analogs. Icarus, 2001, 154, 372-380.	2.5	73
46	Technology Considerations Relevant to an Exobiology Surface-Science Approach for Europa. Astrobiology, 2001, 1, 467-476.	3.0	2
47	An Inventory of Interstellar Ices toward the Embedded Protostar W33A. Astrophysical Journal, 2000, 536, 347-356.	4.5	371
48	Observations of Solid Carbon Dioxide in Molecular Clouds with theInfrared Space Observatory. Astrophysical Journal, 1999, 522, 357-377.	4.5	250
49	Apolar ices. Faraday Discussions, 1998, 109, 463-474.	3.2	21
50	Processing of Icy Mantles in Protostellar Envelopes. Astrophysical Journal, 1998, 498, 716-727.	4.5	96
51	Detection of Abundant CO[TINF]2[/TINF] Ice in the Quiescent Dark Cloud Medium toward Elias 16. Astrophysical Journal, 1998, 498, L159-L163.	4.5	143
52	Infrared Spectroscopy of Dust in the Diffuse Interstellar Medium toward Cygnus OB2 No. 12. Astrophysical Journal, 1997, 490, 729-734.	4.5	137
53	Infrared Properties of Isolated Water Ice. Globular Clusters - Guides To Galaxies, 1996, , 309-312.	0.1	2
54	Recent results from the Leiden Observatory Laboratory: (a) band strengths in mixed ices; (b) UV photolysis of solid methanol. Planetary and Space Science, 1995, 43, 1253-1256.	1.7	16

#	Article	IF	CITATIONS
55	A review of interstellar polarization properties and recent measurements toward the chamaeleon I and taurus dark clouds. Planetary and Space Science, 1995, 43, 1325-1328.	1.7	3
56	Approaching the Interstellar Grain Organic Refractory Component. Astrophysical Journal, 1995, 455, .	4.5	149