Katherine E Tansey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7019492/publications.pdf

Version: 2024-02-01

61 papers 10,937 citations

36 h-index 106344 65 g-index

71 all docs

71 docs citations

71 times ranked

18418 citing authors

#	Article	IF	CITATIONS
1	Identifying the Common Genetic Basis of Antidepressant Response. Biological Psychiatry Global Open Science, 2022, 2, 115-126.	2.2	31
2	Global Brain Flexibility During Working Memory Is Reduced in a High-Genetic-Risk Group for Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 1176-1184.	1.5	6
3	The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophrenia Bulletin, 2020, 46, 336-344.	4.3	60
4	Classical Human Leukocyte Antigen Alleles and C4 Haplotypes Are Not Significantly Associated With Depression. Biological Psychiatry, 2020, 87, 419-430.	1.3	27
5	Polygenic impact of common genetic risk loci for Alzheimer's disease on cerebral blood flow in young individuals. Scientific Reports, 2019, 9, 467.	3.3	19
6	Association of Whole-Genome and NETRIN1 Signaling Pathway–Derived Polygenic Risk Scores for Major Depressive Disorder and White Matter Microstructure in the UK Biobank. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 91-100.	1.5	16
7	Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression. Schizophrenia Bulletin, 2019, 45, 1267-1278.	4.3	22
8	Structural and Functional Neuroimaging of Polygenic Risk for Schizophrenia: A Recall-by-Genotype–Based Approach. Schizophrenia Bulletin, 2019, 45, 405-414.	4.3	35
9	Oscillatory hyperactivity and hyperconnectivity in young APOE-É>4 carriers and hypoconnectivity in Alzheimer's disease. ELife, 2019, 8, .	6.0	78
10	Enrichment of schizophrenia heritability in both neuronal and glia cell regulatory elements. Translational Psychiatry, 2018, 8, 7.	4.8	18
11	Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nature Communications, 2018, 9, 711.	12.8	54
12	The Psychiatric Risk Gene Transcription Factor 4 (TCF4) Regulates Neurodevelopmental Pathways Associated With Schizophrenia, Autism, and Intellectual Disability. Schizophrenia Bulletin, 2018, 44, 1100-1110.	4.3	79
13	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	21.4	2,224
14	Examining cognition across the bipolar/schizophrenia diagnostic spectrum. Journal of Psychiatry and Neuroscience, 2018, 43, 245-253.	2.4	49
15	Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: Meta-analysis of data from genome-wide association studies. European Neuropsychopharmacology, 2018, 28, 945-954.	0.7	64
16	Genetic risk for Alzheimer's disease is concentrated in specific macrophage and microglial transcriptional networks. Genome Medicine, 2018, 10, 14.	8.2	83
17	Fractional anisotropy of the uncinate fasciculus and cingulum in bipolar disorder type I, type II, unaffected siblings and healthy controls. British Journal of Psychiatry, 2018, 213, 548-554.	2.8	34
18	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	21.4	286

#	Article	IF	CITATIONS
19	Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Biological Psychiatry, 2017, 81, 325-335.	1.3	175
20	Multimodal Brain Imaging Reveals Structural Differences in Alzheimer's Disease Polygenic Risk Carriers: A Study in Healthy Young Adults. Biological Psychiatry, 2017, 81, 154-161.	1.3	91
21	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	27.8	544
22	Pharmacogenetics of antidepressant response: A polygenic approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 128-134.	4.8	71
23	Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain, Behavior, and Immunity, 2017, 62, 344-350.	4.1	202
24	The genomeâ€wide expression effects of escitalopram and its relationship to neurogenesis, hippocampal volume, and antidepressant response. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 427-434.	1.7	16
25	An Analysis of Two Genome-wide Association Meta-analyses Identifies a New Locus for Broad Depression Phenotype. Biological Psychiatry, 2017, 82, 322-329.	1.3	84
26	Polygenic Risk of Psychosis and Ventral Striatal Activation During Reward Processing in Healthy Adolescents. JAMA Psychiatry, 2016, 73, 852.	11.0	40
27	Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Human Brain Mapping, 2016, 37, 491-500.	3.6	27
28	Evidence of Common Genetic Overlap Between Schizophrenia and Cognition. Schizophrenia Bulletin, 2016, 42, 832-842.	4.3	102
29	Transcriptomics and the mechanisms of antidepressant efficacy. European Neuropsychopharmacology, 2016, 26, 105-112.	0.7	19
30	Phenotypic Manifestation of Genetic Risk for Schizophrenia During Adolescence in the General Population. JAMA Psychiatry, 2016, 73, 221.	11.0	197
31	Phenotypic Association Analyses With Copy Number Variation in Recurrent Depressive Disorder. Biological Psychiatry, 2016, 79, 329-336.	1.3	21
32	Exploring the role of drug-metabolising enzymes in antidepressant side effects. Psychopharmacology, 2015, 232, 2609-2617.	3.1	31
33	Alzheimer's disease risk variant in $\langle i \rangle$ CLU $\langle i \rangle$ is associated with neural inefficiency in healthy individuals. Alzheimer's and Dementia, 2015, 11, 1144-1152.	0.8	33
34	The inflammatory cytokines: molecular biomarkers for major depressive disorder?. Biomarkers in Medicine, 2015, 9, 169-180.	1.4	31
35	Schizophrenia risk variants modulate white matter volume across the psychosis spectrum: Evidence from two independent cohorts. Neurolmage: Clinical, 2015, 7, 764-770.	2.7	22
36	Schizophrenia Genetics: Building the Foundations of the Future. Schizophrenia Bulletin, 2015, 41, 15-19.	4.3	8

#	Article	IF	CITATIONS
37	Putative Transcriptomic Biomarkers in the Inflammatory Cytokine Pathway Differentiate Major Depressive Disorder Patients from Control Subjects and Bipolar Disorder Patients. PLoS ONE, 2014, 9, e91076.	2.5	39
38	Genetic susceptibility for bipolar disorder and response to antidepressants in major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 77-83.	1.7	16
39	An Inflammatory Biomarker as a Differential Predictor of Outcome of Depression Treatment With Escitalopram and Nortriptyline. American Journal of Psychiatry, 2014, 171, 1278-1286.	7.2	336
40	Investigation of blood mRNA biomarkers for suicidality in an independent sample. Translational Psychiatry, 2014, 4, e474-e474.	4.8	24
41	Interaction between stress and the BDNFVal66Met polymorphism in depression: a systematic review and meta-analysis. BMC Medicine, 2014, 12, 7.	5.5	228
42	FUNCTIONAL POLYMORPHISM IN THE BRAIN-DERIVED NEUROTROPHIC FACTOR GENE INTERACTS WITH STRESSFUL LIFE EVENTS BUT NOT CHILDHOOD MALTREATMENT IN THE ETIOLOGY OF DEPRESSION. Depression and Anxiety, 2014, 31, 326-334.	4.1	37
43	Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. Journal of Psychopharmacology, 2014, 28, 133-141.	4.0	7 5
44	Genetic relationships between suicide attempts, suicidal ideation and major psychiatric disorders: A genomeâ€wide association and polygenic scoring study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 428-437.	1.7	99
45	Copy number variants and therapeutic response to antidepressant medication in major depressive disorder. Pharmacogenomics Journal, 2014, 14, 395-399.	2.0	20
46	Contribution of Common Genetic Variants to Antidepressant Response. Biological Psychiatry, 2013, 73, 679-682.	1.3	199
47	Tumor necrosis factor and its targets in the inflammatory cytokine pathway are identified as putative transcriptomic biomarkers for escitalopram response. European Neuropsychopharmacology, 2013, 23, 1105-1114.	0.7	68
48	A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 2013, 18, 497-511.	7.9	1,002
49	Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8708-8713.	7.1	272
50	Common Genetic Variation and Antidepressant Efficacy in Major Depressive Disorder: A Meta-Analysis of Three Genome-Wide Pharmacogenetic Studies. American Journal of Psychiatry, 2013, 170, 207-217.	7.2	216
51	Whole-exome sequencing identifies a polymorphism in the BMP5 gene associated with SSRI treatment response in major depression. Journal of Psychopharmacology, 2013, 27, 915-920.	4.0	31
52	DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Translational Psychiatry, 2013, 3, e300-e300.	4.8	71
53	ATP-binding cassette sub-family F member 1 (ABCF1) is identified as a putative therapeutic target of escitalopram in the inflammatory cytokine pathway. Journal of Psychopharmacology, 2013, 27, 609-615.	4.0	20
54	Genetic Predictors of Response to Serotonergic and Noradrenergic Antidepressants in Major Depressive Disorder: A Genome-Wide Analysis of Individual-Level Data and a Meta-Analysis. PLoS Medicine, 2012, 9, e1001326.	8.4	110

KATHERINE E TANSEY

#	Article	IF	CITATIONS
55	Biomarkers predicting treatment outcome in depression: what is clinically significant?. Pharmacogenomics, 2012, 13, 233-240.	1.3	44
56	Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism. Molecular Autism, 2011, 2, 3.	4.9	71
57	Lack of association between markers in the ITGA3, ITGAV, ITGA6 and ITGB3 and autism in an Irish sample. Autism Research, 2010, 3, 342-344.	3.8	6
58	Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 2010, 466, 368-372.	27.8	1,803
59	A genome-wide scan for common alleles affecting risk for autism. Human Molecular Genetics, 2010, 19, 4072-4082.	2.9	538
60	Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: Genetic and molecular studies. Neuroscience Letters, 2010, 474, 163-167.	2.1	90
61	A genome-wide linkage and association scan reveals novel loci for autism. Nature, 2009, 461, 802-808.	27.8	570