List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7018431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative analysis of the electrochemical performance of multi-redox molecular electrocatalysts. A mechanistic study of chlorate electrocatalytic reduction in presence of a molybdenium polyoxometalate. Journal of Catalysis, 2022, 413, 467-477.	3.1	6
2	Insights into the Voltammetry of Cavity Microelectrodes Filled with Metal Powders: The Value of Square Wave Voltammetry. ChemElectroChem, 2021, 8, 735-744.	1.7	0
3	Spectroelectrochemistry for the study of reversible electrode reactions with complex stoichiometries. Electrochemistry Communications, 2021, 123, 106915.	2.3	4
4	Impact experiments at the Interface between Two Immiscible Electrolyte Solutions (ITIES). Current Opinion in Electrochemistry, 2021, 26, 100664.	2.5	12
5	Analytical theory for ion transfer–electron transfer coupled reactions at redox layer–modified/thick film–modified electrodes. Current Opinion in Electrochemistry, 2020, 19, 78-87.	2.5	10
6	General Explicit Mathematical Solution for the Voltammetry of Nonunity Stoichiometry Electrode Reactions: Diagnosis Criteria in Cyclic Voltammetry. Analytical Chemistry, 2020, 92, 3728-3734.	3.2	14
7	Differential double pulse voltammetry (DDPV) and additive differential pulse voltammetry (ADPV) applied to the study of the ACDT mechanism. Journal of Solid State Electrochemistry, 2020, 24, 2819-2831.	1.2	2
8	Microelectrode arrays with active-area geometries defined by spatial light modulation. Electrochimica Acta, 2020, 356, 136849.	2.6	8
9	Cyclic square wave voltammetry of electrode reactions with nonunity stoichiometry. Journal of Electroanalytical Chemistry, 2020, 873, 114421.	1.9	5
10	Voltammetry at microelectrodes of reversible electrode reactions with complex stoichiometry: A general analytical theoretical framework. Journal of Electroanalytical Chemistry, 2020, 872, 113932.	1.9	4
11	Guidelines for the Voltammetric Study of Electrode Reactions with Coupled Chemical Kinetics at an Arbitrary Electrode Geometry. Analytical Chemistry, 2019, 91, 6072-6079.	3.2	6
12	Quantitative Analysis of Cyclic Voltammetry of Redox Monolayers Adsorbed on Semiconductors: Isolating Electrode Kinetics, Lateral Interactions, and Diode Currents. Analytical Chemistry, 2019, 91, 5929-5937.	3.2	36
13	Kinetic Influence of Surface Charge Transfer Reactions Preceded by Nonâ€Electrochemical Processes on the Response in Cyclic Voltammetry. ChemElectroChem, 2019, 6, 473-484.	1.7	1
14	Double Transfer Voltammetry in Two-Polarizable Interface Systems: Effects of the Lipophilicity and Charge of the Target and Compensating Ions. Analytical Chemistry, 2018, 90, 3402-3408.	3.2	2
15	Theoretical Treatment of Ion Transfers in Two Polarizable Interface Systems When the Analyte Has Access to Both Interfaces. Analytical Chemistry, 2018, 90, 2088-2094.	3.2	6
16	Carbon Support Effects and Mechanistic Details of the Electrocatalytic Activity of Polyoxometalates Investigated via Square Wave Voltacoulometry. ACS Catalysis, 2017, 7, 1501-1511.	5.5	13
17	General theoretical treatment of simple and facilitated ion transfer processes at the most common liquid/liquid microinterfaces. Sensors and Actuators B: Chemical, 2017, 253, 326-334.	4.0	5
18	Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme. Physical Chemistry Chemical Physics, 2017, 19, 16464-16476.	1.3	6

#	Article	IF	CITATIONS
19	Reprint of "Analytical theoretical approach to the transient and steady state voltammetric response of reaction mechanisms. Linear diffusion and reaction layers at micro- and submicroelectrodes of arbitrary geometryâ€# Journal of Electroanalytical Chemistry, 2017, 793, 104-112.	1.9	1
20	Single Fusion Events at Polarized Liquid–Liquid Interfaces. Angewandte Chemie - International Edition, 2017, 56, 782-785.	7.2	36
21	Single Fusion Events at Polarized Liquid–Liquid Interfaces. Angewandte Chemie, 2017, 129, 800-803.	1.6	19
22	Electrochemical and Computational Study of Ion Association in the Electroreduction of PW ₁₂ O ₄₀ ^{3–} . Journal of Physical Chemistry C, 2017, 121, 26751-26763	. ^{1.5}	14
23	Characterization of inclusion complexes of organic ions with hydrophilic hosts by ion transfer voltammetry with solvent polymeric membranes. Talanta, 2017, 164, 636-644.	2.9	6
24	Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry. Nature Communications, 2017, 8, 2066.	5.8	68
25	Transfer of complexed and dissociated ionic species at soft interfaces: a voltammetric study of chemical kinetic and diffusional effects. Physical Chemistry Chemical Physics, 2016, 18, 10158-10172.	1.3	7
26	Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: a retrospective observational study. Orphanet Journal of Rare Diseases, 2016, 11, 32.	1.2	38
27	Analytical theoretical approach to the transient and steady state voltammetric response of reaction mechanisms. Linear diffusion and reaction layers at micro- and submicroelectrodes of arbitrary geometry. Journal of Electroanalytical Chemistry, 2016, 782, 59-66.	1.9	8
28	Analytical approach to the transient and steady-state Cyclic Voltammetry of non-reversible electrode processes. Defining the transition from macro to microelectrodes. Electrochimica Acta, 2016, 213, 911-926.	2.6	5
29	Staircase, cyclic and differential voltammetries of the nine-member square scheme at microelectrodes of any geometry with arbitrary chemical stabilization of the three redox states. Journal of Solid State Electrochemistry, 2016, 20, 3239-3253.	1.2	5
30	The reaction layer at microdiscs: A cornerstone for the analytical theoretical treatment of homogeneous chemical kinetics at non-uniformly accessible microelectrodes. Electrochemistry Communications, 2016, 71, 18-22.	2.3	19
31	Voltammetry of the aqueous complexation–dissociation coupled to transfer (ACDT) mechanism with charged ligands. Physical Chemistry Chemical Physics, 2016, 18, 17091-17104.	1.3	6
32	Brute force (or not so brute) digital simulation in electrochemistry revisited. Chemical Physics Letters, 2016, 643, 71-76.	1.2	6
33	A Comprehensive Voltammetric Characterisation of ECE Processes. Electrochimica Acta, 2016, 195, 230-245.	2.6	12
34	Some Fundamental Concepts. Monographs in Electrochemistry, 2016, , 1-66.	0.2	2
35	Single Pulse Voltammetry: Reversible Electrochemical Reactions. Monographs in Electrochemistry, 2016, , 67-131.	0.2	1
36	Multipulse and Sweep Voltammetries I. Monographs in Electrochemistry, 2016, , 317-374.	0.2	1

#	Article	IF	CITATIONS
37	Multipulse and Sweep Voltammetries II. Monographs in Electrochemistry, 2016, , 375-462.	0.2	0
38	Differential Multipulse and Square Wave Voltammetries. Monographs in Electrochemistry, 2016, , 463-580.	0.2	0
39	Pulse Voltammetry in Physical Electrochemistry and Electroanalysis. Monographs in Electrochemistry, 2016, , .	0.2	66
40	Single Pulse Voltammetry: Non-reversible and Complex Electrochemical Reactions. Monographs in Electrochemistry, 2016, , 133-227.	0.2	0
41	Sensing and characterization of neurotransmitter 2-phenylethylamine based on facilitated ion transfer at solvent polymeric membranes using different electrochemical techniques. Sensors and Actuators B: Chemical, 2016, 222, 930-936.	4.0	13
42	Double Pulse Voltammetries. Monographs in Electrochemistry, 2016, , 229-316.	0.2	1
43	Recent Advances in Voltammetry. ChemistryOpen, 2015, 4, 224-260.	0.9	130
44	Normal Pulse Voltammetry and Steady State Voltammetry of the Square Mechanism at Spherical Microelectrodes. Electroanalysis, 2015, 27, 970-979.	1.5	4
45	Differential double pulse voltammetry at spherical microelectrodes for the characterization of the square mechanism. Journal of Electroanalytical Chemistry, 2015, 741, 140-148.	1.9	3
46	Application of Voltammetric Techniques at Microelectrodes to the Study of the Chemical Stability of Highly Reactive Species. Analytical Chemistry, 2015, 87, 1676-1684.	3.2	14
47	Voltammetric speciation studies of systems where the species diffusivities differ significantly. Journal of Solid State Electrochemistry, 2015, 19, 549-561.	1.2	9
48	Linear Sweep and Cyclic Voltammetries of Reversible Ion Transfer Processes at Macro―and Microcapillaries under Transient Regime. Electroanalysis, 2015, 27, 93-100.	1.5	6
49	Effects of Unequal Diffusion Coefficients and Coupled Chemical Equilibria on Square Wave Voltammetry at Disc and Hemispherical Microelectrodes. Electrochimica Acta, 2015, 176, 1044-1053.	2.6	9
50	Reverse Pulse Voltammetry at Spherical and Disc Microelectrodes: Characterization of Homogeneous Chemical Equilibria and Their Impact on the Species Diffusivities. Electrochimica Acta, 2015, 169, 300-309.	2.6	6
51	Advances in Copper Electrodeposition in Chloride Excess. A Theoretical and Experimental Approach. Electrochimica Acta, 2015, 164, 187-195.	2.6	27
52	Analytical solutions for fast and straightforward study of the effect of the electrode geometry in transient and steady state voltammetries: Single- and multi-electron transfers, coupled chemical reactions and electrode kinetics. Journal of Electroanalytical Chemistry, 2015, 756, 1-21.	1.9	29
53	Heterogeneous Catalysis of Multipleâ€Electronâ€Transfer Reactions at Nanoparticleâ€Modified Electrodes. ChemElectroChem, 2014, 1, 909-916.	1.7	4
54	Recent advances on the theory of pulse techniques: A mini review. Electrochemistry Communications, 2014, 43, 25-30.	2.3	56

#	Article	IF	CITATIONS
55	Simple Analytical Equations for the Current–Potential Curves at Microelectrodes: A Universal Approach. Journal of Physical Chemistry C, 2014, 118, 346-356.	1.5	30
56	Cyclic and Square-Wave Voltammetry at Diffusionally Asymmetric Microscopic and Nanoscopic Liquid–Liquid Interfaces: A Simple Theoretical Approach. Journal of Physical Chemistry C, 2014, 118, 18249-18256.	1.5	14
57	Facilitated ion transfer of protonated primary organic amines studied by square wave voltammetry and chronoamperometry. Analytica Chimica Acta, 2014, 826, 12-20.	2.6	22
58	Two-Electron Transfer Reactions in Electrochemistry for Solution-Soluble and Surface-Confined Molecules: A Common Approach. Journal of Physical Chemistry C, 2014, 118, 12312-12324.	1.5	19
59	Strong negative nanocatalysis: oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles. Nanoscale, 2014, 6, 11024-11030.	2.8	29
60	An approximate theoretical treatment of ion transfer processes at asymmetric microscopic and nanoscopic liquid–liquid interfaces: Single and double potential pulse techniques. Chemical Physics Letters, 2014, 597, 126-133.	1.2	10
61	Non-Nernstian Two-Electron Transfer Reactions for Immobilized Molecules: A Theoretical Study in Cyclic Voltammetry. Journal of Physical Chemistry C, 2013, 117, 5208-5220.	1.5	12
62	Analytical solution for the facilitated ion transfer at the interface between two immiscible electrolyte solutions via successive complexation reactions in any voltammetric technique: Application to square wave voltammetry and cyclic voltammetry. Electrochimica Acta, 2013, 106, 244-257.	2.6	35
63	Reversible Surface Two-Electron Transfer Reactions in Square Wave Voltcoulommetry: Application to the Study of the Reduction of Polyoxometalate [PMo ₁₂ O ₄₀] ^{3–} Immobilized at a Boron Doped Diamond Electrode. Analytical Chemistry, 2013, 85, 8764-8772.	3.2	14
64	Effects of convergent diffusion and charge transfer kinetics on the diffusion layer thickness of spherical micro- and nanoelectrodes. Physical Chemistry Chemical Physics, 2013, 15, 7106.	1.3	19
65	On the meaning of the diffusion layer thickness for slow electrode reactions. Physical Chemistry Chemical Physics, 2013, 15, 2381.	1.3	30
66	Square-wave voltammetry and square-wave voltacoulommetry applied to the study of the electrocatalytic behaviour of surface confined myoglobin. Journal of Solid State Electrochemistry, 2013, 17, 537-546.	1.2	5
67	Characterization of follow-up chemical reactions by reverse pulse voltammetry. An analytical solution for spherical electrodes and microelectrodes. Electrochimica Acta, 2013, 87, 416-424.	2.6	8
68	Variable temperature study of electro-reduction of 3-nitrophenolate via cyclic and square wave voltammetry: Molecular insights into electron transfer processes based on the asymmetric Marcus–Hush model. Electrochimica Acta, 2013, 110, 772-779.	2.6	9
69	Studies of ion transfer across liquid membranes by electrochemical techniques. Annual Reports on the Progress of Chemistry Section C, 2012, 108, 126.	4.4	40
70	Mass transport at electrodes of arbitrary geometry. Reversible charge transfer reactions in square wave voltammetry. Russian Journal of Electrochemistry, 2012, 48, 600-609.	0.3	18
71	Square wave voltammetry at disc microelectrodes for characterization of two electron redox processes. Physical Chemistry Chemical Physics, 2012, 14, 8319.	1.3	21
72	Some insights into the facilitated ion transfer voltammetric responses at ITIES exhibiting interfacial and bulk membrane kinetic effects. Physical Chemistry Chemical Physics, 2012, 14, 15340.	1.3	6

#	Article	IF	CITATIONS
73	Characterization of the Electrocatalytic Response of Monolayer-Modified Electrodes with Square-Wave Voltammetry. Journal of Physical Chemistry C, 2012, 116, 11206-11215.	1.5	10
74	Kinetic Effects of the Complexation Reaction in the Facilitated Ion Transfer at Liquid Membrane Systems of One and Two Polarized Interfaces. Theoretical Insights. Journal of Physical Chemistry A, 2012, 116, 6452-6464.	1.1	11
75	Detection of interaction between redox centers of surface confined molecules by means of Cyclic Voltammetry and Differential Staircase Voltcoulommetry. Journal of Electroanalytical Chemistry, 2012, 664, 53-62.	1.9	15
76	The use of differential pulse voltammetries to discriminate between the Butler–Volmer and the simple Marcus–Hush models for heterogeneous electron transfer: The electro-reduction of europium (III) in aqueous solution. Journal of Electroanalytical Chemistry, 2012, 668, 7-12.	1.9	33
77	Analytical Solutions for the Study of Multielectron Transfer Processes by Staircase, Cyclic, and Differential Voltammetries at Disc Microelectrodes. Journal of Physical Chemistry C, 2012, 116, 11470-11479.	1.5	26
78	Electrochemical Behavior of Two-Electron Redox Processes by Differential Pulse Techniques at Microelectrodes. Journal of Physical Chemistry C, 2012, 116, 1070-1079.	1.5	8
79	Electrode modification using porous layers. Maximising the analytical response by choosing the most suitable voltammetry: Differential Pulse vs Square Wave vs Linear sweep voltammetry. Electrochimica Acta, 2012, 73, 3-9.	2.6	25
80	Giving physical insight into the Butler–Volmer model of electrode kinetics: Application of asymmetric Marcus–Hush theory to the study of the electroreductions of 2-methyl-2-nitropropane, cyclooctatetraene and europium(III) on mercury microelectrodes. Journal of Electroanalytical Chemistry, 2012, 672, 45-52.	1.9	39
81	Differential pulse techniques in weakly supported media: Changes in the kinetics and thermodynamics of electrode processes resulting from the supporting electrolyte concentration. Journal of Electroanalytical Chemistry, 2012, 673, 13-23.	1.9	10
82	lon transfer through solvent polymeric membranes driven by an exponential current flux. Physical Chemistry Chemical Physics, 2011, 13, 5127.	1.3	3
83	Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes. Physical Chemistry Chemical Physics, 2011, 13, 16748.	1.3	39
84	Study of ion transfer through liquid membrane systems by Current Reversal Chronopotentiometric techniques. Journal of Electroanalytical Chemistry, 2011, 661, 219-225.	1.9	1
85	Voltammetry of Electrochemically Reversible Systems at Electrodes of Any Geometry: A General, Explicit Analytical Characterization. Journal of Physical Chemistry C, 2011, 115, 4054-4062.	1.5	46
86	Quantitative weaknesses of the Marcus-Hush theory of electrode kinetics revealed by Reverse Scan Square Wave Voltammetry: The reduction of 2-methyl-2-nitropropane at mercury microelectrodes. Chemical Physics Letters, 2011, 512, 133-137.	1.2	31
87	Catalytic mechanism in cyclic voltammetry at disc electrodes: an analytical solution. Physical Chemistry Chemical Physics, 2011, 13, 14694.	1.3	21
88	A comparison of Marcus–Hush vs. Butler–Volmer electrode kinetics using potential pulse voltammetric techniques. Journal of Electroanalytical Chemistry, 2011, 660, 169-177.	1.9	26
89	Application of Current Fluxes to the Characterization of Ion Transfer at Solvent Polymeric Membranes with One and Two Polarized Interfaces. Electroanalysis, 2011, 23, 2188-2196.	1.5	3
90	Study of homogeneous chemical reactions at spherical electrodes and microelectrodes in Additive Differential Pulse Voltammetry. Electrochimica Acta, 2011, 56, 5335-5342.	2.6	10

ANGELA MOLINA

#	Article	IF	CITATIONS
91	The transient and stationary behaviour of first-order catalytic mechanisms at disc and hemisphere electrodes. Electrochimica Acta, 2011, 56, 7404-7410.	2.6	16
92	Analytical expressions for transient diffusion layer thicknesses at non uniformly accessible electrodes. Electrochimica Acta, 2011, 56, 4589-4594.	2.6	24
93	Electrochemical digital simulation with highly expanding grid four point discretization: Can Crank–Nicolson uncouple diffusion and homogeneous chemical reactions?. Electrochimica Acta, 2011, 56, 5707-5716.	2.6	22
94	Reaction layer thickness of a catalytic mechanism under transient and stationary chronopotentiometric conditions. Journal of Electroanalytical Chemistry, 2011, 655, 173-179.	1.9	3
95	Comparison between double pulse and multipulse differential techniques. Journal of Electroanalytical Chemistry, 2011, 659, 12-24.	1.9	39
96	Application of double pulse theory for hemispherical microelectrodes to the experimental study of slow charge transfer processes. Electrochimica Acta, 2010, 55, 6577-6585.	2.6	13
97	Transient and steady state behaviour of electrochemical reactions preceded by a chemical step at spherical electrodes: A chronopotentiometric study. Journal of Electroanalytical Chemistry, 2010, 645, 74-80.	1.9	1
98	Comparison Between a Charge Transfer Process and an Electrocatalytic Process in Cyclic Voltammetry and Cyclic Voltcoulommetry. Application to the Oxidation of Ferrocyanide at a Ferroceneâ€Monolayer Modified Gold Electrode. Electroanalysis, 2010, 22, 106-112.	1.5	3
99	Advances in the Study of Ion Transfer at Liquid Membranes with Two Polarized Interfaces by Square Wave Voltammetry. Electroanalysis, 2010, 22, 1634-1642.	1.5	25
100	Study of Electrochemical Processes with Coupled Homogeneous Chemical Reaction in Differential Pulse Voltammetry at Spherical Electrodes and Microhemispheres. Electroanalysis, 2010, 22, 1857-1866.	1.5	17
101	Additive Differential Pulse Voltammetry for the Study of Slow Charge Transfer Processes at Spherical Electrodes. Electroanalysis, 2010, 22, 2784-2793.	1.5	11
102	Analytical solution for Reverse Pulse Voltammetry at spherical electrodes: A remarkably sensitive method for the characterization of electrochemical reversibility and electrode kinetics. Journal of Electroanalytical Chemistry, 2010, 648, 67-77.	1.9	13
103	Characterization of slow charge transfer processes in differential pulse voltammetry at spherical electrodes and microelectrodes. Electrochimica Acta, 2010, 55, 5163-5172.	2.6	28
104	Value of the exponential current–time perturbation for achieving stationary polarisation curves at planar and spherical electrodes of any size. Electrochimica Acta, 2010, 55, 9010-9018.	2.6	1
105	Theory of linear sweep/cyclic voltammetry for the electrochemical reaction mechanism involving a redox catalyst couple attached to a spherical electrode. Electrochimica Acta, 2010, 56, 543-552.	2.6	15
106	Electrocatalysis at Modified Microelectrodes: A Theoretical Approach to Cyclic Voltammetry. Journal of Physical Chemistry C, 2010, 114, 14542-14551.	1.5	11
107	Geometrical Insights of Transient Diffusion Layers. Journal of Physical Chemistry C, 2010, 114, 4093-4099.	1.5	28
108	Physical insights of salt transfer through solvent polymeric membranes by means of electrochemical methods. Physical Chemistry Chemical Physics, 2010, 12, 13296.	1.3	16

#	Article	IF	CITATIONS
109	Lability of metal complexes at spherical sensors. Dynamic voltammetric measurements. Physical Chemistry Chemical Physics, 2010, 12, 5396.	1.3	15
110	Theoretical and Experimental Study of the Homogeneous Catalytic Oxidation of Nicotinamide Adenine Dinucleotide (NADH) at Spherical Gold Electrodes Using Linear Sweep Voltammetry and Chronopotentiometry. Electroanalysis, 2009, 21, 740-748.	1.5	2
111	Ion Transfer Square Wave Voltammetry of Ionic Liquid Cations with a Solvent Polymeric Membrane Ion Sensor. Electroanalysis, 2009, 21, 2297-2302.	1.5	15
112	Rigorous analytical solution for a preceding chemical reaction in Normal Pulse Voltammetry at spherical electrodes and microelectrodes. Journal of Electroanalytical Chemistry, 2009, 633, 7-14.	1.9	17
113	Reverse Pulse Voltammetry at spherical electrodes: Simultaneous determination of diffusion coefficients and formal potentials. Application to Room Temperature Ionic Liquids. Journal of Electroanalytical Chemistry, 2009, 634, 1-10.	1.9	19
114	Theory for double potential step chronoamperometry for any potential values at spherical electrodes. Electrochimica Acta, 2009, 54, 2320-2328.	2.6	22
115	Analytical l–E response for several multistep potential techniques applied to an electrocatalytic process at mediator modified electrodes. Electrochimica Acta, 2009, 54, 6154-6160.	2.6	13
116	Theoretical and experimental study of Differential Pulse Voltammetry at spherical electrodes: Measuring diffusion coefficients and formal potentials. Journal of Electroanalytical Chemistry, 2009, 634, 73-81.	1.9	40
117	Square Wave Voltammetry and Voltcoulometry applied to electrocatalytic reactions. Oxidation of ferrocyanide at a ferrocene modified gold electrode. Journal of Electroanalytical Chemistry, 2009, 634, 90-97.	1.9	24
118	A simple transient approach to dynamic metal speciation: Can independent of time complex voltammetric lability criteria be used?. Electrochemistry Communications, 2009, 11, 562-567.	2.3	9
119	Electrochemical digital simulations with an exponentially expanding grid: General expressions for higher order approximations to spatial derivatives. Electrochimica Acta, 2009, 54, 1042-1055.	2.6	27
120	Uptake of Molecular Species by Spherical Droplets and Particles Monitored Voltammetrically. Journal of Physical Chemistry C, 2009, 113, 17215-17222.	1.5	9
121	Electrocatalytic Responses at Mediator Modified Electrodes with Several Cyclic Step and Cyclic Sweep Potential Techniques. Application to the Oxidation of Ascorbate at a Ferrocene-Monolayer Modified Gold Electrode. Analytical Chemistry, 2009, 81, 6830-6836.	3.2	9
122	Ion transfer across a liquid membrane. General solution for the current-potential response of any voltammetric technique. Physical Chemistry Chemical Physics, 2009, 11, 1159.	1.3	28
123	Differential Pulse Voltammetry for Ion Transfer at Liquid Membranes with Two Polarized Interfaces. Analytical Chemistry, 2009, 81, 4220-4225.	3.2	24
124	Potentiostatic voltammetry at spherical electrodes and microelectrodes in the presence of product. Journal of Electroanalytical Chemistry, 2008, 617, 14-26.	1.9	23
125	Application of a Power Time Current to the Study of a Catalytic Mechanism in Chronopotentiometry and Reciprocal Derivative Chronopotentiometry. Advantages of a Cyclic Stationary Response. Electroanalysis, 2008, 20, 1175-1185.	1.5	9
126	Study of electrocatalytic processes at mediator modified interfaces with reciprocal derivative chronopotentiometry with exponential time current. Journal of Electroanalytical Chemistry, 2008, 623, 61-67.	1.9	3

#	Article	IF	CITATIONS
127	Potential step chronoamperometry at hemispherical mercury electrodes: The formation of thallium amalgams and the measurement of the diffusion coefficient of thallium in mercury. Journal of Electroanalytical Chemistry, 2008, 623, 165-169.	1.9	18
128	Double potential step chronoamperometry at spherical electrodes and microelectrodes. Electrochemistry Communications, 2008, 10, 376-381.	2.3	11
129	Study of catalytic homogeneous electrochemical reactions with reciprocal derivative chronopotentiometry using exponential time currents at spherical electrodes. Electrochimica Acta, 2008, 54, 467-473.	2.6	7
130	Study of Multicenter Redox Molecules with Square Wave Voltammetry. Journal of Physical Chemistry C, 2007, 111, 12446-12453.	1.5	33
131	Square Wave Voltcoulometry:  A Tool for the Study of Strongly adsorbed Redox Molecules. Analytical Chemistry, 2007, 79, 7580-7587.	3.2	24
132	General Behavior of thel–E and Δl–E Curves Obtained when a Multistep Potential is Applied to an Electroactive Monolayer. Electroanalysis, 2007, 19, 936-944.	1.5	10
133	Application of several multipotential step techniques to the study of multicenter molecules at spherical electrodes of any size. Journal of Electroanalytical Chemistry, 2007, 603, 249-259.	1.9	12
134	Voltammetry of some catamphiphilic drugs with solvent polymeric membrane ion sensors. Journal of Electroanalytical Chemistry, 2007, 605, 157-161.	1.9	17
135	Study of charge transfer processes in a surface confined redox system by means of differential staircase voltacoulommetry. Electrochimica Acta, 2007, 52, 4351-4362.	2.6	11
136	Differential Pulse Voltammetry and Additive Differential Pulse Voltammetry with Solvent Polymeric Membrane Ion Sensors. Analytical Chemistry, 2006, 78, 8129-8133.	3.2	27
137	Modelling of magnetic anisotropy in the finite element method. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2006, 25, 609-615.	0.5	3
138	Analytical expressions of the l–E–t curves of a CE process with a fast chemical reaction at spherical electrodes and microelectrodes. Electrochemistry Communications, 2006, 8, 1453-1460.	2.3	28
139	Application of chronopotentiometry and derivative chronopotentiometry with an alternating current to the study of a slow charge transfer in a surface confined redox system. Electrochimica Acta, 2006, 51, 4358-4366.	2.6	7
140	Chronoamperometric behaviour of a CE process with fast chemical reactions at spherical electrodes and microelectrodes. Comparison with a catalytic reaction. Electrochemistry Communications, 2006, 8, 1062-1070.	2.3	51
141	Theoretical study of a catalytic mechanism using cyclic and derivative chronopotentiometric techniques with spherical electrodes. Electrochimica Acta, 2006, 51, 2851-2861.	2.6	9
142	Analytical solutions of the multipotential pulse quasi-reversible Q–E–t and I–E–t responses of strongly adsorbed redox molecules. Journal of Electroanalytical Chemistry, 2006, 596, 74-86.	1.9	21
143	Further Applications of Cyclic Voltammetry with Spherical Electrodes. Collection of Czechoslovak Chemical Communications, 2005, 70, 133-153.	1.0	27
144	Theoretical background for the behavior of molecules containing multiple interacting or noninteracting redox centers in any multipotential step technique and cyclic voltammetry. Journal of Electroanalytical Chemistry, 2005, 576, 9-19.	1.9	37

#	Article	lF	CITATIONS
145	The pathways towards the steady state E/t and I/E responses when using an alternating current. Journal of Electroanalytical Chemistry, 2005, 580, 179-192.	1.9	1
146	Linear sweep voltammetric and chronopotentiometric charge/potential curves for non reversible redox monolayers. Journal of Electroanalytical Chemistry, 2005, 583, 184-192.	1.9	9
147	Singularities of the catalytic mechanism in its route to the steady state. Journal of Electroanalytical Chemistry, 2005, 583, 193-202.	1.9	25
148	Particular time-independent behaviour of the charge–potential and capacitance–potential responses of a quasi-reversible redox monolayer with chronopotentiometry with an exponential current. Journal of Electroanalytical Chemistry, 2005, 585, 132-141.	1.9	5
149	Study of multistep electrode processes in triple potential step techniques at spherical electrodes. Electrochemistry Communications, 2005, 7, 751-761.	2.3	7
150	Steady State Reciprocal Derivative Chronopotentiometry with Programmed Currents at Microelectrodes. Electroanalysis, 2005, 17, 674-684.	1.5	13
151	Study of the Behavior of an EC Mechanism Using Cyclic and Derivative Chronopotentiometric Techniques with Spherical Electrodes. Electroanalysis, 2004, 16, 938-948.	1.5	12
152	Charge–potential and capacitance–potential curves corresponding to reversible redox Langmuir submonolayers of quinizarine in aqueous acidic solutions. Electrochimica Acta, 2004, 49, 1349-1360.	2.6	8
153	Advantages of the application of programmed currents to microelectrodes. Journal of Electroanalytical Chemistry, 2004, 569, 185-195.	1.9	17
154	Reversal and Cyclic Chronopotentiometry with Exponential Current-Time Functions at Spherical Electrodes. Reversibility Effects and Experimental Verification. Collection of Czechoslovak Chemical Communications, 2004, 69, 1997-2020.	1.0	4
155	Study of a Catalytic Mechanism in Additive Differential Pulse Techniques. Electroanalysis, 2003, 15, 254-262.	1.5	9
156	Study of multistep electrode processes in double potential step techniques at spherical electrodes. Journal of Electroanalytical Chemistry, 2003, 546, 97-108.	1.9	22
157	Charge–potential and capacitance–potential curves corresponding to reversible redox monolayers. Journal of Electroanalytical Chemistry, 2003, 557, 157-165.	1.9	19
158	Cyclic Reciprocal Derivative Chronopotentiometry with Power Time Currents Applied to Electrodes Coated with Electroactive Molecular Films. Influence of the Reversibility. Langmuir, 2003, 19, 406-415.	1.6	24
159	Reciprocal Derivative Chronopotentiometry with Programmed Current: Influence of the Reversibility. Electroanalysis, 2002, 14, 281-291.	1.5	13
160	Study of an EE mechanism in additive differential pulse techniques. Electrochemistry Communications, 2002, 4, 457-461.	2.3	15
161	Study of an EE mechanism using double potential step techniques. Journal of Electroanalytical Chemistry, 2002, 528, 159-169.	1.9	14
162	Cyclic Reciprocal Derivative Chronopotentiometry with Exponential Time Currents in the Study of Slow Charge Transfer Processes between Electrodes and Redox Adsorbates. Langmuir, 2001, 17, 5520-5526.	1.6	22

#	Article	IF	CITATIONS
163	Additive differential pulse voltammetry, instead of double differential pulse voltammetry. Electrochemistry Communications, 2001, 3, 324-329.	2.3	22
164	Reversible multistep electrode processes. Consideration of the bulk presence of intermediate species and of the values of the diffusion coefficients in voltammetry. Electrochimica Acta, 2001, 46, 2699-2709.	2.6	15
165	Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes. Journal of Electroanalytical Chemistry, 2000, 486, 9-15.	1.9	45
166	Theory for cyclic reciprocal derivative chronopotentiometry with power and exponential programmed currents applied to electrodes coated with reversible electroactive molecular films. Journal of Electroanalytical Chemistry, 2000, 493, 117-122.	1.9	21
167	Derivation of a general theory for reversible multistep electrode processes in voltammetry with constant potential at spherical electrodes. Electrochemistry Communications, 2000, 2, 267-271.	2.3	12
168	Derivative and Differential Voltammetry and Reciprocal Derivative Chronopotentiometry Identical Behavior Verification for Electrode Reversible Processes. Journal of the Electrochemical Society, 2000, 147, 3429.	1.3	28
169	General solutions for the I/t response for reversible processes in the presence of product in a multipotential step experiment at planar and spherical electrodes whose areas increase with any power of time. Journal of Electroanalytical Chemistry, 1999, 466, 8-14.	1.9	24
170	Study of a catalytic mechanism in double potential step techniques at spherical electrodes. Journal of Electroanalytical Chemistry, 1999, 468, 158-169.	1.9	8
171	A unified treatment of reversible electrode processes in voltammetric techniques and chronopotentiometric techniques with programmed current. Electrochemistry Communications, 1999, 1, 477-482.	2.3	13
172	Cyclic reciprocal derivative chronopotentiometry. Applications to the detection and characterisation of adsorption processes. Electrochimica Acta, 1999, 45, 761-773.	2.6	17
173	Application of cyclic reciprocal derivative chronopotentiometry with programmed currents to the study of the reversibility of electrode processes. Electrochimica Acta, 1999, 45, 457-468.	2.6	21
174	Application of current reversal chronopotentiometry and cyclic chronopotentiometry to the study of reactant and/or product adsorption at a plane electrode. Electrochimica Acta, 1998, 44, 1263-1272.	2.6	9
175	Title is missing!. Journal of Mathematical Chemistry, 1998, 23, 277-296.	0.7	17
176	Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism. Journal of Electroanalytical Chemistry, 1998, 443, 163-167.	1.9	44
177	General analytical solution for a catalytic mechanism in potential step techniques at hemispherical microelectrodes: Applications to chronoamperometry, cyclic staircase voltammetry and cyclic linear sweep voltammetry. Journal of Electroanalytical Chemistry, 1998, 454, 15-31.	1.9	34
178	Multiple potential step at an SMDE in the absence/presence of amalgamation. Journal of Electroanalytical Chemistry, 1997, 422, 55-60.	1.9	8
179	Application of a current-time function of the form to hemispherical microelectrodes. Journal of Electroanalytical Chemistry, 1997, 428, 173-183.	1.9	6
180	Discrimination between CEC, CE and EC mechanisms by using a sinusoidal current-time function. Electrochimica Acta, 1997, 42, 1351-1359.	2.6	2

#	Article	IF	CITATIONS
181	Chronopotentiometric Study of EC Mechanism Duringthe First Cycle of Alternating Current. Collection of Czechoslovak Chemical Communications, 1997, 62, 709-728.	1.0	2
182	Regeneration Mechanism Studied by Potential-Time Response to Sinusoidal Current-Time Function. Collection of Czechoslovak Chemical Communications, 1997, 62, 1511-1526.	1.0	0
183	General analytical solution for a reversible i-t response to a triple potential step at an SMDE in the absence/presence of amalgamation. Journal of Electroanalytical Chemistry, 1996, 408, 33-45.	1.9	10
184	Application of the superposition principle to the study of multistep electrode processes and systems with several components in chronopotentiometry with programmed current. Part I. Journal of Mathematical Chemistry, 1996, 20, 151-167.	0.7	3
185	Application of the superposition principle to the study of a charge transfer reaction in cyclic chronopotentiometry. Part II. Journal of Mathematical Chemistry, 1996, 20, 169-181.	0.7	10
186	Chronopotentiometry with an Alternating Currentat Cylindrical Microelectrodes. Collection of Czechoslovak Chemical Communications, 1996, 61, 973-984.	1.0	1
187	Application of Cyclic Chronopotentiometry to the Study of Slow Charge Transfer Reactions at the DME and the SMDE. Collection of Czechoslovak Chemical Communications, 1996, 61, 1432-1444.	1.0	3
188	Conditions of applicability of the superposition principle in potential multipulse techniques: implications in the study of microelectrodes. Journal of Electroanalytical Chemistry, 1995, 394, 1-6.	1.9	67
189	Chronopotentiometry at the dropping mercury electrode when the current is a power and/or exponential function of time: study of the second step of an EE mechanism with widely separated standard potentials. Journal of Electroanalytical Chemistry, 1995, 399, 223-228.	1.9	2
190	Reverse Differential Pulse Voltammetry and Polarography. Analytical Chemistry, 1995, 67, 2619-2624.	3.2	11
191	Double differential pulse voltammetry. Journal of Electroanalytical Chemistry, 1994, 365, 97-105.	1.9	9
192	New methods for the application of an alternating current. Journal of Electroanalytical Chemistry, 1994, 369, 15-23.	1.9	6
193	Reverse pulse voltammetry and polarography: a general analytical solution. Canadian Journal of Chemistry, 1994, 72, 2369-2377.	0.6	7
194	General analytical solution for a reversible i/t response to a double potential step at spherical electrodes in the absence/presence of amalgamation effects. Canadian Journal of Chemistry, 1994, 72, 2378-2387.	0.6	16
195	Chronopotentiometry with several types of programmed current at most usual electrodes: General study of systems with coupled first-order chemical reactions. Journal of Electroanalytical Chemistry, 1993, 346, 53-71.	1.9	11
196	Triple-pulse voltammetry and polarography. Analytical Chemistry, 1993, 65, 215-222.	3.2	23
197	New methods for the application of an alternating current. Journal of Electroanalytical Chemistry, 1992, 336, 1-23.	1.9	9
198	New methods for the application of an alternating current. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 308, 97-112.	0.3	8

#	Article	IF	CITATIONS
199	Potential-time response for several types of programmed current at most usual electrodes. Theoretical study of CE and EC mechanisms. Collection of Czechoslovak Chemical Communications, 1991, 56, 1-19.	1.0	5
200	Chronopotentiometry with a potential-exponential current-time function at the DME with a preceding blank period. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 278, 35-51.	0.3	14
201	Current reversal chronopotentiometry at the DME. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 284, 21-33.	0.3	8
202	Exponential current chronopotentiometry at the dropping mercury electrode. Study of the transition times. Chemical Physics Letters, 1988, 152, 519-522.	1.2	3
203	Chronopotentiometry at the DME with a current-time perturbation of the form I0(t1+t)w, t1 being a preceding blank perio. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 252, 11-20.	0.3	3
204	Current-reversal chronopotentiometry at a dropping mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 256, 33-42.	0.3	7
205	Chronopotentiometry with non-linear perturbation functions at the DME with a preceding blank period. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 251, 249-266.	0.3	9
206	Chronopotentiometry with programmed current at an electrode expanding with any power law. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 219, 1-11.	0.3	6
207	Chronopotentiometry with non-linear perturbation functions at the DME with a preceding blank period. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 227, 1-10.	0.3	12
208	DC polarography: effects of electrode sphericity on the catalytic currents with non-Nernstian behavior. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 199, 37-45.	0.3	8
209	Influence of a preceding chemical reaction on limiting currents in normal pulse polarography and in dc polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 167, 15-42.	0.3	12
210	Chronopotentiometry with programmed current at a dropping mercury electrode. Analytical Chemistry, 1984, 56, 887-890.	3.2	15
211	Theoretical analysis of current-potential curves for the CE and EC mechanisms with non-nernstian behaviour. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 147, 53-69.	0.3	11
212	Chronopotentiometry with programmed current at the dropping mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 146, 221-232.	0.3	14
213	Chronopotentiometry with programmed current at the dropping mercury electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 146, 243-251.	0.3	8
214	Current-potential curves with an EE mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 139, 15-36.	0.3	18
215	Pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 124, 201-211.	0.3	16
216	Dc polarography: Current-potential curves with a parallel ECE mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 127, 17-35.	0.3	13

#	Article	IF	CITATIONS
217	Pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 121, 85-92.	0.3	12
218	DC polarography: Effects of electrode sphericity on the current—Potential curves with EC and CE mechanisms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 107, 217-231.	0.3	27
219	Dc polarography: Current-potential curves with an ECE mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 110, 49-68.	0.3	24
220	Pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 115, 1-14.	0.3	13
221	Pulse polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 115, 15-29.	0.3	11
222	D.c. polarography: Current-potential curves for electrode processes involving a preceding first-order chemical reaction. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 102, 277-288.	0.3	26