Gabrielle Belz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7018327/publications.pdf

Version: 2024-02-01

243 papers 22,525 citations

79 h-index 9589 142 g-index

298 all docs

298 docs citations

times ranked

298

23967 citing authors

#	Article	IF	CITATIONS
1	A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity. Science Immunology, 2022, 7, eabj0641.	11.9	27
2	Innate lymphoid cells and cancer. Nature Immunology, 2022, 23, 371-379.	14.5	75
3	Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage. Science Immunology, 2022, 7, eabn8041.	11.9	8
4	A protocol to isolate bone marrow innate lymphoid cells for alymphoid mouse reconstitution. STAR Protocols, 2022, 3, 101534.	1.2	0
5	Systemic administration of ILâ \in 33 induces a population of circulating KLRG1 hi type 2 innate lymphoid cells and inhibits type 1 innate immunity against multiple myeloma. Immunology and Cell Biology, 2021, 99, 65-83.	2.3	7
6	Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 714-734.	5.7	66
7	Differences in pulmonary group 2 innate lymphoid cells are dependent on mouse age, sex and strain. Immunology and Cell Biology, 2021, 99, 542-551.	2.3	16
8	Intestinal-derived ILCs migrating in lymph increase IFN \hat{I}^3 production in response to Salmonella Typhimurium infection. Mucosal Immunology, 2021, 14, 717-727.	6.0	28
9	Type 2 innate lymphoid cells: a novel actor in anti-melanoma immunity. Oncolmmunology, 2021, 10, 1943168.	4.6	5
10	Type 2 Innate Lymphoid Cells Protect against Colorectal Cancer Progression and Predict Improved Patient Survival. Cancers, 2021, 13, 559.	3.7	31
11	When Eating Becomes a Pain in the Gut. Trends in Immunology, 2021, 42, 273-275.	6.8	O
12	Neuroimmune Interactions and Rhythmic Regulation of Innate Lymphoid Cells. Frontiers in Neuroscience, 2021, 15, 657081.	2.8	8
13	Absence of Batf3 reveals a new dimension of cell state heterogeneity within conventional dendritic cells. IScience, 2021, 24, 102402.	4.1	16
14	T-helper 22 cells develop as a distinct lineage from Th17 cells during bacterial infection and phenotypic stability is regulated by T-bet. Mucosal Immunology, 2021, 14, 1077-1087.	6.0	13
15	Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nature Immunology, 2021, 22, 851-864.	14.5	97
16	Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nature Immunology, 2021, 22, 1140-1151.	14.5	96
17	Metastasis-Entrained Eosinophils Enhance Lymphocyte-Mediated Antitumor Immunity. Cancer Research, 2021, 81, 5555-5571.	0.9	35
18	Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 9044.	4.1	7

#	Article	IF	Citations
19	Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncolmmunology, 2021, 10, 1900508.	4.6	57
20	Self-reactive and polyreactive B cells are generated and selected in the germinal center during \hat{I}^3 -herpesvirus infection. International Immunology, 2020, 32, 27-38.	4.0	9
21	The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nature Immunology, 2020, 21, 168-177.	14.5	133
22	Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory. Nature Immunology, 2020, 21, 1597-1610.	14.5	43
23	Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood, 2020, 136, 3004-3017.	1.4	71
24	Therapeutic ISCOMATRIXâ,,¢ adjuvant vaccine elicits effective anti-tumor immunity in the TRAMP-C1 mouse model of prostate cancer. Cancer Immunology, Immunotherapy, 2020, 69, 1959-1972.	4.2	7
25	Membrane association of a model CD4 ⁺ Tâ€cell vaccine antigen confers enhanced yet incomplete protection against murid herpesvirusâ€4 infection. Immunology and Cell Biology, 2020, 98, 332-343.	2.3	1
26	Elucidating Specificity Opens a Window to the Complexity of Both the Innate and Adaptive Immune Systems. Viral Immunology, 2020, 33, 145-152.	1.3	0
27	Tissue-resident lymphocytes: weaponized sentinels at barrier surfaces. F1000Research, 2020, 9, 691.	1.6	8
28	Constitutive overexpression of TNF in BPSM1 mice causes iBALT and bone marrow nodular lymphocytic hyperplasia. Immunology and Cell Biology, 2019, 97, 29-38.	2.3	2
29	Context-Dependent Role for T-bet in T Follicular Helper Differentiation and Germinal Center Function following Viral Infection. Cell Reports, 2019, 28, 1758-1772.e4.	6.4	40
30	RIPLET, and not TRIM25, is required for endogenous RIGâ€lâ€dependent antiviral responses. Immunology and Cell Biology, 2019, 97, 840-852.	2.3	70
31	Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunology, 2019, 12, 299-311.	6.0	66
32	Parallel worlds of the adaptive and innate immune cell networks. Current Opinion in Immunology, 2019, 58, 53-59.	5.5	5
33	TCF-1 limits the formation of Tc17 cells via repression of the MAF–RORγt axis. Journal of Experimental Medicine, 2019, 216, 1682-1699.	8.5	48
34	SIDT1 Localizes to Endolysosomes and Mediates Double-Stranded RNA Transport into the Cytoplasm. Journal of Immunology, 2019, 202, 3483-3492.	0.8	33
35	CARD11 is dispensable for homeostatic responses and suppressive activity of peripherally induced FOXP3 + regulatory T cells. Immunology and Cell Biology, 2019, 97, 740-752.	2.3	10
36	Assessment of Gene Function of Mouse Innate Lymphoid Cells for In Vivo Analysis Using Retroviral Transduction. Methods in Molecular Biology, 2019, 1953, 231-240.	0.9	1

#	Article	IF	CITATIONS
37	Transcription Factor T-bet in B Cells Modulates Germinal Center Polarization and Antibody Affinity Maturation in Response to Malaria. Cell Reports, 2019, 29, 2257-2269.e6.	6.4	36
38	A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Science Immunology, 2019, 4, .	11.9	75
39	NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology. Annals of the Rheumatic Diseases, 2019, 78, 342-349.	0.9	21
40	Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity, 2019, 50, 77-90.e5.	14.3	59
41	Natural killer cells and anti-tumor immunity. Molecular Immunology, 2019, 110, 40-47.	2.2	38
42	Innate Lymphoid Cells in Colorectal Cancers: A Double-Edged Sword. Frontiers in Immunology, 2019, 10, 3080.	4.8	14
43	The immunological functions of the Appendix: An example of redundancy?. Seminars in Immunology, 2018, 36, 31-44.	5.6	68
44	Bach2: An Instrument of Heterogeneity for Long-Term Protection. Immunity, 2018, 48, 618-620.	14.3	0
45	Flt-3L Expansion of Recipient CD8î±+ Dendritic Cells Deletes Alloreactive Donor T Cells and Represents an Alternative to Posttransplant Cyclophosphamide for the Prevention of GVHD. Clinical Cancer Research, 2018, 24, 1604-1616.	7.0	20
46	Characterization of Blimp-1 function in effector regulatory T cells. Journal of Autoimmunity, 2018, 91, 73-82.	6.5	36
47	Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers. Frontiers in Immunology, 2018, 9, 2480.	4.8	57
48	Assessing the role of the T-box transcription factor Eomes in B cell differentiation during either Th1 or Th2 cell-biased responses. PLoS ONE, 2018, 13, e0208343.	2.5	8
49	A point mutation in the <i>Ncr1</i> signal peptide impairs the development of innate lymphoid cell subsets. Oncolmmunology, 2018, 7, e1475875.	4.6	9
50	Deconstructing deployment of the innate immune lymphocyte army for barrier homeostasis and protection. Immunological Reviews, 2018, 286, 6-22.	6.0	8
51	Starvation suppresses T cell appetite. Nature Reviews Immunology, 2018, 18, 421-421.	22.7	0
52	Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival. Journal of Experimental Medicine, 2017, 214, 491-510.	8.5	66
53	Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb. Immunity, 2017, 46, 78-91.	14.3	83
54	Androgen signaling negatively controls group 2 innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 1581-1592.	8.5	204

#	Article	IF	CITATIONS
55	c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses. Cell Reports, 2017, 19, 461-470.	6.4	53
56	Batf3 selectively determines acquisition of CD8 ⁺ dendritic cell phenotype and function. Immunology and Cell Biology, 2017, 95, 215-223.	2.3	22
57	Unusual suspects: dancing with stromal cells. Nature Immunology, 2017, 18, 601-602.	14.5	1
58	Monocyte-Derived Dendritic Cells: A Transendothelial Trip Launches the Quest To Understand Heterogeneity in the APC Family. Journal of Immunology, 2017, 198, 4189-4190.	0.8	0
59	Eomesodermin promotes the development of type 1 regulatory T (T $<$ sub $>$ R $<$ /sub $>$ 1) cells. Science Immunology, 2017, 2, .	11.9	118
60	Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation. Nature Communications, 2017, 8, 891.	12.8	34
61	SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity, 2017, 47, 498-509.e6.	14.3	109
62	Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity, 2017, 47, 135-147.e5.	14.3	133
63	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	14.5	504
64	Natural-Killer-like B Cells Display the Phenotypic and Functional Characteristics of Conventional B Cells. Immunity, 2017, 47, 199-200.	14.3	16
65	Shaping Innate Lymphoid Cell Diversity. Frontiers in Immunology, 2017, 8, 1569.	4.8	18
66	Characterisation of innate lymphoid cell populations at different sites in mice with defective T cell immunity. Wellcome Open Research, 2017, 2, 117.	1.8	27
67	Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. ELife, 2017, 6, .	6.0	61
68	Differentiation and diversity of subsets in group 1 innate lymphoid cells. International Immunology, 2016, 28, 3-11.	4.0	12
69	Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells. Frontiers in Immunology, 2016, 7, 426.	4.8	7 5
70	Type I Interferons Direct Gammaherpesvirus Host Colonization. PLoS Pathogens, 2016, 12, e1005654.	4.7	12
71	ld2 and E Proteins Orchestrate the Initiation and Maintenance of MLL-Rearranged Acute Myeloid Leukemia. Cancer Cell, 2016, 30, 59-74.	16.8	29
72	<i>Immunology & Discourse (i) Publication of the Year Awards 2015. Immunology and Cell Biology, 2016, 94, 901-902.</i>	2.3	0

#	Article	IF	Citations
73	Deciphering the Innate Lymphoid Cell Transcriptional Program. Cell Reports, 2016, 17, 436-447.	6.4	131
74	ILC2s masquerade as ILC1s to drive chronic disease. Nature Immunology, 2016, 17, 611-612.	14.5	14
75	CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nature Immunology, 2016, 17, 816-824.	14.5	289
76	Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. Journal of Experimental Medicine, 2016, 213, 1095-1111.	8.5	53
77	Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 2016, 352, 459-463.	12.6	721
78	Granzyme M has a critical role in providing innate immune protection in ulcerative colitis. Cell Death and Disease, 2016, 7, e2302-e2302.	6.3	14
79	Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Reports, 2016, 16, 3311-3321.	6.4	25
80	A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nature Immunology, 2016, 17, 1300-1311.	14.5	288
81	Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature, 2016, 539, 102-106.	27.8	257
82	CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nature Immunology, 2016, 17, 1187-1196.	14.5	385
83	Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection. Mucosal Immunology, 2016, 9, 1103-1112.	6.0	43
84	Transforming growth factor–β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling, 2016, 9, ra46.	3.6	88
85	The evolution of innate lymphoid cells. Nature Immunology, 2016, 17, 790-794.	14.5	140
86	RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity. Cell Reports, 2016, 15, 866-878.	6.4	50
87	The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115.	14.3	101
88	A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nature Immunology, 2016, 17, 422-432.	14.5	145
89	Innate lymphoid cells: parallel checkpoints and coordinate interactions with T cells. Current Opinion in Immunology, 2016, 38, 86-93.	5.5	24
90	Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nature Immunology, 2016, 17, 179-186.	14.5	211

#	Article	IF	Citations
91	Lethal giant larvaeâ€1 deficiency enhances the CD8 + effector Tâ€cell response to antigen challenge in vivo. Immunology and Cell Biology, 2016, 94, 306-311.	2.3	5
92	Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. Journal of Cell Biology, 2016, 213, 2135OIA110.	5.2	1
93	Innate Lymphoid Cells Type 3., 2016, , 156-168.		0
94	Abstract 1443: IL-18 is associated with the onset and progression of gastric cancer. , 2016, , .		0
95	<i>Immunology & Samp; Cell Biology (i) Publication of the Year Awards 2014. Immunology and Cell Biology, 2015, 93, 837-838.</i>	2.3	0
96	A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity. PLoS ONE, 2015, 10, e0134326.	2.5	11
97	T-box Transcription Factors Combine with the Cytokines TGF- \hat{l}^2 and IL-15 to Control Tissue-Resident Memory T Cell Fate. Immunity, 2015, 43, 1101-1111.	14.3	457
98	CD3 ^{bright} signals on γδT cells identify ILâ€17Aâ€producing Vγ6Vδ1 ⁺ T cells. Immunology and Cell Biology, 2015, 93, 198-212.	2.3	68
99	Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. Journal of Experimental Medicine, 2015, 212, 1303-1321.	8.5	85
100	Confocal laser endomicroscopy to monitor the colonic mucosa of mice. Journal of Immunological Methods, 2015, 421, 81-88.	1.4	22
101	SOCS4 is dispensable for an efficient recall response to influenza despite being required for primary immunity. Immunology and Cell Biology, 2015, 93, 909-913.	2.3	9
102	c-Myb is required for plasma cell migration to bone marrow after immunization or infection. Journal of Experimental Medicine, 2015, 212, 1001-1009.	8.5	32
103	Bcl11b is essential for group 2 innate lymphoid cell development. Journal of Experimental Medicine, 2015, 212, 875-882.	8.5	126
104	CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells. Nature Communications, 2015, 6, 8644.	12.8	117
105	Development, Homeostasis, and Heterogeneity of NK Cells and ILC1. Current Topics in Microbiology and Immunology, 2015, 395, 37-61.	1.1	63
106	Recipient CD8+ DC Delete Alloreactive Donor CTL and Promote Leukemic Relapse after Allogeneic BMT. Blood, 2015, 126, 4279-4279.	1.4	0
107	Suppressor of Cytokine Signaling 4 (SOCS4) Protects against Severe Cytokine Storm and Enhances Viral Clearance during Influenza Infection. PLoS Pathogens, 2014, 10, e1004134.	4.7	50
108	<i>Immunology and Cell Biology</i> Publication of the Year Awards 2013. Immunology and Cell Biology, 2014, 92, 811-812.	2.3	0

#	Article	IF	Citations
109	Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. Science, 2014, 346, 1123-1127.	12.6	185
110	Transcription Factor IRF4 Regulates Germinal Center Cell Formation through a B Cell–Intrinsic Mechanism. Journal of Immunology, 2014, 192, 3200-3206.	0.8	107
111	A Murid Gamma-Herpesviruses Exploits Normal Splenic Immune Communication Routes for Systemic Spread. Cell Host and Microbe, 2014, 15, 457-470.	11.0	54
112	Fas ligand–mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nature Medicine, 2014, 20, 283-290.	30.7	79
113	Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO Journal, 2014, 33, 2721-2734.	7.8	67
114	IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival. Mucosal Immunology, 2014, 7, 1058-1067.	6.0	68
115	Complexity of cytokine network regulation of innate lymphoid cells in protective immunity. Cytokine, 2014, 70, 1-10.	3.2	27
116	Differential Requirement for Nfil3 during NK Cell Development. Journal of Immunology, 2014, 192, 2667-2676.	0.8	111
117	Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nature Communications, 2014, 5, 4539.	12.8	156
118	Nfil3 is required for the development of all innate lymphoid cell subsets. Journal of Experimental Medicine, 2014, 211, 1733-1740.	8.5	206
119	Id2 represses E2A-mediated activation of IL-10 expression in T cells. Blood, 2014, 123, 3420-3428.	1.4	23
120	Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. Journal of Experimental Medicine, 2013, 210, 2967-2980.	8.5	109
121	Terminal Differentiation of Dendritic Cells. Advances in Immunology, 2013, 120, 185-210.	2.2	17
122	TCF-1 Controls ILC2 and NKp46+RORγt+ Innate Lymphocyte Differentiation and Protection in Intestinal Inflammation. Journal of Immunology, 2013, 191, 4383-4391.	0.8	122
123	The transcription factor IRF4 is essential for TCR affinity–mediated metabolic programming and clonal expansion of T cells. Nature Immunology, 2013, 14, 1155-1165.	14.5	337
124	Circulating Precursor CCR7loPD-1hi CXCR5+ CD4+ T Cells Indicate Tfh Cell Activity and Promote Antibody Responses upon Antigen Reexposure. Immunity, 2013, 39, 770-781.	14.3	571
125	The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nature Immunology, 2013, 14, 389-395.	14.5	264
126	Regulation of asymmetric cell division and polarity by Scribble is not required for humoral immunity. Nature Communications, 2013, 4, 1801.	12.8	65

#	Article	IF	Citations
127	<i>Immunology and Cell Biology</i> Publication of the Year Awards 2012. Immunology and Cell Biology, 2013, 91, 595-596.	2.3	0
128	Id2-Mediated Inhibition of E2A Represses Memory CD8+ T Cell Differentiation. Journal of Immunology, 2013, 190, 4585-4594.	0.8	81
129	Contribution of Thy1 $<$ sup>+ $<$ /sup>NK cells to protective IFN- \hat{l}^3 production during $<$ i>Salmonella $<$ i>Typhimurium infections. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2252-2257.	7.1	87
130	CD8 \hat{l} ±+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood, 2013, 121, 1574-1583.	1.4	95
131	miR-142 keeps CD4+ DCs in balance. Blood, 2013, 121, 871-872.	1.4	9
132	Keeping memories alive. Frontiers in Immunology, 2013, 4, 21.	4.8	1
133	Diversity, function, and transcriptional regulation of gut innate lymphocytes. Frontiers in Immunology, 2013, 4, 22.	4.8	30
134	Cytotoxic T lymphocytes and natural killer cells. , 2013, , 215-227.		1
135	The NF-κB1 transcription factor prevents the intrathymic development of CD8 T cells with memory properties. EMBO Journal, 2012, 31, 692-706.	7.8	21
136	<i>Immunology and Cell Biology</i> Publication of the Year Awards 2011. Immunology and Cell Biology, 2012, 90, 749-750.	2.3	0
137	B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. Journal of Experimental Medicine, 2012, 209, 2049-2064.	8.5	173
138	A new ICB sister journal focuses on clinical and translational immunology. Clinical and Translational Immunology, 2012, 1, e1.	3.8	1
139	Inert 50-nm Polystyrene Nanoparticles That Modify Pulmonary Dendritic Cell Function and Inhibit Allergic Airway Inflammation. Journal of Immunology, 2012, 188, 1431-1441.	0.8	51
140	Activated Mouse B Cells Lack Expression of Granzyme B. Journal of Immunology, 2012, 188, 3886-3892.	0.8	30
141	ISCOMATRIX vaccines mediate CD8 ⁺ Tâ€cell crossâ€priming by a MyD88â€dependent signaling pathway. Immunology and Cell Biology, 2012, 90, 540-552.	2.3	92
142	Transcriptional Regulation of Dendritic Cell Diversity. Frontiers in Immunology, 2012, 3, 26.	4.8	24
143	The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nature Immunology, 2012, 13, 491-498.	14.5	294
144	Unlike CD4 ⁺ Tâ€cell help, CD28 costimulation is necessary for effective primary CD8 ⁺ Tâ€cell influenzaâ€specific immunity. European Journal of Immunology, 2012, 42, 1744-1754.	2.9	14

#	Article	IF	Citations
145	An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature, 2012, 487, 249-253.	27.8	199
146	Transcriptional programming of the dendritic cell network. Nature Reviews Immunology, 2012, 12, 101-113.	22.7	258
147	Identification of the earliest NK-cell precursor in the mouse BM. Blood, 2011, 117, 5449-5452.	1.4	155
148	The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nature Immunology, 2011, 12, 304-311.	14.5	530
149	ld2 expression delineates differential checkpoints in the genetic program of CD8α ⁺ and CD103 ⁺ dendritic cell lineages. EMBO Journal, 2011, 30, 2690-2704.	7.8	121
150	The linear range for accurately quantifying antigenâ€specific Tâ€eell frequencies by tetramer staining during natural immune responses. European Journal of Immunology, 2011, 41, 1499-1500.	2.9	4
151	Bid and Bim Collaborate during Induction of T Cell Death in Persistent Infection. Journal of Immunology, 2011, 186, 4059-4066.	0.8	22
152	Modeling of Influenza-Specific CD8+ T Cells during the Primary Response Indicates that the Spleen Is a Major Source of Effectors. Journal of Immunology, 2011, 187, 4474-4482.	0.8	41
153	<i>Immunology and Cell Biology</i> Publication of the Year Awards 2010. Immunology and Cell Biology, 2011, 89, 747-748.	2.3	0
154	Diverse Roles of Inhibitor of Differentiation 2 in Adaptive Immunity. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	16
155	Murid Herpesvirus-4 Exploits Dendritic Cells to Infect B Cells. PLoS Pathogens, 2011, 7, e1002346.	4.7	53
156	Outâ€ofâ€theâ€box thinking. Immunology and Cell Biology, 2011, 89, 575-575.	2.3	0
157	Blimp1: Driving Terminal Differentiation to a T. Advances in Experimental Medicine and Biology, 2011, 780, 85-100.	1.6	12
158	Effector and memory CD8+ T cell differentiation: toward a molecular understanding of fate determination. Current Opinion in Immunology, 2010, 22, 279-285.	5.5	46
159	Editorial overview. Current Opinion in Immunology, 2010, 22, 271-273.	5 . 5	1
160	Interleukin-2 Tickles T Cell Memory. Immunity, 2010, 32, 7-9.	14.3	18
161	Mobilizing forces - CD4+ helper T cells script adaptive immunity. Cell Research, 2010, 20, 1-3.	12.0	22
162	Interference with Dendritic Cell Populations Limits Early Antigen Presentation in Chronic Î ³ -Herpesvirus-68 Infection. Journal of Immunology, 2010, 185, 3669-3676.	0.8	4

#	Article	IF	Citations
163	A Complementary Role for the Tetraspanins CD37 and Tssc6 in Cellular Immunity. Journal of Immunology, 2010, 185, 3158-3166.	0.8	44
164	Mouse Models of Viral Infection: Influenza Infection in the Lung. Methods in Molecular Biology, 2010, 595, 299-318.	0.9	9
165	Direct Ex Vivo Activation of T cells for Analysis of Dendritic Cells Antigen Presentation. Methods in Molecular Biology, 2010, 595, 351-369.	0.9	4
166	Kinetics of Major Histocompatibility Class I Antigen Presentation in Acute Infection. Journal of Immunology, 2009, 182, 902-911.	0.8	5
167	The tapestry of the immune response for protective immunity. Hum Vaccin, 2009, 5, 50-52.	2.4	0
168	Tissue destruction caused by cytotoxic T lymphocytes induces deletional tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3901-3906.	7.1	19
169	Life in the balance: killer Tâ€cell selfâ€control fends off lethal influenza?. Immunology and Cell Biology, 2009, 87, 364-365.	2.3	5
170	Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature, 2009, 461, 659-663.	27.8	348
171	Selected Toll-like Receptor Ligands and Viruses Promote Helper-Independent Cytotoxic T Cell Priming by Upregulating CD40L on Dendritic Cells. Immunity, 2009, 30, 218-227.	14.3	84
172	Blimp-1 Transcription Factor Is Required for the Differentiation of Effector CD8+ T Cells and Memory Responses. Immunity, 2009, 31, 283-295.	14.3	424
173	The race between infection and immunity: how do pathogens set the pace?. Trends in Immunology, 2009, 30, 61-66.	6.8	31
174	Dendritic Cells in Viral Infections. Handbook of Experimental Pharmacology, 2009, , 51-77.	1.8	20
175	The tapestry of the immune response for protective immunity. Hum Vaccin, 2009, 5, 50-2.	2.4	0
176	Blimp-1 Connects the Intrinsic and Extrinsic Regulation of T Cell Homeostasis. Journal of Clinical Immunology, 2008, 28, 97-106.	3.8	17
177	Dendritic cells: driving the differentiation programme of T cells in viral infections. Immunology and Cell Biology, 2008, 86, 333-342.	2.3	39
178	Getting together: Dendritic cells, T cells, collaboration and fates. Immunology and Cell Biology, 2008, 86, 310-311.	2.3	23
179	Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nature Immunology, 2008, 9, 1244-1252.	14.5	202
180	Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Tollâ€like receptor signaling. Immunology and Cell Biology, 2008, 86, 200-205.	2.3	90

#	Article	lF	Citations
181	Apoptosis Regulators Fas and Bim Cooperate in Shutdown of Chronic Immune Responses and APrevention of Autoimmunity. Immunity, 2008, 28, 197-205.	14.3	225
182	DC Migration: Hard-Wired for T Cell Activation. Immunity, 2008, 29, 388-390.	14.3	2
183	BH3-only protein Puma contributes to death of antigen-specific T cells during shutdown of an immune response to acute viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3035-3040.	7.1	47
184	Blood-stage <i>Plasmodium </i> infection induces CD8 ⁺ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α ⁺ dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14509-14514.	7.1	179
185	Multiple Dendritic Cell Populations Activate CD4+ T Cells after Viral Stimulation. PLoS ONE, 2008, 3, e1691.	2.5	48
186	Killer T cells regulate antigen presentation for early expansion of memory, but not naive, CD8+ T cell. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6341-6346.	7.1	49
187	Skin-Derived Dendritic Cells Can Mediate Deletional Tolerance of Class I-Restricted Self-Reactive T Cells. Journal of Immunology, 2007, 179, 4535-4541.	0.8	115
188	Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17753-17758.	7.1	64
189	Dendritic Cells Present Lytic Antigens and Maintain Function throughout Persistent Î ³ -Herpesvirus Infection. Journal of Immunology, 2007, 179, 7506-7513.	0.8	10
190	A role for plasmacytoid dendritic cells in the rapid IL-18-dependent activation of NK cells following HSV-1 infection. European Journal of Immunology, 2007, 37, 1334-1342.	2.9	41
191	Minimal activation of memory CD8+ T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+ T cells. Nature Immunology, 2007, 8, 1060-1066.	14.5	129
192	Shaping Naive and Memory Cd8+ T Cell Responses in Pathogen Infections Through Antigen Presentation., 2007, 590, 31-42.		5
193	Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nature Immunology, 2006, 7, 165-172.	14.5	308
194	Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nature Immunology, 2006, 7, 466-474.	14.5	300
195	Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin. European Journal of Immunology, 2006, 36, 327-335.	2.9	54
196	CD4+ T cells specific for a model latency-associated antigen fail to control a gammaherpesvirusin vivo. European Journal of Immunology, 2006, 36, 3186-3197.	2.9	20
197	The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10729-10734.	7.1	357
198	CD8α+ Dendritic Cells Selectively Present MHC Class I-Restricted Noncytolytic Viral and Intracellular Bacterial Antigens In Vivo. Journal of Immunology, 2005, 175, 196-200.	0.8	163

#	Article	IF	CITATIONS
199	Loss of Bim Increases T Cell Production and Function in Interleukin 7 Receptor–deficient Mice. Journal of Experimental Medicine, 2004, 200, 1189-1195.	8.5	118
200	Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8670-8675.	7.1	344
201	Cutting Edge: Conventional CD8α+ Dendritic Cells Are Generally Involved in Priming CTL Immunity to Viruses. Journal of Immunology, 2004, 172, 1996-2000.	0.8	273
202	Helper T cells, dendritic cells and CTL Immunity. Immunology and Cell Biology, 2004, 82, 84-90.	2.3	101
203	Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunological Reviews, 2004, 199, 9-26.	6.0	641
204	Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nature Immunology, 2004, 5, 1143-1148.	14.5	387
205	DCs as targets for vaccine design. Cytotherapy, 2004, 6, 88-98.	0.7	24
206	Transfer of antigen between migrating and lymph node-resident DCs in peripheral T-cell tolerance and immunity. Trends in Immunology, 2004, 25, 655-658.	6.8	139
207	Shutdown of an acute T cell immune response to viral infection is mediated by the proapoptotic Bcl-2 homology 3-only protein Bim. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14175-14180.	7.1	215
208	Epidermal Viral Immunity Induced by CD8Î \pm $<$ sup $>+<$ /sup $>$ Dendritic Cells But Not by Langerhans Cells. Science, 2003, 301, 1925-1928.	12.6	518
209	Cutting Edge: Conventional CD8α+ Dendritic Cells Are Preferentially Involved in CTL Priming After Footpad Infection with Herpes Simplex Virus-1. Journal of Immunology, 2003, 170, 4437-4440.	0.8	171
210	Absence of a functional defect in CD8+ T cells during primary murine gammaherpesvirus-68 infection of I-Abâ^'/â^' mice. Journal of General Virology, 2003, 84, 337-341.	2.9	24
211	Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood, 2003, 102, 2187-2194.	1.4	319
212	Cutting Edge: Precursor Frequency Affects the Helper Dependence of Cytotoxic T Cells. Journal of Immunology, 2002, 168, 977-980.	0.8	99
213	CD36 Is Differentially Expressed by CD8+ Splenic Dendritic Cells But Is Not Required for Cross-Presentation In Vivo. Journal of Immunology, 2002, 168, 6066-6070.	0.8	65
214	The CD8î±+ Dendritic Cell Is Responsible for Inducing Peripheral Self-Tolerance to Tissue-associated Antigens. Journal of Experimental Medicine, 2002, 196, 1099-1104.	8.5	436
215	Compromised Influenza Virus-Specific CD8+-T-Cell Memory in CD4+-T-Cell-Deficient Mice. Journal of Virology, 2002, 76, 12388-12393.	3.4	270
216	The Cross-Priming APC Requires a Rel-Dependent Signal to Induce CTL. Journal of Immunology, 2002, 168, 3283-3287.	0.8	14

#	Article	IF	Citations
217	Cross-Presentation of Antigens by Dendritic Cells. Critical Reviews in Immunology, 2002, 22, 10.	0.5	20
218	The role of dendritic cell subsets in selection between tolerance and immunity. Immunology and Cell Biology, 2002, 80, 463-468.	2.3	76
219	Cross-presentation of antigens by dendritic cells. Critical Reviews in Immunology, 2002, 22, 439-48.	0.5	49
220	Viral Neuraminidase Treatment of Dendritic Cells Enhances Antigen-Specific CD8+ T Cell Proliferation, but Does Not Account for the CD4+ T Cell Independence of the CD8+ T Cell Response during Influenza Virus Infection. Virology, 2001, 286, 403-411.	2.4	14
221	The Role of Antigen in the Localization of Naive, Acutely Activated, and Memory CD8+ T Cells to the Lung During Influenza Pneumonia. Journal of Immunology, 2001, 167, 6983-6990.	0.8	149
222	Virus-Specific and Bystander CD8 + T-Cell Proliferation in the Acute and Persistent Phases of a Gammaherpesvirus Infection. Journal of Virology, 2001, 75, 4435-4438.	3.4	48
223	Measuring the diaspora for virus-specific CD8+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6313-6318.	7.1	271
224	Dissecting the host response to a $\hat{1}^3\hat{a}$ error herpesvirus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 581-593.	4.0	120
225	Diversity of Epitope and Cytokine Profiles for Primary and Secondary Influenza A Virus-Specific CD8+ T Cell Responses. Journal of Immunology, 2001, 166, 4627-4633.	0.8	184
226	Perforin and Fas in murine gammaherpesvirus-specific CD8+ T cell control and morbidity. Journal of General Virology, 2001, 82, 1971-1981.	2.9	43
227	Contemporary Analysis of MHC-Related Immunodominance Hierarchies in the CD8+ T Cell Response to Influenza A Viruses. Journal of Immunology, 2000, 165, 2404-2409.	0.8	103
228	Postexposure vaccination massively increases the prevalence of gamma -herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2725-2730.	7.1	47
229	A Previously Unrecognized H-2Db-Restricted Peptide Prominent in the Primary Influenza A Virus-Specific CD8+T-Cell Response Is Much Less Apparent following Secondary Challenge. Journal of Virology, 2000, 74, 3486-3493.	3.4	239
230	Quantitative analysis of the CD8 + T–cell response to readily eliminated and persistent viruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1093-1101.	4.0	34
231	A Â-herpesvirus sneaks through a CD8+ T cell response primed to a lytic-phase epitope. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9281-9286.	7.1	105
232	Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine \hat{I}^3 -herpesvirus infection. European Journal of Immunology, 1999, 29, 1059-1067.	2.9	146
233	Intercellular and lymphatic pathways associated with tonsils of the soft palate in young pigs. Anatomy and Embryology, 1998, 197, 331-340.	1.5	12
234	An unusual structure of venules in tonsils of the soft palate of young pigs. Journal of Anatomy, 1998, 192, 131-135.	1.5	7

#	Article	IF	CITATIONS
235	Virus-Specific CD8+ T Cells in Primary and Secondary Influenza Pneumonia. Immunity, 1998, 8, 683-691.	14.3	641
236	Virus-specific CD8+ T cell numbers are maintained during Â-herpesvirus reactivation in CD4-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15565-15570.	7.1	98
237	Characteristics of virus-specific CD8 ⁺ T cells in the liver during the control and resolution phases of influenza pneumonia. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13812-13817.	7.1	105
238	Tonsils of the soft palate of young pigs: Crypt structure and lymphoepithelium., 1996, 245, 102-113.		31
239	The epithelium of canine palatine tonsils. Anatomy and Embryology, 1995, 192, 189-94.	1.5	22
240	An investigation of the use of chromium, platinum and gold coating for scanning electron microscopy of casts of lymphoid tissues. Micron, 1995, 26, 141-144.	2.2	15
241	Characterisation of innate lymphoid cell populations at different sites in mice with defective T cell immunity. Wellcome Open Research, 0, 2, 117 .	1.8	25
242	Characterisation of innate lymphoid cell populations at different sites in mice with defective T cell immunity. Wellcome Open Research, 0, 2, 117 .	1.8	1
243	<code> </code>	4.4	1