Massimo Turina

List of Publications by Year in descending order

[^0]
$1 \quad$ Localization and Mechanical Transmission of Tomato Brown Rugose Fruit Virus in Tomato Seeds.
Presence of a Mitovirus Is Associated with Alteration of the Mitochondrial Proteome, as Revealed by
2 Proteinâ€"Protein Interaction (PPI) and Co-Expression Network Models in Chenopodium quinoa Plants.
Biology, 2022, 11, 95.
A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal
phytopathogen <i>Cryphonectria parasitica</i>. New Phytologist, 2022, 234, 1003-1017.

Going Viral: Virus-Based Biological Control Agents for Plant Protection. Annual Review of
Phytopathology, 2022, 60, 21-42.

Identification and Molecular Characterization of Novel Mycoviruses in Saccharomyces and
Non-Saccharomyces Yeasts of Oenological Interest. Viruses, 2022, 14, 52.
Three new clades of putative viral RNA-dependent RNA polymerases with rare or unique catalytic
6 triads discovered in libraries of ORFans from powdery mildews and the yeast of oenological interest <i>Starmerella bacillari</i>s. Virus Evolution, 2022, 8, .

7 Metatranscriptomic Assessment of the Microbial Community Associated With the Flavescence dorã@e
$7 \quad$ Phytoplasma Insect Vector Scaphoideus titanus. Frontiers in Microbiology, 2022, 13, 866523.

Molecular Data of a Novel Penoulivirus Associated with the Plant-Pathogenic Fungus <i>Erysiphe necator</i>. Phytopathology, 2022, 112, 1587-1591.

First report of tomato spotted wilt virus on lisianthus (Eustoma grandiflorum) in Bulgaria. Journal
of Plant Pathology, 2021, 103, 375-375.
Virome characterization of Cryphonectria parasitica isolates from Azerbaijan unveiled a new 10 mymonavirus and a putative new RNA virus unrelated to described viral sequences. Virology, 2021, 553, 51-61.
11 Disinfection treatments eliminated tomato brown rugose fruit virus in tomato seeds. European Journal of Plant Pathology, 2021, 159, 153-162.

Complexity and Local Specificity of the Virome Associated with Tospovirus-Transmitting Thrips Species. Journal of Virology, 2021, 95, e0059721.

2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large
orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.
Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection
14 Infecting PseudomonasÂsyringae pv. actinidiae and P.Âsyringae pv. phaseolicola from Northern Italy.
Viruses, 2021, 13, 2083.
Aspergillus Goes Viral: Ecological Insights from the Geographical Distribution of the Mycovirome
15 within an Aspergillus flavus Population and Its Possible Correlation with Aflatoxin Biosynthesis.
3.5

Journal of Fungi (Basel, Switzerland), 2021, 7, 833.
First Report of Tobacco Mild Green Mosaic Virus and Tomato Brown Rugose Fruit Virus Infecting <i>Capsicum annuum</i> in Jordan. Plant Disease, 2020, 104, 601.

Putative new plant viruses associated with <i>Plasmopara viticola</i>â€infected grapevine samples.
Annals of Applied Biology, 2020, 176, 180-191.

19 A new blunervirus infects tomato crops in Italy and Australia. Archives of Virology, 2020, 165,
2379-2384.

Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evolution, 2020, 6, veaa058.

2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.
2.1

Hail-Induced Infections of the Chestnut Blight Pathogen Cryphonectria parasitica Depend on Wound Size and May Lead to Severe Diebacks. Phytopathology, 2020, 110, 1280-1293.

Different Genetic Sources Contribute to the Small RNA Population in the Arbuscular Mycorrhizal
Fungus Gigaspora margarita. Frontiers in Microbiology, 2020, 11, 395.

A complex virome including two distinct emaraviruses associated with virus-like symptoms in Camellia japonica. Virus Research, 2020, 286, 197964.

25 ICTV Virus Taxonomy Profile: Botourmiaviridae. Journal of General Virology, 2020, 101, 454-455.
2.9

51

VIROPLANT in a Nutshell. Phage, 2020, 1, 174-175.

Extreme Diversity of Mycoviruses Present in Isolates of Rhizoctonia solani AG2-2 LP From Zoysia japonica From Brazil. Frontiers in Cellular and Infection Microbiology, 2019, 9, 244.

The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Research, 2019, 273, 197737.

29 Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.
$2.1 \quad 115$

30 Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.
2.1

285

31 Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in
esca symptomatic and asymptomatic grapevine plants. Environmental Microbiology, 2019, 21, 2886-2904.

In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the
32 symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics, 2019, 20, 169.
2.8

60

Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct
Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. Journal of Virology, 2019, 93, .
3.4

A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification. Methods in Molecular Biology, 2019, 1875, 159-169.

Mycoviruses mediate mycotoxin regulation in <i>Aspergillus ochraceus</i>. Environmental
3.8

3

$35 \quad \begin{aligned} & \text { Mycoviruses mediate mycotoxin regu } \\ & \text { Microbiology, 2019, 21, 1957-1968. }\end{aligned}$

Phytoplasma detection and quantification: Make it easy. Phytopathogenic Mollicutes, 2019, 9, 83.
0.10

The <i>Torradovirus</i>â€specific RNA2â€ORF1 protein is necessary for plant systemic infection.
New tools to study torradovirus molecular biology and epidemiology. Acta Horticulturae, 2018,
177-184.

43 | Full-length genome sequence of the tospovirus melon severe mosaic virus. Archives of Virology, 2017, |
| :--- |
| $162,1419-1422$. |

44 | Mycoviruses of an endophytic fungus can replicate in plant cells: evolutionary implications. Scientific |
| :--- |
| Reports, 2017, $7,1908$. |

45
46

Transmission of <i>Penicillium aurantiogriseum<|i> partitiâ€like virus 1 to a new fungal host
(<i>Cryphonectria parasitica</i>) confers higher resistance to salinity and reveals adaptive genomic
3.8

56
changes. Environmental Microbiology, 2017, 19, 4480-4492.

Efficient detection of Frankliniella schultzei (Thysanoptera, Thripidae) by cytochrome oxidase I gene
(mtCOI) direct sequencing and real-time PCR. Brazilian Archives of Biology and Technology, 2017, 60, .

47 ICTV Virus Taxonomy Profile: Ourmiavirus. Journal of General Virology, 2017, 98, 129-130.
$2.9 \quad 37$

Identification of 〈i>Ourmiavirus</i> 30K movement protein amino acid residues involved in
48 symptomatology, viral movement, subcellular localization and tubule formation. Molecular Plant
4.2

14
Pathology, 2016, 17, 1063-1079.
RNA1-Independent Replication and GFP Expression from <i> Tomato marchitez virus < /i> Isolate M
Cloned cDNA. Phytopathology, 2016, 106,500-509.
$2.2 \quad 12$
Cloned cDNA. Phytopathology, 2016, 106, 500-509.

Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. Annual Review
50 of Phytopathology, 2016, 54, 347-371.
7.8

98

Molecular identification and biological characterization of a new potyvirus in lettuce. Archives of
Virology, 2016, 161, 2549-2554.
2.1

8
Investigation on the partial resistance of Cpkk2 knock out strain of Cryphonectria parasitica to
53 Cryphonectria hypovirus 1 infection in presence of Geneticin and Geneticin resistance gene. Virus
2.2
Research, 2016, 219, 58-61.
55 polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Research, 2.2
Host-specific accumulation and temperature effects on the generation of dimeric viral RNA species
derived from the S-RNA of members of the Tospovirus genus. Journal of General Virology, 2016, 97

The first complete genome sequences of two distinct European tomato spotted wilt virus isolates.
Archives of Virology, 2015, 160, 591-595.
2.1
Functional characterization of the three mitogenâ€activated protein kinase kinases

Mutational analysis of two highly conserved motifs in the silencing suppressor encoded by tomato
spotted wilt virus (genus Tospovirus, family Bunyaviridae). Archives of Virology, 2014, 159, 1499-1504.
2.1

Archives of Virology, 2014, 159, 561-565.

A New Virulent Isolate of <i>Clover Yellow Vein Virus</i> on <i>Phaseolus vulgaris</i> in Bulgaria.
$1.0 \quad 1$ Journal of Phytopathology, 2014, 162, 703-711.

73 Tospoviruses in the Mediterranean Area. Advances in Virus Research, 2012, 84, 403-437. 2.1
Ranunculus latent virus: a strain of artichoke latent virus or a new macluravirus infecting 74 artichoke?. Archives of Virology, 2011, 156, 1053-1057.
$2.1 \quad 9$
Molecular characterization of two distinct strains of blueberry scorch virus (BIScV) in northern
Italy. Archives of Virology, 2011, 156, 1295-1297.
$2.1 \quad 8$
Reverse Genetic Analysis of Ourmiaviruses Reveals the Nucleolar Localization of the Coat Protein in
76 Nicotiana benthamiana and Unusual Requirements for Virion Formation. Journal of Virology, 2011, 85,
$3.4 \quad 39$
5091-5104.
$77 \quad$ First Report of Tomato spotted wilt virus on Pepper in Montenegro. Plant Disease, 2011, 95, 882-882.
$1.4 \quad 7$
Study of mRNA Expression by Real Time PCR of Cpkk1, Cpkk2 and Cpkk3, three MEKs of Cryphonectria
78 parasitica, in Virus-free and Virus-infected Isogenic Isolates. Journal of Phytopathology, 2010, 158,
$1.0 \quad 10$
409-416.
Cpkk1, MAPKK of <i>Cryphonectria parasitica</i>, Is Necessary for Virulence on Chestnut.
Phytopathology, 2010, 100, 1100-1110.
Identification of <i>Dictyothrips betae</i> as the vector of Polygonum ring spot virus. Annals of
Applied Biology, 2010, 157, 299-307.

81	Cloning of the Glyceraldehyde 3-phosphate Dehydrogenase Gene of Flavescence dorÃ ©e Phytoplasma and Development of Serological and Molecular Tools for Studying its Expression. Journal of Phytopathology, 2010, 158, 382-386.	1.0	1
82	A Mutation in the <i>Lettuce Infectious Yellows Virus</i>Minor Coat Protein Disrupts Whitefly Transmission but Not <i>In Planta</i> Systemic Movement. Journal of Virology, 2010, 84, 12165-12173.	3.4	52
83	A New <i> Tospovirus</i> sp. in Cucurbit Crops in Mexico. Plant Disease, 2009, 93, 467-474.	1.4	39
84	Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. Journal of General Virology, 2009, 90, 2525-2535.	2.9	115
85	Agroinoculation of the Crinivirus, Lettuce infectious yellows virus, for systemic plant infection. Virology, 2009, 392, 131-136.	2.4	35
86	Detection of Flavescence dorÃ@e and Bois noir phytoplasmas, <i>Grapevine leafroll associated virusâ€ $1</ \mathrm{i}\rangle$ and $\langle\mathrm{i}\rangle \hat{\mathrm{a}} € 3</ \mathrm{i}\rangle$ and <i>Grapevine virus $\mathrm{A}</ \mathrm{i}\rangle$ from the same crude extract by reverse transcriptionâ€RealTime Taqman assays. Plant Pathology, 2009, 58, 838-845.	2.4	37
87	Synergistic interaction between the Potyvirus, Turnip mosaic virus and the Crinivirus, Lettuce infectious yellows virus in plants and protoplasts. Virus Research, 2009, 144, 163-170.	2.2	32
88	Silencing of <i>Kex2</i> Significantly Diminishes the Virulence of <i>Cryphonectria parasitica</i>. Molecular Plant-Microbe Interactions, 2009, 22, 211-221.	2.6	17
89	A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum) Tj ETQq1 10.7	2.1)

A Severe Disease of Tomato in the Culiacan Area (Sinaloa, Mexico) Is Caused by a New Picorna-Like Viral
Species. Plant Disease, 2007, 91, 932-941.
$1.4 \quad 43$

Quantitative Analysis of Efficient Endogenous Gene Silencing in Nicotiana benthamiana Plants Using
92 Tomato bushy stunt virus Vectors That Retain the Capsid Protein Gene. Molecular Plant-Microbe
2.6

27
Interactions, 2007, 20, 609-618.
3
Species. Plant Disease, 2007, 91, 932-941.
1.4

Detection of Flavescence DorÃ@e Phytoplasma in Grapevine by Reverse-Transcription PCR. Plant Dis
$2007,91,1496-1501$.
1.4
in the Interaction with Resistant Pepper Carrying the Tsw Gene. Molecular Plant-Microbe Interactions,
2.6

88
2007, 20, 547-558.
Panicovirus accumulation is governed by two membrane-associated proteins with a newly identified
conserved motif that contributes to pathogenicity. Virology Journal, 2006,3,12.
conserved motif that contributes to pathogenicity. Virology Journal, 2006, 3, 12.
$3.4 \quad 13$

96 Characterization of Four Viral Species Belonging to the Family Potyviridae Isolated from Ranunculus asiaticus. Phytopathology, 2006, 96, 560-566.
2.2

Effect of Cryphonectria hypovirus 1 (CHV1) infection on Cpkk1, a mitogen-activated protein kinase
$97 \quad \begin{aligned} & \text { kinase of the filamentous fungus Cryphonectria parasitica. Fungal Genetics and Biology, 2006, 43, } \\ & 764-774\end{aligned}$
$2.1 \quad 33$
764-774.
98 Characterization of a potyvirus isolated from Tradescantia fluminensis in northern Italy. Archives of
Virology, 2006, 151, 1235-1241.
2.1

7
99 Mycovirus Cryphonectria Hypovirus 1 Elements Cofractionate with trans -Golgi Network Membranes
of the Fungal Host Cryphonectria parasitica. Journal of Virology, 2006, 80, 6588-6596.

100 First report of Blueberry scorch virus in Europe. Plant Pathology, 2005, 54, 565-565.
2.4

14

> First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw5 resistance gene. Plant Pathology, 2005, 54, 564-564.
A Hydrophobin of the Chestnut Blight Fungus, Cryphonectria parasitica, Is Required for Stromal
Pustule Eruption. Eukaryotic Cell, 2005, 4, 931-936. 3.4
$2.4 \quad 52$
103 A potexvirus related to Papaya mosaic virus isolated from moss rose (Portulaca grandiflora) in Italy.
Plant Pathology, 2004, 53, 515-515.2.412

Resistance breaking strain of Tomato spotted wilt virus (Tospovirus; Bunyaviridae) on resistant pepper
2.4

44 cultivars in Almeria, Spain. Plant Pathology, 2004, 53, 795-795.

A newly identified role for Tomato bushy stunt virus P19 in short distance spread. Molecular Plant

Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica.

```A Gene Cluster Encoded by Panicum Mosaic Virus Is Associated with Virus Movement. Virology, 2000,266, 120-128.
```


[^0]: Source: https://exaly.com/author-pdf/7017827/publications.pdf
 Version: 2024-02-01

