
Massimo Turina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7017827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
2	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
3	A new tobamovirus infecting tomato crops in Jordan. Archives of Virology, 2016, 161, 503-506.	2.1	180
4	Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Research, 2016, 219, 22-38.	2.2	135
5	Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. Journal of General Virology, 2009, 90, 2525-2535.	2.9	115
6	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
7	Genetic Dissection of Tomato Bushy Stunt Virus p19-Protein-Mediated Host-Dependent Symptom Induction and Systemic Invasion. Virology, 2000, 266, 79-87.	2.4	107
8	Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evolution, 2020, 6, veaa058.	4.9	104
9	Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. Annual Review of Phytopathology, 2016, 54, 347-371.	7.8	98
10	Evidence That the Nonstructural Protein of Tomato spotted wilt virus Is the Avirulence Determinant in the Interaction with Resistant Pepper Carrying the Tsw Gene. Molecular Plant-Microbe Interactions, 2007, 20, 547-558.	2.6	88
11	The NSs Protein of Tomato spotted wilt virus Is Required for Persistent Infection and Transmission by Frankliniella occidentalis. Journal of Virology, 2014, 88, 5788-5802.	3.4	86
12	Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environmental Microbiology, 2019, 21, 2886-2904.	3.8	82
13	The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evolution, 2020, 6, veaa076.	4.9	81
14	Mycoviruses of an endophytic fungus can replicate in plant cells: evolutionary implications. Scientific Reports, 2017, 7, 1908.	3.3	79
15	Extreme Diversity of Mycoviruses Present in Isolates of Rhizoctonia solani AG2-2 LP From Zoysia japonica From Brazil. Frontiers in Cellular and Infection Microbiology, 2019, 9, 244.	3.9	78
16	Nucleotide Sequence and Infectivity of a Full-Length cDNA Clone of Panicum Mosaic Virus. Virology, 1998, 241, 141-155.	2.4	70
17	Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants. PLoS Pathogens, 2016, 12, e1005935.	4.7	67
18	The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Research, 2019, 273, 197737.	2.2	65

MASSIMO TURINA

#	Article	IF	CITATIONS
19	Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. Journal of Virology, 2019, 93, .	3.4	63
20	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
21	In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics, 2019, 20, 169.	2.8	60
22	A Gene Cluster Encoded by Panicum Mosaic Virus Is Associated with Virus Movement. Virology, 2000, 266, 120-128.	2.4	57
23	Transmission of <i>Penicillium aurantiogriseum</i> partitiâ€like virus 1 to a new fungal host (<i>Cryphonectria parasitica</i>) confers higher resistance to salinity and reveals adaptive genomic changes. Environmental Microbiology, 2017, 19, 4480-4492.	3.8	56
24	Mycovirus Cryphonectria Hypovirus 1 Elements Cofractionate with trans -Golgi Network Membranes of the Fungal Host Cryphonectria parasitica. Journal of Virology, 2006, 80, 6588-6596.	3.4	53
25	First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw5 resistance gene. Plant Pathology, 2005, 54, 564-564.	2.4	52
26	A Mutation in the <i>Lettuce Infectious Yellows Virus</i> Minor Coat Protein Disrupts Whitefly Transmission but Not <i>In Planta</i> Systemic Movement. Journal of Virology, 2010, 84, 12165-12173.	3.4	52
27	The virome of the arbuscular mycorrhizal fungus <i>Gigaspora margarita</i> reveals the first report of DNA fragments corresponding to replicating nonâ€retroviral RNA viruses in fungi. Environmental Microbiology, 2018, 20, 2012-2025.	3.8	52
28	A Hydrophobin of the Chestnut Blight Fungus, Cryphonectria parasitica , Is Required for Stromal Pustule Eruption. Eukaryotic Cell, 2005, 4, 931-936.	3.4	51
29	ICTV Virus Taxonomy Profile: Botourmiaviridae. Journal of General Virology, 2020, 101, 454-455.	2.9	51
30	Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genetics and Biology, 2003, 40, 242-251.	2.1	50
31	Tospoviruses in the Mediterranean Area. Advances in Virus Research, 2012, 84, 403-437.	2.1	50
32	Putative new plant viruses associated with <i>Plasmopara viticola</i> â€infected grapevine samples. Annals of Applied Biology, 2020, 176, 180-191.	2.5	50
33	Resistance breaking strain of Tomato spotted wilt virus (Tospovirus; Bunyaviridae) on resistant pepper cultivars in Almeria, Spain. Plant Pathology, 2004, 53, 795-795.	2.4	44
34	A Severe Disease of Tomato in the Culiacan Area (Sinaloa, Mexico) Is Caused by a New Picorna-Like Viral Species. Plant Disease, 2007, 91, 932-941.	1.4	43
35	A New <i>Tospovirus</i> sp. in Cucurbit Crops in Mexico. Plant Disease, 2009, 93, 467-474.	1.4	39
36	Reverse Genetic Analysis of Ourmiaviruses Reveals the Nucleolar Localization of the Coat Protein in Nicotiana benthamiana and Unusual Requirements for Virion Formation. Journal of Virology, 2011, 85, 5091-5104.	3.4	39

Massimo Turina

#	Article	IF	CITATIONS
37	Mycoviruses mediate mycotoxin regulation in <i>Aspergillus ochraceus</i> . Environmental Microbiology, 2019, 21, 1957-1968.	3.8	39
38	Characterization of Four Viral Species Belonging to the Family Potyviridae Isolated from Ranunculus asiaticus. Phytopathology, 2006, 96, 560-566.	2.2	37
39	Detection of Flavescence dorée and Bois noir phytoplasmas, <i>Grapevine leafroll associated virusâ€1</i> and <i>â€3</i> and <i>Grapevine virus A</i> from the same crude extract by reverse transcriptionâ€RealTime Taqman assays. Plant Pathology, 2009, 58, 838-845.	2.4	37
40	ICTV Virus Taxonomy Profile: Ourmiavirus. Journal of General Virology, 2017, 98, 129-130.	2.9	37
41	Agroinoculation of the Crinivirus, Lettuce infectious yellows virus, for systemic plant infection. Virology, 2009, 392, 131-136.	2.4	35
42	Going Viral: Virus-Based Biological Control Agents for Plant Protection. Annual Review of Phytopathology, 2022, 60, 21-42.	7.8	35
43	Small RNA profiles of wild-type and silencing suppressor-deficient tomato spotted wilt virus infected Nicotiana benthamiana. Virus Research, 2015, 208, 30-38.	2.2	34
44	Effect of Cryphonectria hypovirus 1 (CHV1) infection on Cpkk1, a mitogen-activated protein kinase kinase of the filamentous fungus Cryphonectria parasitica. Fungal Genetics and Biology, 2006, 43, 764-774.	2.1	33
45	Localization and Mechanical Transmission of Tomato Brown Rugose Fruit Virus in Tomato Seeds. Plant Disease, 2022, 106, 275-281.	1.4	33
46	Synergistic interaction between the Potyvirus, Turnip mosaic virus and the Crinivirus, Lettuce infectious yellows virus in plants and protoplasts. Virus Research, 2009, 144, 163-170.	2.2	32
47	A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum) Tj ETQq1 1 0.784314	rgBT /Ove 2.1	erlogk 10 Tf 50
48	A newly identified role for Tomato bushy stunt virus P19 in short distance spread. Molecular Plant Pathology, 2003, 4, 67-72.	4.2	28
49	Mutational analysis of two highly conserved motifs in the silencing suppressor encoded by tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae). Archives of Virology, 2014, 159, 1499-1504.	2.1	28
50	Quantitative Analysis of Efficient Endogenous Gene Silencing in Nicotiana benthamiana Plants Using Tomato bushy stunt virus Vectors That Retain the Capsid Protein Gene. Molecular Plant-Microbe Interactions, 2007, 20, 609-618.	2.6	27
51	Evidence of a tomato spotted wilt virus resistance-breaking strain originated through natural reassortment between two evolutionary-distinct isolates. Virus Research, 2015, 196, 157-161.	2.2	27
52	Detection of Flavescence Dorée Phytoplasma in Grapevine by Reverse-Transcription PCR. Plant Disease, 2007, 91, 1496-1501.	1.4	26
53	First report of <i>Tomato mottle mosaic virus</i> in tomato crops in Israel. New Disease Reports, 2016, 33, 1-1.	0.8	26
54	Complexity and Local Specificity of the Virome Associated with Tospovirus-Transmitting Thrips Species. Journal of Virology, 2021, 95, e0059721.	3.4	25

Massimo Turina

#	Article	IF	CITATIONS
55	First Report of Tobacco Mild Green Mosaic Virus and Tomato Brown Rugose Fruit Virus Infecting <i>Capsicum annuum</i> in Jordan. Plant Disease, 2020, 104, 601.	1.4	24
56	Virome characterization of Cryphonectria parasitica isolates from Azerbaijan unveiled a new mymonavirus and a putative new RNA virus unrelated to described viral sequences. Virology, 2021, 553, 51-61.	2.4	24
57	The Mycovirus CHV1 Disrupts Secretion of a Developmentally Regulated Protein in Cryphonectria parasitica. Journal of Virology, 2012, 86, 6067-6074.	3.4	23
58	Different Genetic Sources Contribute to the Small RNA Population in the Arbuscular Mycorrhizal Fungus Gigaspora margarita. Frontiers in Microbiology, 2020, 11, 395.	3.5	23
59	Identification of <i>Dictyothrips betae</i> as the vector of Polygonum ring spot virus. Annals of Applied Biology, 2010, 157, 299-307.	2.5	22
60	Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Research, 2016, 211, 38-45.	2.2	21
61	Disinfection treatments eliminated tomato brown rugose fruit virus in tomato seeds. European Journal of Plant Pathology, 2021, 159, 153-162.	1.7	21
62	Characterization of putative membrane protein genes of the â€~ <i>Candidatus</i> Phytoplasma asteris', chrysanthemum yellows isolate. Canadian Journal of Microbiology, 2008, 54, 341-351.	1.7	19
63	Different Approaches to Discover Mycovirus Associated to Marine Organisms. Methods in Molecular Biology, 2018, 1746, 97-114.	0.9	19
64	Hail-Induced Infections of the Chestnut Blight Pathogen Cryphonectria parasitica Depend on Wound Size and May Lead to Severe Diebacks. Phytopathology, 2020, 110, 1280-1293.	2.2	18
65	Silencing of <i>Kex2</i> Significantly Diminishes the Virulence of <i>Cryphonectria parasitica</i> . Molecular Plant-Microbe Interactions, 2009, 22, 211-221.	2.6	17
66	A complex virome including two distinct emaraviruses associated with virus-like symptoms in Camellia japonica. Virus Research, 2020, 286, 197964.	2.2	16
67	Cpkk1, MAPKK of <i>Cryphonectria parasitica</i> , Is Necessary for Virulence on Chestnut. Phytopathology, 2010, 100, 1100-1110.	2.2	15
68	First report of Blueberry scorch virus in Europe. Plant Pathology, 2005, 54, 565-565.	2.4	14
69	The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense. Molecular Plant-Microbe Interactions, 2015, 28, 30-41.	2.6	14
70	Identification of <i>Ourmiavirus</i> 30K movement protein amino acid residues involved in symptomatology, viral movement, subcellular localization and tubule formation. Molecular Plant Pathology, 2016, 17, 1063-1079.	4.2	14
71	Genome sequence, prevalence and quantification of the first iflavirus identified in a phytoplasma insect vector. Archives of Virology, 2017, 162, 799-809.	2.1	14
72	Panicovirus accumulation is governed by two membrane-associated proteins with a newly identified conserved motif that contributes to pathogenicity. Virology Journal, 2006, 3, 12.	3.4	13

MASSIMO TURINA

#	Article	IF	CITATIONS
73	Functional characterization of the three mitogenâ€activated protein kinase kinases (<scp>MAP2Ks</scp>) present in the <i><scp>C</scp>ryphonectria parasitica</i> genome reveals the necessity of <scp>C</scp> pkk1 and <scp>C</scp> pkk2, but not <scp>C</scp> pkk3, for pathogenesis on chestnut (<i><scp>C</scp>astanea</i> spp.). Molecular Plant Pathology, 2014, 15, 500-512.	4.2	13
74	The first complete genome sequences of two distinct European tomato spotted wilt virus isolates. Archives of Virology, 2015, 160, 591-595.	2.1	13
75	A potexvirus related to Papaya mosaic virus isolated from moss rose (Portulaca grandiflora) in Italy. Plant Pathology, 2004, 53, 515-515.	2.4	12
76	RNA1-Independent Replication and GFP Expression from <i>Tomato marchitez virus</i> Isolate M Cloned cDNA. Phytopathology, 2016, 106, 500-509.	2.2	12
77	Host-specific accumulation and temperature effects on the generation of dimeric viral RNA species derived from the S-RNA of members of the Tospovirus genus. Journal of General Virology, 2016, 97, 3051-3062.	2.9	12
78	Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection Infecting PseudomonasÂsyringae pv. actinidiae and P.Âsyringae pv. phaseolicola from Northern Italy. Viruses, 2021, 13, 2083.	3.3	12
79	Three new clades of putative viral RNA-dependent RNA polymerases with rare or unique catalytic triads discovered in libraries of ORFans from powdery mildews and the yeast of oenological interest <i>Starmerella bacillari</i> s. Virus Evolution, 2022, 8, .	4.9	12
80	Genetic dissection of a putative nucleolar localization signal in the coat protein of ourmia melon virus. Archives of Virology, 2014, 159, 1187-1192.	2.1	11
81	Study of mRNA Expression by Real Time PCR of Cpkk1, Cpkk2 and Cpkk3, three MEKs of Cryphonectria parasitica, in Virus-free and Virus-infected Isogenic Isolates. Journal of Phytopathology, 2010, 158, 409-416.	1.0	10
82	Preliminary evidence of recovery from <i>Tomato spotted wilt virus</i> infection in <i>Frankliniella occidentalis</i> individuals. Annals of Applied Biology, 2012, 161, 266-276.	2.5	10
83	A new blunervirus infects tomato crops in Italy and Australia. Archives of Virology, 2020, 165, 2379-2384.	2.1	10
84	Identification and Molecular Characterization of Novel Mycoviruses in Saccharomyces and Non-Saccharomyces Yeasts of Oenological Interest. Viruses, 2022, 14, 52.	3.3	10
85	Ranunculus latent virus: a strain of artichoke latent virus or a new macluravirus infecting artichoke?. Archives of Virology, 2011, 156, 1053-1057.	2.1	9
86	The complete genome sequence of polygonum ringspot virus. Archives of Virology, 2014, 159, 3149-3152.	2.1	9
87	Molecular characterization of two distinct strains of blueberry scorch virus (BlScV) in northern Italy. Archives of Virology, 2011, 156, 1295-1297.	2.1	8
88	Molecular identification and biological characterization of a new potyvirus in lettuce. Archives of Virology, 2016, 161, 2549-2554.	2.1	8
89	The <i>Torradovirus</i> â€specific RNA2â€ORF1 protein is necessary for plant systemic infection. Molecular Plant Pathology, 2018, 19, 1319-1331.	4.2	8
90	Presence of a Mitovirus Is Associated with Alteration of the Mitochondrial Proteome, as Revealed by Protein–Protein Interaction (PPI) and Co-Expression Network Models in Chenopodium quinoa Plants. Biology, 2022, 11, 95.	2.8	8

MASSIMO TURINA

#	Article	IF	CITATIONS
91	Seed Transmission of Hibiscus Latent Ringspot Virus (HLRSV). Plant Disease, 1997, 81, 1082-1084.	1.4	7
92	Characterization of a potyvirus isolated from Tradescantia fluminensis in northern Italy. Archives of Virology, 2006, 151, 1235-1241.	2.1	7
93	A new ilarvirus isolated from ViolaÂ×Âwittrockiana and its detection in pansy germoplasm by qRT-PCR. Archives of Virology, 2014, 159, 561-565.	2.1	7
94	First Report of Tomato spotted wilt virus on Pepper in Montenegro. Plant Disease, 2011, 95, 882-882.	1.4	7
95	Aspergillus Goes Viral: Ecological Insights from the Geographical Distribution of the Mycovirome within an Aspergillus flavus Population and Its Possible Correlation with Aflatoxin Biosynthesis. Journal of Fungi (Basel, Switzerland), 2021, 7, 833.	3.5	7
96	A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen <i>Cryphonectria parasitica</i> . New Phytologist, 2022, 234, 1003-1017.	7.3	6
97	Identification and characterization of Hibiscus latent Fort Pierce virus in Italy. Journal of Plant Pathology, 2018, 100, 145-145.	1.2	5
98	Full-length genome sequence of the tospovirus melon severe mosaic virus. Archives of Virology, 2017, 162, 1419-1422.	2.1	4
99	Metatranscriptomic Assessment of the Microbial Community Associated With the Flavescence dorée Phytoplasma Insect Vector Scaphoideus titanus. Frontiers in Microbiology, 2022, 13, 866523.	3.5	4
100	Molecular Data of a Novel Penoulivirus Associated with the Plant-Pathogenic Fungus <i>Erysiphe necator</i> . Phytopathology, 2022, 112, 1587-1591.	2.2	4
101	Characterization and Cytopathology of Hibiscus Latent Ringspot Virus Isolated from Kenaf (Hibiscus) Tj ETQq1 1	0.784314 1.0	l rgBT /Overlo
102	A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification. Methods in Molecular Biology, 2019, 1875, 159-169.	0.9	3
103	Differential expression of the putative Kex2 processed and secreted aspartic proteinase gene family of Cryphonectria parasitica. Fungal Biology, 2012, 116, 363-378.	2.5	2
104	Efficient detection of Frankliniella schultzei (Thysanoptera, Thripidae) by cytochrome oxidase I gene (mtCOI) direct sequencing and real-time PCR. Brazilian Archives of Biology and Technology, 2017, 60, .	0.5	2
105	First report of tomato spotted wilt virus on lisianthus (Eustoma grandiflorum) in Bulgaria. Journal of Plant Pathology, 2021, 103, 375-375.	1.2	2
106	Cloning of the Glyceraldehyde 3-phosphate Dehydrogenase Gene of Flavescence dorée Phytoplasma and Development of Serological and Molecular Tools for Studying its Expression. Journal of Phytopathology, 2010, 158, 382-386.	1.0	1
107	A New Virulent Isolate of <i>Clover Yellow Vein Virus</i> on <i>Phaseolus vulgaris</i> in Bulgaria. Journal of Phytopathology, 2014, 162, 703-711.	1.0	1
108	Investigation on the partial resistance of Cpkk2 knock out strain of Cryphonectria parasitica to Cryphonectria hypovirus 1 infection in presence of Geneticin and Geneticin resistance gene. Virus Research, 2016, 219, 58-61.	2.2	1

#	Article	IF	CITATIONS
109	New tools to study torradovirus molecular biology and epidemiology. Acta Horticulturae, 2018, , 177-184.	0.2	0
110	Phytoplasma detection and quantification: Make it easy. Phytopathogenic Mollicutes, 2019, 9, 83.	0.1	0
111	VIROPLANT in a Nutshell. Phage, 2020, 1, 174-175.	1.7	0