Georgios Pollakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7017631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The HCV Envelope Glycoprotein Down-Modulates NF-κB Signalling and Associates With Stimulation of the Host Endoplasmic Reticulum Stress Pathway. Frontiers in Immunology, 2022, 13, 831695.	4.8	1
2	Mapping of SARS-CoV-2 IgM and IgG in gingival crevicular fluid: Antibody dynamics and linkage to severity of COVID-19 in hospital inpatients. Journal of Infection, 2022, 85, 152-160.	3.3	6
3	Ebola virus antibody decay–stimulation in a high proportion of survivors. Nature, 2021, 590, 468-472.	27.8	30
4	Generation of Liposomes to Study the Effect of Mycobacterium Tuberculosis Lipids on HIV-1 cis- and trans-Infections. International Journal of Molecular Sciences, 2021, 22, 1945.	4.1	4
5	Streptolysin O concentration and activity is central to in vivo phenotype and disease outcome in Group A Streptococcus infection. Scientific Reports, 2021, 11, 19011.	3.3	1
6	Diagnostic accuracy of dried plasma spot specimens for HIV-1 viral load testing. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, Publish Ahead of Print, .	2.1	3
7	Measuring Proviral HIV-1 DNA: Hurdles and Improvements to an Assay Monitoring Integration Events Utilising Human Alu Repeat Sequences. Life, 2021, 11, 1410.	2.4	5
8	Measuring the Success of HIV-1 Cure Strategies. Frontiers in Cellular and Infection Microbiology, 2020, 10, 134.	3.9	34
9	Bile-salt stimulated lipase polymorphisms do not associate with HCV susceptibility. Virus Research, 2019, 274, 197715.	2.2	1
10	High Resolution Analysis of Respiratory Syncytial Virus Infection In Vivo. Viruses, 2019, 11, 926.	3.3	13
11	Schistosoma mansoni soluble egg antigen (SEA) and recombinant Omega-1 modulate induced CD4+ T-lymphocyte responses and HIV-1 infection in vitro. PLoS Pathogens, 2019, 15, e1007924.	4.7	11
12	Dendritic cells potently purge latent HIV-1 beyond TCR-stimulation, activating the PI3K-Akt-mTOR pathway. EBioMedicine, 2019, 42, 97-108.	6.1	15
13	Comparative analysis and generation of a robust HIV-1 DNA quantification assay. Journal of Virological Methods, 2019, 263, 24-31.	2.1	9
14	SNP rs688 within the lowâ€density lipoprotein receptor (LDLâ€R) gene associates with HCV susceptibility. Liver International, 2019, 39, 463-469.	3.9	10
15	Detection, characterization, and enrollment of donors of Ebola convalescent plasma in Sierra Leone. Transfusion, 2018, 58, 1289-1298.	1.6	23
16	Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals. Frontiers in Immunology, 2018, 9, 144.	4.8	48
17	HIV-1 Transmission: Influence of Bodily Secretions. , 2018, , 920-928.		0
18	Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 2017, 544, 309-315.	27.8	346

GEORGIOS POLLAKIS

#	Article	IF	CITATIONS
19	Brugia malayi Antigen (BmA) Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells. PLoS ONE, 2016, 11, e0146527.	2.5	2
20	Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. Journal of Virology, 2016, 90, 4876-4888.	3.4	32
21	CD25 ⁺ FoxP3 ⁺ Memory CD4 T Cells Are Frequent Targets of HIV Infection <i>In Vivo</i> . Journal of Virology, 2016, 90, 8954-8967.	3.4	10
22	PD-1+ and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nature Medicine, 2016, 22, 754-761.	30.7	388
23	During Stably Suppressive Antiretroviral Therapy Integrated HIV-1 DNA Load in Peripheral Blood is Associated with the Frequency of CD8 Cells Expressing HLA-DR/DP/DQ. EBioMedicine, 2015, 2, 1153-1159.	6.1	43
24	Association between gp120 envelope V1V2 and V4V5 variable loop profiles in a defined HIV-1 transmission cluster. Aids, 2015, 29, 1161-1171.	2.2	8
25	Colorectal Mucus Binds DC-SIGN and Inhibits HIV-1 Trans-Infection of CD4+ T-Lymphocytes. PLoS ONE, 2015, 10, e0122020.	2.5	11
26	Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 2015, 524, 97-101.	27.8	272
27	Increased HIV-1 Activity in Anal High-Grade Squamous Intraepithelial Lesions Compared With Unaffected Anal Mucosa in Men Who Have Sex With Men. Clinical Infectious Diseases, 2014, 58, 1634-1637.	5.8	2
28	HIV-1 Transmission: Influence of Bodily Secretions. , 2014, , 1-10.		0
29	Characterisation of Transmitted and Non-transmitted HIV in Index-recipient Transmission Pairs. AIDS Research and Human Retroviruses, 2014, 30, A223-A224.	1.1	0
30	Quantitation of HIV-1 DNA with a sensitive TaqMan assay that has broad subtype specificity. Journal of Virological Methods, 2013, 187, 94-102.	2.1	15
31	Human immunodeficiency virus type 1 gp120 envelope characteristics associated with disease progression differ in family members infected with genetically similar viruses. Journal of General Virology, 2013, 94, 20-29.	2.9	4
32	Dendritic Cell-induced Activation of Latent HIV-1 Provirus in Actively Proliferating Primary T Lymphocytes. PLoS Pathogens, 2013, 9, e1003259.	4.7	39
33	HIV-1 Autologous Antibody Neutralization Associates with Mother to Child Transmission. PLoS ONE, 2013, 8, e69274.	2.5	21
34	Effects of helminths and Mycobacterium tuberculosis infection on HIV-1. Current Opinion in HIV and AIDS, 2012, 7, 260-267.	3.8	8
35	Transmission of Two Distinct HIV Type 1 Strains to an Individual That Were Harbored for Many Years by Another. AIDS Research and Human Retroviruses, 2012, 28, 225-227.	1.1	0
36	HIV Type 1 Mother-to-Child Transmission Facilitated by Distinctive Glycosylation Sites in the gp120 Envelope Glycoprotein. AIDS Research and Human Retroviruses, 2012, 28, 715-724.	1.1	10

GEORGIOS POLLAKIS

#	Article	IF	CITATIONS
37	Use of (alternative) coreceptors for HIV entry. Current Opinion in HIV and AIDS, 2012, 7, 440-449.	3.8	19
38	Selective packaging of cellular miRNAs in HIV-1 particles. Virus Research, 2012, 169, 438-447.	2.2	18
39	HIV-1 Disease Progression Is Associated with Bile-Salt Stimulated Lipase (BSSL) Gene Polymorphism. PLoS ONE, 2012, 7, e32534.	2.5	14
40	Innate immune factors associated with HIV-1 transmission. Current Opinion in HIV and AIDS, 2011, 6, 341-347.	3.8	11
41	Latency profiles of full length HIV-1 molecular clone variants with a subtype specific promoter. Retrovirology, 2011, 8, 73.	2.0	24
42	Altered dynamics and differential infection profiles of lymphoid and myeloid cell subsets during acute and chronic HIV-1 infection. Journal of Leukocyte Biology, 2011, 89, 785-795.	3.3	34
43	Binding of Human Milk to Pathogen Receptor DC-SIGN Varies with Bile Salt-Stimulated Lipase (BSSL) Gene Polymorphism. PLoS ONE, 2011, 6, e17316.	2.5	24
44	HIV-1 (co)Receptors: Implications for Vaccine and Therapy Design. Current Pharmaceutical Design, 2010, 16, 3701-3715.	1.9	5
45	Generation of representative primary virus isolates from blood plasma after isolation of HIV-1 with CD44 MicroBeads. Archives of Virology, 2010, 155, 2017-2022.	2.1	7
46	Generation of HIV-1 primary isolates representative of plasma variants using the U87.CD4 cell line. Journal of Virological Methods, 2010, 169, 341-350.	2.1	0
47	Varied sensitivity to therapy of HIV-1 strains in CD4+ lymphocyte sub-populations upon ART initiation. AIDS Research and Therapy, 2010, 7, 42.	1.7	3
48	Preferential infection and depletion of <i>Mycobacterium tuberculosis</i> –specific CD4 T cells after HIV-1 infection. Journal of Experimental Medicine, 2010, 207, 2869-2881.	8.5	224
49	Differences in HIV Type 1 RNA Plasma Load Profile of Closely Related Cocirculating Ethiopian Subtype C Strains: C and C′. AIDS Research and Human Retroviruses, 2010, 26, 805-813.	1.1	10
50	Optimization of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins with V1/V2 Deleted, Using Virus Evolution. Journal of Virology, 2009, 83, 368-383.	3.4	43
51	Mucin 6 in seminal plasma binds DC-SIGN and potently blocks dendritic cell mediated transfer of HIV-1 to CD4+ T-lymphocytes. Virology, 2009, 391, 203-211.	2.4	51
52	Lack of in vivo compartmentalization among HIV-1 infected naÃ ⁻ ve and memory CD4+ T cell subsets. Virology, 2009, 393, 24-32.	2.4	30
53	RNA Detection and Subtype C Assessment of HIV-1 in Infants with Diarrhea in Ethiopia. Open AIDS Journal, 2009, 3, 19-23.	0.5	0
54	Dendritic Cells Preferentially Transfer CXCR4-Using Human Immunodeficiency Virus Type 1 Variants to CD4 ⁺ T Lymphocytes in <i>trans</i> . Journal of Virology, 2008, 82, 7886-7896.	3.4	25

GEORGIOS POLLAKIS

#	Article	IF	CITATIONS
55	Use of Dried Spots of Whole Blood, Plasma, and Mother's Milk Collected on Filter Paper for Measurement of Human Immunodeficiency Virus Type 1 Burden. Journal of Clinical Microbiology, 2007, 45, 891-896.	3.9	46
56	Characterization of An HIV-1 Group M Variant That Is Distinct from The Known Subtypes. AIDS Research and Human Retroviruses, 2007, 23, 466-470.	1.1	11
57	Efficient Capture of Antibody Neutralized HIV-1 by Cells Expressing DC-SIGN and Transfer to CD4+ T Lymphocytes. Journal of Immunology, 2007, 178, 3177-3185.	0.8	75
58	Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4+ T-lymphocytes. Retrovirology, 2007, 4, 6.	2.0	53
59	Statins Disrupt CCR5 and RANTES Expression Levels in CD4+ T Lymphocytes In Vitro and Preferentially Decrease Infection of R5 Versus X4 HIV-1. PLoS ONE, 2007, 2, e470.	2.5	37
60	Interaction of HIV-1 with dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-expressing cells is influenced by gp120 envelope modifications associated with disease progression. FEBS Journal, 2006, 273, 4944-4958.	4.7	16
61	Bile Salt-Stimulated Lipase from Human Milk Binds DC-SIGN and Inhibits Human Immunodeficiency Virus Type 1 Transfer to CD4 + T Cells. Antimicrobial Agents and Chemotherapy, 2006, 50, 3367-3374.	3.2	72
62	Surveillance technology for HIV-1 subtype C in Ethiopia: An env-based NASBA molecular beacon assay to discriminate between subcluster C and C′. Journal of Virological Methods, 2005, 130, 22-29.	2.1	9
63	Evidence of Genetic Variability of Human Immunodeficiency Virus Type 1 in Plasma and Cervicovaginal Lavage in Ethiopian Women Seeking Care for Sexually Transmitted Infections. AIDS Research and Human Retroviruses, 2005, 21, 649-653.	1.1	8
64	Broad Cross-Clade T-Cell Responses to Gag in Individuals Infected with Human Immunodeficiency Virus Type 1 Non-B Clades (A to G): Importance of HLA Anchor Residue Conservation. Journal of Virology, 2005, 79, 11247-11258.	3.4	41
65	Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. Journal of Clinical Investigation, 2005, 115, 3256-3264.	8.2	161
66	Intrapatient Alterations in the Human Immunodeficiency Virus Type 1 gp120 V1V2 and V3 Regions Differentially Modulate Coreceptor Usage, Virus Inhibition by CC/CXC Chemokines, Soluble CD4, and the b12 and 2G12 Monoclonal Antibodies. Journal of Virology, 2004, 78, 524-530.	3.4	89
67	Development of a Nucleic Acid Sequence-Based Amplification Assay That Uses gag -Based Molecular Beacons To Distinguish between Human Immunodeficiency Virus Type 1 Subtype C and C′ Infections in Ethiopia. Journal of Clinical Microbiology, 2004, 42, 1534-1541.	3.9	19
68	Phenotypic and Genotypic Comparisons of CCR5- and CXCR4-Tropic Human Immunodeficiency Virus Type 1 Biological Clones Isolated from Subtype C-Infected Individuals. Journal of Virology, 2004, 78, 2841-2852.	3.4	57
69	Recombination of HIV Type 1C (C′/C″) in Ethiopia: Possible Link of EthHIV-1C′ to Subtype C Sequences fro the High-Prevalence Epidemics in India and Southern Africa. AIDS Research and Human Retroviruses, 2003, 19, 999-1008.	om 1.1	28
70	Primary HIV-1 Subtype C Infection in Ethiopia. Journal of Acquired Immune Deficiency Syndromes (1999), 2002, 30, 463-470.	2.1	32
71	Timing of the HIV-1 subtype C epidemic in Ethiopia based on early virus strains and subsequent virus diversification. Aids, 2001, 15, 1555-1561.	2.2	33
72	N-Linked Glycosylation of the HIV Type-1 gp120 Envelope Glycoprotein as a Major Determinant of CCR5 and CXCR4 Coreceptor Utilization. Journal of Biological Chemistry, 2001, 276, 13433-13441.	3.4	198

#	Article	IF	CITATIONS
73	Timing of the Introduction into Ethiopia of Subcluster C′ of HIV Type 1 Subtype C. AIDS Research and Human Retroviruses, 2001, 17, 657-661.	1.1	33
74	Identification of a Genetic Subcluster of HIV Type 1 Subtype C (C′) Widespread in Ethiopia. AIDS Research and Human Retroviruses, 2000, 16, 1909-1914.	1.1	49
75	HIV-1 Subtype C in Commercial Sex Workers in Addis Ababa, Ethiopia. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 23, 120-127.	2.1	28
76	HIV-1 subtype C syncytium- and non-syncytium-inducing phenotypes and coreceptor usage among Ethiopian patients with AIDS. Aids, 1999, 13, 1305-1311.	2.2	146