Hai Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7017407/publications.pdf

Version: 2024-02-01

4885 13865 28,869 179 67 168 h-index citations g-index papers 185 185 185 33855 all docs citing authors docs citations times ranked

#	Article	IF	Citations
1	Single-Layer MoS ₂ Phototransistors. ACS Nano, 2012, 6, 74-80.	14.6	3,103
2	A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science, 2012, 336, 327-332.	12.6	1,878
3	Growth of Large-Area and Highly Crystalline MoS ₂ Thin Layers on Insulating Substrates. Nano Letters, 2012, 12, 1538-1544.	9.1	1,749
4	Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249-253.	27.8	1,555
5	Singleâ€Layer Semiconducting Nanosheets: Highâ€Yield Preparation and Device Fabrication. Angewandte Chemie - International Edition, 2011, 50, 11093-11097.	13.8	1,517
6	Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS ₂ and WSe ₂ Nanosheets. Accounts of Chemical Research, 2014, 47, 1067-1075.	15.6	1,374
7	Fabrication of Single―and Multilayer MoS ₂ Filmâ€Based Fieldâ€Effect Transistors for Sensing NO at Room Temperature. Small, 2012, 8, 63-67.	10.0	1,346
8	Single-Layer MoS ₂ -Based Nanoprobes for Homogeneous Detection of Biomolecules. Journal of the American Chemical Society, 2013, 135, 5998-6001.	13.7	995
9	Fabrication of Flexible MoS ₂ Thinâ€Film Transistor Arrays for Practical Gasâ€Sensing Applications. Small, 2012, 8, 2994-2999.	10.0	817
10	High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.	13.6	757
11	Black Phosphorus Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 3653-3657.	13.8	594
12	Interlayer Breathing and Shear Modes in Few-Trilayer MoS ₂ and WSe ₂ . Nano Letters, 2013, 13, 1007-1015.	9.1	576
13	Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 2010, 4, 3201-3208.	14.6	571
14	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>Evolution. ACS Nano, 2017, 11, 5800-5807.}	14.6	557
15	Mechanical Exfoliation and Characterization of Single―and Few‣ayer Nanosheets of WSe ₂ , TaS ₂ , and TaSe ₂ . Small, 2013, 9, 1974-1981.	10.0	544
16	Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy. ACS Nano, 2013, 7, 10344-10353.	14.6	359
17	Amphiphilic Graphene Composites. Angewandte Chemie - International Edition, 2010, 49, 9426-9429.	13.8	325
18	Singleâ€Layer Transition Metal Dichalcogenide Nanosheetâ€Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Advanced Materials, 2015, 27, 935-939.	21.0	322

#	Article	IF	CITATIONS
19	A general synthesis approach for amorphous noble metal nanosheets. Nature Communications, 2019, 10, 4855.	12.8	321
20	Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors. ACS Nano, 2011, 5, 5038-5044.	14.6	305
21	Optical Identification of Single―and Fewâ€Layer MoS ₂ Sheets. Small, 2012, 8, 682-686.	10.0	290
22	Conjugatedâ€Polyelectrolyteâ€Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents. Small, 2010, 6, 663-669.	10.0	278
23	Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chemical Science, 2011, 2, 1817.	7.4	249
24	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie - International Edition, 2018, 57, 8425-8431.	13.8	241
25	A Solutionâ€Processed Hole Extraction Layer Made from Ultrathin MoS ₂ Nanosheets for Efficient Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1262-1268.	19.5	231
26	Layer Thinning and Etching of Mechanically Exfoliated MoS ₂ Nanosheets by Thermal Annealing in Air. Small, 2013, 9, 3314-3319.	10.0	229
27	Allâ€Carbon Electronic Devices Fabricated by Directly Grown Singleâ€Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes. Advanced Materials, 2010, 22, 3058-3061.	21.0	201
28	Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Applied Physics Letters, 2013, 102, .	3.3	201
29	Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20149-20154.	7.1	198
30	A Universal, Rapid Method for Clean Transfer of Nanostructures onto Various Substrates. ACS Nano, 2014, 8, 6563-6570.	14.6	192
31	Ag@MoS ₂ Coreâ€"Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS ₂ . Journal of the American Chemical Society, 2020, 142, 7161-7167.	13.7	185
32	Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Advanced Materials, 2012, 24, 4138-4142.	21.0	183
33	Coating Two-Dimensional Nanomaterials with Metal–Organic Frameworks. ACS Nano, 2014, 8, 8695-8701.	14.6	168
34	Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy, 2017, 41, 117-127.	16.0	159
35	Metallic 1T Phase Enabling MoS ₂ Nanodots as an Efficient Agent for Photoacoustic Imaging Guided Photothermal Therapy in the Nearâ€Infraredâ€II Window. Small, 2020, 16, e2004173.	10.0	150
36	A Graphene–Conjugated Oligomer Hybrid Probe for Lightâ€Up Sensing of Lectin and <i>Escherichia Coli</i> . Advanced Materials, 2011, 23, 4386-4391.	21.0	141

#	Article	IF	CITATIONS
37	Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Applied Physics Letters, 2016, 109, .	3.3	132
38	Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. Journal of the American Chemical Society, 2016, 138, 13850-13853.	13.7	132
39	Synthesis of Twoâ€Dimensional Transitionâ€Metal Phosphates with Highly Ordered Mesoporous Structures for Lithiumâ€Ion Battery Applications. Angewandte Chemie - International Edition, 2014, 53, 9352-9355.	13.8	128
40	Self-Assembled Chiral Nanofibers from Ultrathin Low-Dimensional Nanomaterials. Journal of the American Chemical Society, 2015, 137, 1565-1571.	13.7	123
41	Synthesis of Gold Squareâ€like Plates from Ultrathin Gold Square Sheets: The Evolution of Structure Phase and Shape. Angewandte Chemie - International Edition, 2011, 50, 12245-12248.	13.8	121
42	Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and Transitionâ€Metal Dichalcogenides and their Application as Supercapacitors. Angewandte Chemie - International Edition, 2014, 53, 12576-12580.	13.8	119
43	Copperâ€Based Ternary and Quaternary Semiconductor Nanoplates: Templated Synthesis, Characterization, and Photoelectrochemical Properties. Angewandte Chemie - International Edition, 2014, 53, 8929-8933.	13.8	118
44	Investigation of MoS ₂ and Graphene Nanosheets by Magnetic Force Microscopy. ACS Nano, 2013, 7, 2842-2849.	14.6	117
45	Twoâ€Dimensional CuSe Nanosheets with Microscale Lateral Size: Synthesis and Templateâ€Assisted Phase Transformation. Angewandte Chemie - International Edition, 2014, 53, 5083-5087.	13.8	115
46	The Molecular Basis of Distinct Aggregation Pathways of Islet Amyloid Polypeptide. Journal of Biological Chemistry, 2011, 286, 6291-6300.	3.4	104
47	Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nature Communications, 2021, 12, 3102.	12.8	103
48	Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy, 2019, 62, 338-347.	16.0	102
49	Boosting Electrocatalytic Activity of 3dâ€Block Metal (Hydro)oxides by Ligandâ€Induced Conversion. Angewandte Chemie - International Edition, 2021, 60, 10614-10619.	13.8	101
50	Engineering the Electronic Structure of Submonolayer Pt on Intermetallic Pd ₃ Pb via Charge Transfer Boosts the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 19964-19968.	13.7	99
51	Aminosilane Micropatterns on Hydroxyl-Terminated Substrates: Fabrication and Applications. Langmuir, 2010, 26, 5603-5609.	3.5	98
52	Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy, 2017, 32, 382-388.	16.0	98
53	Ultrathin Palladium Nanomesh for Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 3435-3438.	13.8	98
54	Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nature Communications, 2022, 13 , .	12.8	95

#	Article	IF	CITATIONS
55	Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy. Small, 2021, 17, e2007486.	10.0	94
56	Interfacial Interactions in van der Waals Heterostructures of MoS ₂ and Graphene. ACS Nano, 2017, 11, 11714-11723.	14.6	92
57	Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers. Applied Physics Letters, 2013, 103, .	3.3	88
58	Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent Devices. ACS Nano, 2020, 14, 3876-3884.	14.6	86
59	Graphene Oxide as a Novel Nanoplatform for Enhancement of Aggregationâ€Induced Emission of Silole Fluorophores. Advanced Materials, 2012, 24, 4191-4195.	21.0	85
60	Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale, 2014, 6, 12340-12344.	5.6	82
61	Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals. Advanced Materials, 2019, 31, e1806562.	21.0	79
62	Carbon-supported metal single atom catalysts. New Carbon Materials, 2018, 33, 1-11.	6.1	74
63	Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angewandte Chemie - International Edition, 2021, 60, 6533-6538.	13.8	73
64	Goldâ€Nanoparticleâ€Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection. Small, 2012, 8, 1336-1340.	10.0	72
65	Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. Chemical Communications, 2011, 47, 8560.	4.1	69
66	Nanolithography of Single-Layer Graphene Oxide Films by Atomic Force Microscopy. Langmuir, 2010, 26, 6164-6166.	3.5	68
67	Transformable masks for colloidal nanosynthesis. Nature Communications, 2018, 9, 563.	12.8	67
68	Ultraâ∈Fast and Scalable Saline Immersion Strategy Enabling Uniform Zn Nucleation and Deposition for Highâ∈Performance Znâ∈Ion Batteries. Small, 2021, 17, e2101901.	10.0	65
69	Nonâ€Conjugated Polymer as an Efficient Dopantâ€Free Holeâ€Transporting Material for Perovskite Solar Cells. ChemSusChem, 2017, 10, 2578-2584.	6.8	64
70	Composition- and phase-controlled synthesis and applications of alloyed phase heterostructures of transition metal disulphides. Nanoscale, 2017, 9, 5102-5109.	5.6	63
71	Cross-dimensional electron-phonon coupling in van der Waals heterostructures. Nature Communications, 2019, 10, 2419.	12.8	60
72	Origin of High Efficiency and Long-Term Stability in Ionic Liquid Perovskite Photovoltaic. Research, 2020, 2020, 2616345.	5.7	59

#	Article	IF	CITATIONS
73	Templating C ₆₀ on MoS ₂ Nanosheets for 2D Hybrid van der Waals <i>p</i> – <i>n</i> Nanoheterojunctions. Chemistry of Materials, 2016, 28, 4300-4306.	6.7	58
74	Graphene Oxide Scrolls on Hydrophobic Substrates Fabricated by Molecular Combing and Their Application in Gas Sensing. Small, 2013, 9, 382-386.	10.0	57
75	Bottomâ€Up Preparation of Porous Metalâ€Oxide Ultrathin Sheets with Adjustable Composition/Phases and Their Applications. Small, 2011, 7, 3458-3464.	10.0	55
76	Tripleâ€Layer (Au@Perylene)@Polyaniline Nanocomposite: Unconventional Growth of Faceted Organic Nanocrystals on Polycrystalline Au. Angewandte Chemie - International Edition, 2011, 50, 9898-9902.	13.8	55
77	Stable single-atom platinum catalyst trapped in carbon onion graphitic shells for improved chemoselective hydrogenation of nitroarenes. Carbon, 2019, 143, 378-384.	10.3	55
78	Growth of Cu ₂ O Nanoparticles on Two-Dimensional Zr–Ferrocene–Metal–Organic Framework Nanosheets for Photothermally Enhanced Chemodynamic Antibacterial Therapy. Inorganic Chemistry, 2022, 61, 9328-9338.	4.0	55
79	A Method for Fabrication of Graphene Oxide Nanoribbons from Graphene Oxide Wrinkles. Journal of Physical Chemistry C, 2009, 113, 19119-19122.	3.1	52
80	Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nature Communications, 2018, 9, 3611.	12.8	49
81	Scrolling bilayer WS2/MoS2 heterostructures for high-performance photo-detection. Nano Research, 2020, 13, 959-966.	10.4	49
82	The formation of perovskite multiple quantum well structures for high performance light-emitting diodes. Npj Flexible Electronics, $2018, 2, \ldots$	10.7	46
83	Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13011-13018.	8.0	45
84	Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. Nanoscale, 2020, 12, 16987-16994.	5.6	45
85	High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale, 2012, 4, 860-863.	5.6	43
86	Triangular Ag–Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction. Nanoscale, 2014, 6, 11738-11743.	5.6	43
87	Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells. Polymer Chemistry, 2016, 7, 926-932.	3.9	43
88	Crystal phase control in two-dimensional materials. Science China Chemistry, 2018, 61, 1227-1242.	8.2	42
89	Revisiting the Growth of Black Phosphorus in Sn-I Assisted Reactions. Frontiers in Chemistry, 2019, 7, 21.	3.6	41
90	A Bioâ€inspired Platform to Modulate Myogenic Differentiation of Human Mesenchymal Stem Cells Through Focal Adhesion Regulation. Advanced Healthcare Materials, 2013, 2, 442-449.	7.6	40

#	Article	IF	Citations
91	Achieving High Volumetric Lithium Storage Capacity in Compact Carbon Materials with Controllable Nitrogen Doping. Advanced Functional Materials, 2019, 29, 1807441.	14.9	39
92	Surface Modification of Smooth Poly(<scp> </scp> -lactic acid) Films for Gelatin Immobilization. ACS Applied Materials & Samp; Interfaces, 2012, 4, 687-693.	8.0	38
93	Engineering the Atomic Layer of RuO ₂ on PdO Nanosheets Boosts Oxygen Evolution Catalysis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42298-42304.	8.0	38
94	Metallic phase enabling MoS2 nanosheets as an efficient sonosensitizer for photothermal-enhanced sonodynamic antibacterial therapy. Journal of Nanobiotechnology, 2022, 20, 136.	9.1	38
95	Polydopamine Dots-Based Fluorescent Nanoswitch Assay for Reversible Recognition of Glutamic Acid and Al ³⁺ in Human Serum and Living Cell. ACS Applied Materials & Therfaces, 2018, 10, 35760-35769.	8.0	37
96	Low-temperature photoluminescence emission of monolayer MoS2 on diverse substrates grown by CVD. Journal of Luminescence, 2018, 199, 210-215.	3.1	35
97	Ultrafast Cathodic Exfoliation of Few-Layer Black Phosphorus in Aqueous Solution. ACS Applied Nano Materials, 2019, 2, 3793-3801.	5.0	35
98	Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Research, 2017, 10, 1710-1719.	10.4	33
99	Polyphenylene Dendrimerâ€Templated In Situ Construction of Inorganic–Organic Hybrid Riceâ€Shaped Architectures. Advanced Functional Materials, 2010, 20, 43-49.	14.9	32
100	Peptide Diffusion and Self-Assembly in Ambient Water Nanofilm on Mica Surface. Journal of Physical Chemistry B, 2009, 113, 8795-8799.	2.6	31
101	Surface-Enhanced Raman Scattering of Ag–Au Nanodisk Heterodimers. Journal of Physical Chemistry C, 2012, 116, 10390-10395.	3.1	31
102	Mechanical Manipulation Assisted Self-Assembly To Achieve Defect Repair and Guided Epitaxial Growth of Individual Peptide Nanofilaments. ACS Nano, 2010, 4, 5791-5796.	14.6	30
103	Ultrafast Microwave Activating Polarized Electron for Scalable Porous Al toward High-Energy-Density Batteries. Nano Letters, 2020, 20, 8818-8824.	9.1	30
104	Molecular Mechanism of Surface-Assisted Epitaxial Self-Assembly of Amyloid-like Peptides. ACS Nano, 2012, 6, 9276-9282.	14.6	29
105	Amorphous Metal Oxide Nanosheets Featuring Reversible Structure Transformations as Sodium-Ion Battery Anodes. Cell Reports Physical Science, 2020, 1, 100118.	5.6	29
106	Benzodithiophene-modified terpolymer acceptors with reduced molecular planarity and crystallinity: improved performance and stability for all-polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 10338-10351.	5.5	25
107	Nanoscaleâ€Controlled Enzymatic Degradation of Poly(<scp>L</scp> â€lactic acid) Films Using Dipâ€Pen Nanolithography. Small, 2011, 7, 226-229.	10.0	24
108	Ultrathin Palladium Nanomesh for Electrocatalysis. Angewandte Chemie, 2018, 130, 3493-3496.	2.0	24

#	Article	IF	Citations
109	A flexible SERS-active film for studying the effect of non-metallic nanostructures on Raman enhancement. Nanoscale, 2018, 10, 16895-16901.	5.6	24
110	Graphene Oxide Architectures Prepared by Molecular Combing on Hydrophilicâ€Hydrophobic Micropatterns. Small, 2014, 10, 2239-2244.	10.0	23
111	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 10486-10490.	13.8	21
112	Direct Observation of the Light-Induced Exfoliation of Molybdenum Disulfide Sheets in Water Medium. ACS Nano, 2021, 15, 5661-5670.	14.6	21
113	Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates. Nanotechnology, 2017, 28, 164001.	2.6	20
114	Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Science China Materials, 2019, 62, 43-53.	6.3	20
115	Design of Layerâ€Structured KAlF ₄ :Yb/Er for Pressureâ€Enhanced Upconversion Luminescence. Advanced Optical Materials, 2020, 8, 1901031.	7.3	20
116	Horseradish peroxidase-triggered direct in situ fluorescent immunoassay platform for sensing cardiac troponin I and SARS-CoV-2 nucleocapsid protein in serum. Biosensors and Bioelectronics, 2022, 198, 113823.	10.1	19
117	Supramolecular Structures of Amyloid-Related Peptides in an Ambient Water Nanofilm. Journal of Physical Chemistry B, 2010, 114, 15759-15765.	2.6	18
118	Wafer-Scale Ultrathin Two-Dimensional Conjugated Microporous Polymers: Preparation and Application in Heterostructure Devices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4010-4017.	8.0	18
119	Organic Solvents Mediate Self-assembly of GAV-9 Peptide on Mica Surface. Acta Biochimica Et Biophysica Sinica, 2007, 39, 285-289.	2.0	17
120	Adhesion, proliferation, and gene expression profile of human umbilical vein endothelial cells cultured on bilayered polyelectrolyte coatings composed of glycosaminoglycans. Biointerphases, 2010, 5, FA53-FA62.	1.6	17
121	Mesoscopic organic nanosheets peeled from stacked 2D covalent frameworks. Chemical Communications, 2011, 47, 7365.	4.1	17
122	Anion-dependent topochemical conversion of CoAl-LDH microplates to hierarchical superstructures of CoOOH nanoplates with controllable orientation. Chemical Communications, 2020, 56, 10285-10288.	4.1	17
123	Wrapping Plasmonic Silver Nanoparticles inside One-Dimensional Nanoscrolls of Transition-Metal Dichalcogenides for Enhanced Photoresponse. Inorganic Chemistry, 2021, 60, 4226-4235.	4.0	17
124	Immobilization of Recombinant Vault Nanoparticles on Solid Substrates. ACS Nano, 2010, 4, 1417-1424.	14.6	16
125	Single-layer graphene oxide sheet: a novel substrate for dip-pen nanolithography. Chemical Communications, 2011, 47, 10070.	4.1	16
126	A new V-shaped triphenylamine/diketopyrrolopyrrole containing donor material for small molecule organic solar cells. RSC Advances, 2015, 5, 68192-68199.	3.6	16

#	Article	IF	Citations
127	Scrolling up graphene oxide nanosheets assisted by self-assembled monolayers of alkanethiols. Nanoscale, 2017, 9, 9997-10001.	5.6	16
128	Graphene oxide scroll meshes encapsulated Ag nanoparticles for humidity sensing. RSC Advances, 2017, 7, 40119-40123.	3.6	16
129	Effect of nanostructured silicon on surface enhanced Raman scattering. RSC Advances, 2018, 8, 6629-6633.	3.6	16
130	Accelerating the startup of microbial fuel cells by facile microbial acclimation. Bioresource Technology Reports, 2019, 8, 100347.	2.7	16
131	Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Frontiers of Physics, 2019, 14, 1.	5.0	16
132	Chiral cation promoted interfacial charge extraction for efficient tin-based perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 789-796.	12.9	16
133	Peptide Self-Assembly on Mica under Ethanol-Containing Atmospheres: Effects of Ethanol on Epitaxial Growth of Peptide Nanofilaments. Journal of Physical Chemistry B, 2012, 116, 2927-2933.	2.6	15
134	A Universal Strategy for Stretchable Polymer Nonvolatile Memory via Tailoring Nanostructured Surfaces. Scientific Reports, 2019, 9, 10337.	3.3	15
135	Imparting Boron Nanosheets with Ambient Stability through Methyl Group Functionalization for Mechanistic Investigation of Their Lithiation Process. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23370-23377.	8.0	15
136	Grafting polymerization of singleâ€handed helical poly(phenyl isocyanide)s on graphene oxide and their application in enantioselective separation. Journal of Polymer Science Part A, 2017, 55, 2092-2103.	2.3	14
137	Ethanol Assisted Transfer for Clean Assembly of 2D Building Blocks and Suspended Structures. Advanced Functional Materials, 2019, 29, 1902427.	14.9	14
138	Silver Nanowireâ€Templated Molecular Nanopatterning and Nanoparticle Assembly for Surfaceâ€Enhanced Raman Scattering. Chemistry - A European Journal, 2019, 25, 10561-10565.	3.3	13
139	Temperature-dependent photoluminescence and time-resolved photoluminescence study of monolayer molybdenum disulfide. Optical Materials, 2020, 107, 110150.	3.6	13
140	Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integrative Biology (United Kingdom), 2010, 2, 250.	1.3	12
141	Graphene Oxide Scroll Meshes Prepared by Molecular Combing for Transparent and Flexible Electrodes. Advanced Materials Technologies, 2017, 2, 1600231.	5.8	12
142	Morphological and Spectroscopic Characterizations of Monolayer and Few-Layer MoS ₂ and WSe ₂ Nanosheets under Oxygen Plasma Treatment with Different Excitation Power: Implications for Modulating Electronic Properties. ACS Applied Nano Materials, 2020, 3, 4218-4230.	5.0	12
143	Ultralow-frequency Raman system down to $10 \text{ cm} \hat{a}$ with longpass edge filters and its application to the interface coupling in $t(2+2)LGs$. Review of Scientific Instruments, 2016, 87, 053122.	1.3	11
144	Surfaceâ€Induced Synthesis and Selfâ€Assembly of Metal Suprastructures. Small, 2010, 6, 2708-2715.	10.0	10

#	Article	IF	CITATIONS
145	Facile growth of a single-crystal pattern: a case study of HKUST-1. Chemical Communications, 2012, 48, 11901.	4.1	10
146	Solvent-Free Preparation of Closely Packed MoS ₂ Nanoscrolls for Improved Photosensitivity. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9515-9524.	8.0	10
147	Intrinsic effect of interfacial coupling on the high-frequency intralayer modes in twisted multilayer MoTe ₂ . Nanoscale, 2021, 13, 9732-9739.	5.6	9
148	Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angewandte Chemie, 2021, 133, 6607-6612.	2.0	9
149	Spatially Controlled Preparation of Layered Metallic–Semiconducting Metal Chalcogenide Heterostructures. ACS Nano, 2021, 15, 12171-12179.	14.6	9
150	A Simple Miniaturization Protocol to Produce Multicomponent Micro- and Nanostructures. Small, 2006, 2, 884-887.	10.0	8
151	Apparent Colors of 2D Materials. Advanced Photonics Research, 2022, 3, 2100221.	3.6	8
152	Confined Water Nanofilm Promoting Nonenzymatic Degradation of DNA Molecules. Journal of Physical Chemistry B, 2011, 115, 2754-2758.	2.6	7
153	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 10622-10626.	2.0	7
154	Crack Formation on Crystalline Bismuth Oxychloride Thin Square Sheets by Using a Wetâ€Chemical Method. ChemNanoMat, 2020, 6, 759-764.	2.8	7
155	Heterostructures between a tin-based intermetallic compound and a layered semiconductor for gas sensing. Chemical Communications, 2021, 57, 5590-5593.	4.1	7
156	Ligand-assisted deposition of ultra-small Au nanodots on Fe ₂ O ₃ /reduced graphene oxide for flexible gas sensors. Nanoscale Advances, 2022, 4, 1345-1350.	4.6	7
157	Deposition of Vertically Aligned Ag/Ag ₂ S Nanoflakes on EGaIn Particles for Humidity Sensing. Chemistry - A European Journal, 2022, 28, .	3.3	7
158	INVESTIGATION ON THE MORPHOLOGY OF PRECIPITATED CHEMICALS FROM TE BUFFER ON SOLID SUBSTRATES. Surface Review and Letters, 2007, 14, 1121-1128.	1.1	6
159	Direct CVD growth of MoS2 on chemically and thermally reduced graphene oxide nanosheets for improved photoresponse. APL Materials, 2021, 9, .	5.1	6
160	Direct Synthesis of MoS2 Nanosheets in Reduced Graphene Oxide Nanoscroll for Enhanced Photodetection. Nanomaterials, 2022, 12, 1581.	4.1	6
161	Microstructure $\hat{a}\in$ cyclic deformation property relationships of biodegradable di-crystalline triblock copolymers. Polymer, 2011, 52, 3451-3459.	3.8	5
162	The influence of two-dimensional organic adlayer thickness on the ultralow frequency Raman spectra of transition metal dichalcogenide nanosheets. Science China Materials, 2019, 62, 181-193.	6.3	5

#	Article	IF	CITATIONS
163	Few-layer WSe2 lateral homo- and hetero-junctions with superior optoelectronic performance by laser manufacturing. Science China Technological Sciences, 2020, 63, 1531-1537.	4.0	5
164	Glycerol facilitates the disaggregation of recombinant adeno-associated virus serotype 2 on mica surface. Colloids and Surfaces B: Biointerfaces, 2007, 60, 264-267.	5.0	4
165	ORGANIC SOLVENT-ASSISTED TRANSFER PRINTING ON HYDROPHOBIC POLYMER SUBSTRATE WITH HIGH EFFICIENCY. Surface Review and Letters, 2008, 15, 763-768.	1.1	4
166	Impact of pH on Regulating Ion Encapsulation of Graphene Oxide Nanoscroll for Pressure Sensing. Nanomaterials, 2019, 9, 548.	4.1	4
167	Thick Two-Dimensional Water Film Confined between the Atomically Thin Mica Nanosheet and Hydrophilic Substrate. Langmuir, 2019, 35, 5130-5139.	3.5	4
168	Intralayer Phonons in Multilayer Graphene Moiré Superlattices. Research, 2022, 2022, .	5.7	4
169	Photoluminescence Enhancement Effect of the Layered MoS ₂ Film Grown by CVD. Journal of Engineering (United States), 2017, 2017, 1-8.	1.0	3
170	Anisotropic Cu@Cu-BTC core-shell nanostructure for memory device. Chinese Chemical Letters, 2019, 30, 1093-1096.	9.0	3
171	A solvent decomposition and explosion approach for boron nanoplate synthesis. Chemical Communications, 2021, 57, 4922-4925.	4.1	3
172	Single- and few-layer 2H-SnS2 and 4H-SnS2 nanosheets for high-performance photodetection. Chinese Chemical Letters, 2022, 33, 2611-2616.	9.0	3
173	Ternary NiCoTi-layered double hydroxide nanosheets as a pH-responsive nanoagent for photodynamic/chemodynamic synergistic therapy. Fundamental Research, 2022, , .	3.3	3
174	VAULT PROTEIN-TEMPLATED ASSEMBLIES OF NANOPARTICLES. Nano, 2012, 07, 1250001.	1.0	2
175	Silicon acid batteries enabled by a copper catalysed electrochemo-mechanical process. Energy and Environmental Science, 2021, 14, 6672-6677.	30.8	2
176	FABRICATION OF TRUE-COLOR MICROPATTERNS BY 2D STEPWISE CONTRACTION AND ADSORPTION NANOLITHOGRAPHY (SCAN). Surface Review and Letters, 2007, 14, 129-134.	1.1	1
177	VISUALIZATION EX SITU OF SINGLE DNA MOLECULES INCUBATION: A FIRST STEP FOR QUANTITATIVE ANALYSIS ON MULTI-SITE DEGRADATION AND ENZYMATIC KINETICS. Surface Review and Letters, 2009, 16, 79-85.	1.1	1
178	Realization of Oriented and Nanoporous Bismuth Chalcogenide Layers via Topochemical Heteroepitaxy for Flexible Gas Sensors. Research, 2022, 2022, .	5.7	1
179	460 DDX5 regulates REG3A mRNA splicing to control wound healing in skin. Journal of Investigative Dermatology, 2019, 139, S79.	0.7	0