
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7017141/publications.pdf Version: 2024-02-01

FIFIKDAKA

#	Article	IF	CITATIONS
1	Chemical Bonding in Homogenous Catalysis – Seen Through the Eyes of Vibrational Spectroscopy. , 2024, , 622-648.		0
2	Pivotal role of water molecules in the photodegradation of pymetrozine: New insights for developing green pesticides. Journal of Hazardous Materials, 2022, 423, 127197.	12.4	7
3	Analysis of spectator chemical bonds in SN2@C and @Si reaction mechanisms in the gas phase. Chemical Physics Letters, 2022, 787, 139282.	2.6	3
4	Structural study of 1- and 2-naphthol: new insights into the non-covalent H–H interaction in cis-1-naphthol. Physical Chemistry Chemical Physics, 2022, 24, 3722-3732.	2.8	7
5	Capturing Individual Hydrogen Bond Strengths in Ices via Periodic Local Vibrational Mode Theory: Beyond the Lattice Energy Picture. Journal of Chemical Theory and Computation, 2022, 18, 562-579.	5.3	17
6	LModeA-nano: A PyMOL Plugin for Calculating Bond Strength in Solids, Surfaces, and Molecules via Local Vibrational Mode Analysis. Journal of Chemical Theory and Computation, 2022, 18, 1821-1837.	5.3	16
7	BF3–Catalyzed Diels–Alder Reaction between Butadiene and Methyl Acrylate in Aqueous Solution—An URVA and Local Vibrational Mode Study. Catalysts, 2022, 12, 415.	3.5	3
8	Unusual Intramolecular Motion of ReH ₉ ^{2–} in K ₂ ReH ₉ Crystal: Circle Dance and Three-Arm Turnstile Mechanisms Revealed by Computational Studies. Inorganic Chemistry, 2022, 61, 1041-1050.	4.0	2
9	Allosteric control of ACE2 peptidase domain dynamics. Organic and Biomolecular Chemistry, 2022, 20, 3605-3618.	2.8	3
10	Uranium: The Nuclear Fuel Cycle and Beyond. International Journal of Molecular Sciences, 2022, 23, 4655.	4.1	18
11	Bonding in nitrile photo-dissociating ruthenium drug candidates—A local vibrational mode study. Journal of Chemical Physics, 2022, 157, .	3.0	6
12	SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction. International Journal of Molecular Sciences, 2021, 22, 1392.	4.1	29
13	Exceptionally Long Covalent CC Bonds—A Local Vibrational Mode Study. Molecules, 2021, 26, 950.	3.8	26
14	Predicting Potential SARS-COV-2 Drugs—In Depth Drug Database Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking. International Journal of Molecular Sciences, 2021, 22, 1573.	4.1	27
15	Describing Polytopal Rearrangement Processes of Octacoordinate Structures. I. Renewed Insights into Fluxionality of the Rhenium Polyhydride Complex ReH ₅ (PPh ₃) ₂ (Pyridine). Inorganic Chemistry, 2021, 60, 2492-2502.	4.0	6
16	Systematic Detection and Characterization of Hydrogen Bonding in Proteins via Local Vibrational Modes. Journal of Physical Chemistry B, 2021, 125, 2551-2565.	2.6	15
17	Theoretical Insights into [NHC]Au(I) Catalyzed Hydroalkoxylation of Allenes: A Unified Reaction Valley Approach Study. Journal of Organic Chemistry, 2021, 86, 5714-5726.	3.2	11
18	A revised formulation of the generalized subsystem vibrational analysis (GSVA). Theoretical Chemistry Accounts, 2021, 140, 31.	1.4	6

#	Article	IF	CITATIONS
19	Hydrogen Bonding in Natural and Unnatural Base Pairs—A Local Vibrational Mode Study. Molecules, 2021, 26, 2268.	3.8	26
20	Assessing the Intrinsic Strengths of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Mg2+ Clusters. Inorganics, 2021, 9, 31.	2.7	5
21	Deep Learning-Based Ligand Design Using Shared Latent Implicit Fingerprints from Collaborative Filtering. Journal of Chemical Information and Modeling, 2021, 61, 2159-2174.	5.4	5
22	Halogen Bonding Involving I2 and d8 Transition-Metal Pincer Complexes. Crystals, 2021, 11, 373.	2.2	14
23	Vibrational Analysis of Benziodoxoles and Benziodazolotetrazoles. Physchem, 2021, 1, 45-68.	1.1	5
24	Generative adversarial networks for transition state geometry prediction. Journal of Chemical Physics, 2021, 155, 024116.	3.0	21
25	Relating Bond Strength and Nature to the Thermodynamic Stability of Hypervalent Togniâ€Type Iodine Compounds. ChemPlusChem, 2021, 86, 1199-1210.	2.8	5
26	On the formation of CN bonds in Titan's atmosphere—a unified reaction valley approach study. Journal of Molecular Modeling, 2021, 27, 320.	1.8	2
27	Comment on "Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between <scp>atomsâ€inâ€molecules</scp> descriptors, binding energies, and energy components of <scp>symmetryâ€adapted</scp> perturbation theoryâ€. Journal of Computational Chemistry, 2021, 42, 516-521.	3.3	9
28	Metal–Halogen Bonding Seen through the Eyes of Vibrational Spectroscopy. Materials, 2020, 13, 55.	2.9	26
29	PyVibMS: a PyMOL plugin for visualizing vibrations in molecules and solids. Journal of Molecular Modeling, 2020, 26, 290.	1.8	14
30	Modeling Hydrogen Release from Water with Borane and Alane Catalysts: A Unified Reaction Valley Approach. Journal of Physical Chemistry A, 2020, 124, 8978-8993.	2.5	12
31	Equilibrium Geometries, Adiabatic Excitation Energies and Intrinsic C=C/C–H Bond Strengths of Ethylene in Lowest Singlet Excited States Described by TDDFT. Symmetry, 2020, 12, 1545.	2.2	5
32	Local Vibrational Mode Analysis of ï€â€"Hole Interactions between Aryl Donors and Small Molecule Acceptors. Crystals, 2020, 10, 556.	2.2	22
33	Peritectic phase transition of benzene and acetonitrile into a cocrystal relevant to Titan, Saturn's moon. Chemical Communications, 2020, 56, 13520-13523.	4.1	11
34	Characterizing the Metal–Ligand Bond Strength via Vibrational Spectroscopy: The Metal–Ligand Electronic Parameter (MLEP). Topics in Organometallic Chemistry, 2020, , 227-269.	0.7	3
35	Local vibrational mode analysis of ion–solvent and solvent–solvent interactions for hydrated Ca2+ clusters. Journal of Chemical Physics, 2020, 153, 224303.	3.0	14
36	Critical assessment of the FeC and CO bond strength in carboxymyoglobin: a QM/MM local vibrational mode study. Journal of Molecular Modeling, 2020, 26, 281.	1.8	24

#	Article	IF	CITATIONS
37	Local vibrational force constants – From the assessment of empirical force constants to the description of bonding in large systems. Chemical Physics Letters, 2020, 748, 137337.	2.6	27
38	Decoding chemical information from vibrational spectroscopy data: Local vibrational mode theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1480.	14.6	85
39	Computational analysis of vibrational frequencies and rovibrational spectroscopic constants of hydrogen sulfide dimer using MP2 and CCSD(T). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118540.	3.9	14
40	Chelation-Assisted Selective Etching Construction of Hierarchical Polyoxometalate-Based Metal–Organic Framework. Chemistry of Materials, 2020, 32, 5550-5557.	6.7	43
41	Describing Polytopal Rearrangements of Fluxional Molecules with Curvilinear Coordinates Derived from Normal Vibrational Modes: A Conceptual Extension of Cremer–Pople Puckering Coordinates. Journal of Chemical Theory and Computation, 2020, 16, 3162-3193.	5.3	8
42	In Situ Assessment of Intrinsic Strength of X-lâ∂OA-Type Halogen Bonds in Molecular Crystals with Periodic Local Vibrational Mode Theory. Molecules, 2020, 25, 1589.	3.8	26
43	Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review. Catalysts, 2020, 10, 691.	3.5	20
44	Quantitative assessment of intramolecular hydrogen bonds in neutral histidine. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	20
45	Crystal structure of 1-propanethiol–Co2(dobdc) from laboratory X-ray powder diffraction data. Powder Diffraction, 2020, 35, 3-6.	0.2	1
46	Modified Density Functional Dispersion Correction for Inorganic Layered MFX Compounds (M = Ca, Sr,) Tj ETQq(0.0 rgBT	Oyerlock 10
47	A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory. Sensors, 2020, 20, 2358.	3.8	29
48	Systematic description of molecular deformations with Cremer–Pople puckering and deformation coordinates utilizing analytic derivatives: Applied to cycloheptane, cyclooctane, and cyclo[18]carbon. Journal of Chemical Physics, 2020, 152, 154107.	3.0	16
49	Metal–ring interactions in actinide sandwich compounds: A combined normalized elimination of the small component and local vibrational mode study. Molecular Physics, 2020, 118, e1768314.	1.7	14
50	Calculation of contact densities and Mössbauer isomer shifts utilising the Dirac-exact two-component normalised elimination of the small component (2c-NESC) method. Molecular Physics, 2019, 117, 1164-1171.	1.7	10
51	Interplay of Ring Puckering and Hydrogen Bonding in Deoxyribonucleosides. Journal of Physical Chemistry A, 2019, 123, 7087-7103.	2.5	32
52	Pushing 3c–4e Bonds to the Limit: A Coupled Cluster Study of Stepwise Fluorination of First-Row Atoms. Inorganic Chemistry, 2019, 58, 14777-14789.	4.0	16

53	Preface: Dieter Cremer's scientific journey. Molecular Physics, 2019, 117, 1047-1058.	1.7	3
54	Correlation between molecular acidity (pKa) and vibrational spectroscopy. Journal of Molecular Modeling, 2019, 25, 48.	1.8	8

4

#	Article	IF	CITATIONS
55	New insights into Fe–H\$\$_{2}\$\$ and Fe–H\$\$^{-}\$\$ bonding of a [NiFe] hydrogenase mimic: a local vibrational mode study. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	34
56	A new way of studying chemical reactions: a hand-in-hand URVA and QTAIM approach. Physical Chemistry Chemical Physics, 2019, 21, 15007-15018.	2.8	33
57	Quantitative Assessment of Bâ^'Bâ^'B, Bâ^'H _b â^'B, and Bâ^'H _t Bonds: From BH ₃ to B ₁₂ H ₁₂ ^{2â^'} . ChemPhysChem, 2019, 20, 1967-1977.	2.1	30
58	Dieter Cremer's contribution to the field of theoretical chemistry. International Journal of Quantum Chemistry, 2019, 119, e25849.	2.0	26
59	A Continuum from Halogen Bonds to Covalent Bonds: Where Do λ3 Iodanes Fit?. Inorganics, 2019, 7, 47.	2.7	39
60	In Situ Measure of Intrinsic Bond Strength in Crystalline Structures: Local Vibrational Mode Theory for Periodic Systems. Journal of Chemical Theory and Computation, 2019, 15, 1761-1776.	5.3	32
61	New mechanistic insights into the Claisen rearrangement of chorismate – a Unified Reaction Valley Approach study. Molecular Physics, 2019, 117, 1172-1192.	1.7	22
62	Odd-even effect of the number of free valence electrons on the electronic structure properties of gold-thiolate clusters. Molecular Physics, 2019, 117, 1442-1450.	1.7	5
63	Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis. Journal of Chemical Theory and Computation, 2018, 14, 2558-2569.	5.3	23
64	Gold(I)-assisted catalysis – a comprehensive view on the [3,3]-sigmatropic rearrangement of allyl acetate. Molecular Physics, 2018, 116, 611-630.	1.7	18
65	Correlating the vibrational spectra of structurally related molecules: A spectroscopic measure of similarity. Journal of Computational Chemistry, 2018, 39, 293-306.	3.3	11
66	Quantitative Assessment of Tetrel Bonding Utilizing Vibrational Spectroscopy. Molecules, 2018, 23, 2763.	3.8	84
67	From strong to weak NF bonds: on the design of a new class of fluorinating agents. Physical Chemistry Chemical Physics, 2018, 20, 23913-23927.	2.8	45
68	Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method. Journal of Chemical Physics, 2017, 146, 134109.	3.0	27
69	The Peculiar Role of the Au ₃ Unit in Au _{<i>m</i>} Clusters: σ-Aromaticity of the Au ₅ Zn ⁺ Ion. Inorganic Chemistry, 2017, 56, 5793-5803.	4.0	27
70	Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes. Chemical Physics Letters, 2017, 681, 56-63.	2.6	74
71	Generalization of the Tolman electronic parameter: the metal–ligand electronic parameter and the intrinsic strength of the metal–ligand bond. Dalton Transactions, 2017, 46, 8323-8338.	3.3	68
72	Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?. Journal of Chemical Theory and Computation, 2017, 13, 55-76.	5.3	85

#	Article	IF	CITATIONS
73	Quantitative Assessment of Halogen Bonding Utilizing Vibrational Spectroscopy. Inorganic Chemistry, 2017, 56, 488-502.	4.0	91
74	Characterizing Chemical Similarity with Vibrational Spectroscopy: New Insights into the Substituent Effects in Monosubstituted Benzenes. Journal of Physical Chemistry A, 2017, 121, 8086-8096.	2.5	15
75	Strengthening of hydrogen bonding with the push-pull effect. Chemical Physics Letters, 2017, 685, 251-258.	2.6	58
76	The Many Facets of Chalcogen Bonding: Described by Vibrational Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 6845-6862.	2.5	95
77	Systematic Coupled Cluster Study of Noncovalent Interactions Involving Halogens, Chalcogens, and Pnicogens. Journal of Physical Chemistry A, 2017, 121, 9544-9556.	2.5	72
78	C ₂ in a Box: Determining Its Intrinsic Bond Strength for the X ¹ Σ _g ⁺ Ground State. Chemistry - A European Journal, 2016, 22, 4087-4099.	3.3	120
79	Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method. Journal of Chemical Physics, 2016, 145, 184104.	3.0	27
80	Super-pnicogen bonding in the radical anion of the fluorophosphine dimer. Chemical Physics Letters, 2016, 662, 182-187.	2.6	49
81	A Reaction Valley Investigation of the Cycloaddition of 1,3-Dipoles with the Dipolarophiles Ethene and Acetylene: Solution of a Mechanistic Puzzle. Journal of Physical Chemistry A, 2016, 120, 8400-8418.	2.5	21
82	Rational Design in Catalysis: A Mechanistic Study of β-Hydride Eliminations in Gold(I) and Gold(III) Complexes Based on Features of the Reaction Valley. Inorganic Chemistry, 2016, 55, 8636-8645.	4.0	40
83	Quantitative Assessment of Aromaticity and Antiaromaticity Utilizing Vibrational Spectroscopy. Journal of Organic Chemistry, 2016, 81, 9669-9686.	3.2	56
84	The intrinsic strength of the halogen bond: electrostatic and covalent contributions described by coupled cluster theory. Physical Chemistry Chemical Physics, 2016, 18, 33031-33046.	2.8	128
85	A New Method for Describing the Mechanism of a Chemical Reaction Based on the Unified Reaction Valley Approach. Journal of Chemical Theory and Computation, 2016, 12, 650-663.	5.3	41
86	Extraordinary Mechanism of the Diels–Alder Reaction: Investigation of Stereochemistry, Charge Transfer, Charge Polarization, and Biradicaloid Formation. Journal of Physical Chemistry A, 2016, 120, 1097-1111.	2.5	37
87	Solving the Pericyclic–Pseudopericyclic Puzzle in the Ring-Closure Reactions of 1,2,4,6-Heptatetraene Derivatives. Journal of Organic Chemistry, 2016, 81, 404-414.	3.2	29
88	Reâ€evaluation of the bond length–bond strength rule: The stronger bond is not always the shorter bond. Journal of Computational Chemistry, 2016, 37, 130-142.	3.3	88
89	Direct Measure of Metal–Ligand Bonding Replacing the Tolman Electronic Parameter. Inorganic Chemistry, 2016, 55, 2332-2344.	4.0	85
90	B–H··Â-Ï€ Interaction: A New Type of Nonclassical Hydrogen Bonding. Journal of the American Chemical Society, 2016, 138, 4334-4337.	13.7	126

#	Article	IF	CITATIONS
91	Analytical energy gradient for the two-component normalized elimination of the small component method. Journal of Chemical Physics, 2015, 142, 214106.	3.0	39
92	Hidden Bond Anomalies: The Peculiar Case of the Fluorinated Amine Chalcogenides. Journal of Physical Chemistry A, 2015, 119, 9541-9556.	2.5	54
93	11,11-Dimethyl-1,6-methano[10]annulene—An Annulene with an Ultralong CC Bond or a Fluxional Molecule?. Journal of Physical Chemistry A, 2015, 119, 1666-1682.	2.5	41
94	Strength of the Pnicogen Bond in Complexes Involving Group Va Elements N, P, and As. Journal of Physical Chemistry A, 2015, 119, 1642-1656.	2.5	132
95	Pseudorotational Landscape of Sevenâ€Membered Rings: The Most Stable Chair and Twistâ€Boat Conformers of εâ€Caprolactone. Chemistry - A European Journal, 2014, 20, 14084-14089.	3.3	12
96	Description of Bond Pseudorotation, Bond Pseudolibration, and Ring Pseudoinversion Processes Caused by the Pseudo-Jahn–Teller Effect: Fluoro Derivatives of the Cyclopropane Radical Cation. Australian Journal of Chemistry, 2014, 67, 435.	0.9	21
97	The mechanism of the cycloaddition reaction of 1,3-dipole molecules with acetylene: an investigation with the unified reaction valley approach. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	23
98	Properties of local vibrational modes: the infrared intensity. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	43
99	New Approach to Tolman's Electronic Parameter Based on Local Vibrational Modes. Inorganic Chemistry, 2014, 53, 478-495.	4.0	61
100	Description of Aromaticity with the Help of Vibrational Spectroscopy: Anthracene and Phenanthrene. Journal of Physical Chemistry A, 2014, 118, 223-237.	2.5	67
101	Calculation of response properties with the normalized elimination of the small component method. International Journal of Quantum Chemistry, 2014, 114, 993-1005.	2.0	23
102	Quantitative Assessment of the Multiplicity of Carbon–Halogen Bonds: Carbenium and Halonium Ions with F, Cl, Br, and I. Journal of Physical Chemistry A, 2014, 118, 1948-1963.	2.5	66
103	Enediynes, enyneâ€ e llenes, their reactions, and beyond. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 285-324.	14.6	32
104	Are carbon—halogen double and triple bonds possible?. International Journal of Quantum Chemistry, 2014, 114, 1060-1072.	2.0	41
105	Diracâ€exact relativistic methods: the normalized elimination of the small component method. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 436-467.	14.6	45
106	Exploring Bonding in Heavy Atom Chemistry with Dirac-Exact Methods. Current Inorganic Chemistry, 2014, 3, 220-234.	0.2	1
107	Relativistic Calculation of Hyperfine Parameters of Mercury Compounds. Current Inorganic Chemistry, 2014, 3, 284-290.	0.2	5
108	Identification of the Strongest Bonds in Chemistry. Journal of Physical Chemistry A, 2013, 117, 8981-8995.	2.5	140

#	Article	IF	CITATIONS
109	Relating normal vibrational modes to local vibrational modes: benzene and naphthalene. Journal of Molecular Modeling, 2013, 19, 2865-2877.	1.8	35
110	Description of local and global shape properties of protein helices. Journal of Molecular Modeling, 2013, 19, 2901-2911.	1.8	14
111	Nearly Degenerate Isomers of C(BH) ₂ : Cumulene, Carbene, or Carbone?. Chemistry - A European Journal, 2013, 19, 15941-15954.	3.3	25
112	From configuration interaction to coupled cluster theory: The quadratic configuration interaction approach. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 482-503.	14.6	19
113	Improved Predictor–Corrector Integrators For Evaluating Reaction Path Curvature. Journal of Chemical Theory and Computation, 2013, 9, 1481-1488.	5.3	27
114	Removal of Mercury from the Environment: A Quantum-Chemical Study with the Normalized Elimination of the Small Component Method. Inorganic Chemistry, 2013, 52, 2497-2504.	4.0	28
115	Spin-orbit coupling calculations with the two-component normalized elimination of the small component method. Journal of Chemical Physics, 2013, 139, 014106.	3.0	51
116	Chiral Discrimination by Vibrational Spectroscopy Utilizing Local Modes. Chirality, 2013, 25, 185-196.	2.6	25
117	Relativistically corrected electric field gradients calculated with the normalized elimination of the small component formalism. Journal of Chemical Physics, 2012, 137, 054113.	3.0	26
118	Analytic calculation of second-order electric response properties with the normalized elimination of the small component (NESC) method. Journal of Chemical Physics, 2012, 137, 084108.	3.0	26
119	Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme. Journal of Chemical Physics, 2012, 137, 084114.	3.0	113
120	Energetics and Mechanism of the Hydrogenation of XH _{<i>n</i>} for Group IV to Group VII Elements X. Journal of Chemical Theory and Computation, 2012, 8, 4931-4943.	5.3	30
121	Development, Implementation, and Application of an Analytic Second Derivative Formalism for the Normalized Elimination of the Small Component Method. Journal of Chemical Theory and Computation, 2012, 8, 2617-2629.	5.3	44
122	Analytic Calculation of Isotropic Hyperfine Structure Constants Using the Normalized Elimination of the Small Component Formalism. Journal of Physical Chemistry A, 2012, 116, 3481-3486.	2.5	40
123	Analytic Calculation of Contact Densities and Mössbauer Isomer Shifts Using the Normalized Elimination of the Small-Component Formalism. Journal of Chemical Theory and Computation, 2012, 8, 875-882.	5.3	40
124	Bondpseudorotation, Jahnâ€Teller, and pseudoâ€Jahnâ€Teller effects in the cyclopentadienyl cation and its pentahalogeno derivatives. International Journal of Quantum Chemistry, 2012, 112, 3277-3288.	2.0	25
125	A comprehensive analysis of hydrogen bond interactions based on local vibrational modes. International Journal of Quantum Chemistry, 2012, 112, 3174-3187.	2.0	121
126	New Way of Describing Static and Dynamic Deformations of the Jahn–Teller Type in Ring Molecules. Journal of Physical Chemistry A, 2011, 115, 8731-8742.	2.5	36

#	Article	IF	CITATIONS
127	MÃ,ller–Plesset perturbation theory: from small molecule methods to methods for thousands of atoms. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 509-530.	14.6	171
128	Reaction path Hamiltonian and the unified reaction valley approach. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 531-556.	14.6	47
129	An improved algorithm for the normalized elimination of the small-component method. Theoretical Chemistry Accounts, 2011, 130, 633-644.	1.4	41
130	Development and application of the analytical energy gradient for the normalized elimination of the small component method. Journal of Chemical Physics, 2011, 134, 244117.	3.0	68
131	Computational Analysis of the Mechanism of Chemical Reactions in Terms of Reaction Phases: Hidden Intermediates and Hidden Transition States. Accounts of Chemical Research, 2010, 43, 591-601.	15.6	160
132	A stunning example for a spontaneous reaction with a complex mechanism: the vinylidene–acetylene cycloaddition reaction. Molecular Physics, 2010, 108, 2667-2685.	1.7	22
133	Characterization of CF Bonds with Multipleâ€Bond Character: Bond Lengths, Stretching Force Constants, and Bond Dissociation Energies. ChemPhysChem, 2009, 10, 686-698.	2.1	103
134	The self-interaction error and the description of non-dynamic electron correlation in density functional theory. Theoretical Chemistry Accounts, 2009, 123, 171-182.	1.4	51
135	Description and recognition of regular and distorted secondary structures in proteins using the automated protein structure analysis method. Proteins: Structure, Function and Bioinformatics, 2009, 76, 418-438.	2.6	10
136	Bonding in Mercury Molecules Described by the Normalized Elimination of the Small Component and Coupled Cluster Theory. ChemPhysChem, 2008, 9, 2510-2521.	2.1	66
137	Structure, Vibrational Spectra, and Unimolecular Dissociation of Gaseous 1-Fluoro-1-phenethyl Cations. Journal of Physical Chemistry A, 2008, 112, 10774-10783.	2.5	29
138	Avoiding singularity problems associated with meta-GGA (generalized gradient approximation) exchange and correlation functionals containing the kinetic energy density. Journal of Chemical Physics, 2007, 127, 214103.	3.0	62
139	Efficient density-functional theory integrations by locally augmented radial grids. Journal of Chemical Physics, 2007, 127, 164113.	3.0	53
140	The mechanism of a barrierless reaction: hidden transition state and hidden intermediates in the reaction of methylene with ethene. Molecular Physics, 2007, 105, 2697-2717.	1.7	45
141	Calculation and analysis of NMR spin–spin coupling constants. Physical Chemistry Chemical Physics, 2007, 9, 2791-2816.	2.8	95
142	A QM/MM Study of the Bergman Reaction of Dynemicin A in the Minor Groove of DNA. Journal of Physical Chemistry B, 2007, 111, 8321-8328.	2.6	16
143	Finding the Transition State of Quasi-Barrierless Reactions by a Growing String Method for Newton Trajectories:  Application to the Dissociation of Methylenecyclopropene and Cyclopropane. Journal of Physical Chemistry A, 2007, 111, 11287-11293.	2.5	22
144	The Reactivity of Calicheamicin γ ₁ ¹ in the Minor Groove of DNA: The Decisive Role of the Environment. Chemistry - A European Journal, 2007, 13, 9256-9269.	3.3	12

#	Article	IF	CITATIONS
145	Development of a CAS-DFT method covering non-dynamical and dynamical electron correlation in a balanced way. Molecular Physics, 2005, 103, 279-308.	1.7	109
146	Analysis of long-range NMR spin–spin coupling in polyenes and the π-mechanism. Physical Chemistry Chemical Physics, 2005, 7, 452-462.	2.8	17
147	The impact of the self-interaction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits. Journal of Chemical Physics, 2004, 120, 524-539.	3.0	141
148	Decomposition of nuclear magnetic resonance spin–spin coupling constants into active and passive orbital contributions. Journal of Chemical Physics, 2004, 120, 9952-9968.	3.0	16
149	Can One Assess theï€ Character of a C–C Bond with the Help of the NMR Spin–Spin Coupling Constants?. ChemPhysChem, 2004, 5, 349-366.	2.1	32
150	Revision of the Dissociation Energies of Mercury Chalcogenides?Unusual Types of Mercury Bonding. ChemPhysChem, 2004, 5, 1547-1557.	2.1	48
151	Systematic strategy for decoding the NMR spin–spin coupling mechanism: the J-OC-PSP method. Magnetic Resonance in Chemistry, 2004, 42, S138-S157.	1.9	13
152	Analysis of the spin-dipole transmission mechanism for NMR spin–spin coupling constants using orbital contributions, spin polarization, and spin-dipole energy density distribution. Chemical Physics Letters, 2004, 387, 415-427.	2.6	24
153	Analysis of the NMR through-space coupling mechanism between 19F atoms. Chemical Physics Letters, 2004, 394, 5-13.	2.6	40
154	Effect of the self-interaction error for three-electron bonds: On the development of new exchange-correlation functionals. Physical Chemistry Chemical Physics, 2004, 6, 1096-1112.	2.8	107
155	Relativistically corrected hyperfine structure constants calculated with the regular approximation applied to correlation corrected ab initio theory. Journal of Chemical Physics, 2004, 121, 5618-5622.	3.0	32
156	Investigation of the NMR Spinâ^'Spin Coupling Constants across the Hydrogen Bonds in Ubiquitin:Â The Nature of the Hydrogen Bond as Reflected by the Coupling Mechanism. Journal of the American Chemical Society, 2004, 126, 5093-5107.	13.7	35
157	One-electron versus electron–electron interaction contributions to the spin–spin coupling mechanism in nuclear magnetic resonance spectroscopy: Analysis of basic electronic effects. Journal of Chemical Physics, 2004, 121, 12217.	3.0	9
158	Calculation of indirect nuclear spin–spin coupling constants within the regular approximation for relativistic effects. Journal of Chemical Physics, 2004, 120, 11407-11422.	3.0	60
159	Long-range and short-range Coulomb correlation effects as simulated by Hartree-Fock, local density approximation, and generalized gradient approximation exchange functionals. Theoretical Chemistry Accounts, 2003, 109, 22-35.	1.4	81
160	Relativistically corrected geometries obtained with analytical gradients: normalized elimination of the small component using an effective potential. Chemical Physics Letters, 2003, 370, 647-653.	2.6	17
161	Relativistically corrected nuclear magnetic resonance chemical shifts calculated with the normalized elimination of the small component using an effective potential-NMR chemical shifts of molybdenum and tungsten. Journal of Chemical Physics, 2003, 119, 701-712.	3.0	21
162	Correlation of the Vibrational Spectra of Isotopomers:  Theory and Application. Journal of Physical Chemistry A, 2003, 107, 10272-10279.	2.5	10

#	Article	IF	CITATIONS
163	Analysis of the Transmission Mechanism of NMR Spinâ^'Spin Coupling Constants Using Fermi Contact Spin Density Distribution, Partial Spin Polarization, and Orbital Currents:  XHn Molecules. Journal of Physical Chemistry A, 2003, 107, 7043-7056.	2.5	51
164	New Approach for Determining the Conformational Features of Pseudorotating Ring Molecules Utilizing Calculated and Measured NMR Spinâ~'Spin Coupling Constants. Journal of Physical Chemistry A, 2003, 107, 1797-1810.	2.5	27
165	Analysis of multipath transmission of spin–spin coupling constants in cyclic compounds with the help of partially spin-polarized orbital contributions. Physical Chemistry Chemical Physics, 2003, 5, 4541-4550.	2.8	31
166	Bonding in radon hexafluoride: An unusual relativistic problem?. Physical Chemistry Chemical Physics, 2003, 5, 1103-1105.	2.8	25
167	On the physical meaning of the ZORA Hamiltonian. Molecular Physics, 2003, 101, 2295-2302.	1.7	48
168	The microwave spectrum, ab initio analysis, and structure of the fluorobenzene–hydrogen chloride complex. Journal of Chemical Physics, 2003, 118, 9278-9290.	3.0	16
169	Calculation of electric properties using regular approximations to relativistic effects: The polarizabilities of RuO4, OsO4, and HsO4 (Z=108). Journal of Chemical Physics, 2003, 119, 1412-1420.	3.0	31
170	Extension of the Karplus Relationship for NMR Spin-Spin Coupling Constants to Nonplanar Ring Systems: Pseudorotation of Tetrahydrofuran. International Journal of Molecular Sciences, 2003, 4, 158-192.	4.1	57
171	Exploring the Structure of a DNA Hairpin with the Help of NMR Spinâ^'Spin Coupling Constants:Â An Experimental and Quantum Chemical Investigation. Journal of Physical Chemistry B, 2002, 106, 10242-10250.	2.6	22
172	Vibrational Spectrum ofm-Benzyne: A Matrix Isolation and Computational Studyâ€. Journal of the American Chemical Society, 2002, 124, 13072-13079.	13.7	74
173	Extension of the Karplus Relationship for NMR Spinâ [~] Spin Coupling Constants to Nonplanar Ring Systems: Pseudorotation of Cyclopentane. Journal of Physical Chemistry A, 2002, 106, 657-667.	2.5	63
174	Peculiar Structure of the HOOO-Anion. Journal of the American Chemical Society, 2002, 124, 8462-8470.	13.7	36
175	Electron correlation and the self-interaction error of density functional theory. Molecular Physics, 2002, 100, 1771-1790.	1.7	202
176	Some thoughts about the stability and reliability of commonly used exchange?correlation functionals ? coverage of dynamic and nondynamic correlation effects. Theoretical Chemistry Accounts, 2002, 107, 291-303.	1.4	116
177	Mechanism and dynamics of organic reactions: 1,2-H shift in methylchlorocarbene. Journal of Physical Organic Chemistry, 2002, 15, 431-447.	1.9	28
178	Influence of the self-interaction error on the structure of the DFT exchange hole. Chemical Physics Letters, 2002, 352, 469-478.	2.6	65
179	The Bergman reaction of dynemicin A – a quantum chemical investigation. Chemical Physics Letters, 2002, 361, 129-135.	2.6	13
180	On the diagnostic value of (Ŝ2) in Kohn-Sham density functional theory. Molecular Physics, 2001, 99, 981-989.	1.7	89

#	Article	IF	CITATIONS
181	Density functional theory: coverage of dynamic and non-dynamic electron correlation effects. Molecular Physics, 2001, 99, 1899-1940.	1.7	281
182	The mechanism of the reaction FH + H2C=CH2→H3C–CFH2. Investigation of hidden intermediates with the unified reaction valley approach. Physical Chemistry Chemical Physics, 2001, 3, 674-687.	2.8	39
183	Comparison of CCSDT- n methods with coupled-cluster theory with single and double excitations and coupled-cluster theory with single, double, and triple excitations in terms of many-body perturbation theory - what is the most effective triple-excitation method?. Theoretical Chemistry Accounts, 2001, 105. 182-196.	1.4	19
184	Thepara-didehydropyridine,para-didehydropyridinium, and related biradicals?a contribution to the chemistry of enediyne antitumor drugs. Journal of Computational Chemistry, 2001, 22, 216-229.	3.3	64
185	Problematic p-benzyne: Orbital instabilities, biradical character, and broken symmetry. Journal of Chemical Physics, 2001, 114, 10638-10650.	3.0	161
186	Structure and stability of fluorine-substituted benzene-argon complexes: The decisive role of exchange-repulsion and dispersion interactions. Journal of Chemical Physics, 2001, 115, 6018-6029.	3.0	52
187	The combination of density functional theory with multi-configuration methods – CAS-DFT. Chemical Physics Letters, 2000, 316, 569-577.	2.6	139
188	The expectation value of the spin operator Ŝ2 as a diagnostic tool in coupled cluster theory. Chemical Physics Letters, 2000, 324, 389-402.	2.6	49
189	Size-extensive quadratic CI methods including quadruple excitations: QCISDTQ and QCISDTQ(6) – On the importance of four-electron correlation effects. Chemical Physics Letters, 2000, 317, 535-544.	2.6	20
190	Spin-projected coupled-cluster theory with single and double excitations. Theoretical Chemistry Accounts, 2000, 105, 132-144.	1.4	16
191	Some Thoughts about Bond Energies, Bond Lengths, and Force Constants. Journal of Molecular Modeling, 2000, 6, 396-412.	1.8	124
192	Can density functional theory describe multi-reference systems? Investigation of carbenes and organic biradicals. Physical Chemistry Chemical Physics, 2000, 2, 2091-2103.	2.8	135
193	Structure of the chlorobenzene–argon dimer: Microwave spectrum andab initioanalysis. Journal of Chemical Physics, 2000, 113, 9051-9059.	3.0	32
194	What correlation effects are covered by density functional theory?. Molecular Physics, 2000, 98, 1639-1658.	1.7	55
195	Nuclear magnetic resonance spin–spin coupling constants from coupled perturbed density functional theory. Journal of Chemical Physics, 2000, 113, 3530-3547.	3.0	311
196	Density functional theory for open-shell singlet biradicals. Chemical Physics Letters, 1998, 288, 593-602.	2.6	103
197	p-Benzyne. Angewandte Chemie - International Edition, 1998, 37, 955-958.	13.8	50
198	A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes. International Journal of Quantum Chemistry, 1998, 67, 1-9.	2.0	198

#	Article	IF	CITATIONS
199	A new way of analyzing vibrational spectra. II. Comparison of internal mode frequencies. International Journal of Quantum Chemistry, 1998, 67, 11-27.	2.0	100
200	A new way of analyzing vibrational spectra. III. Characterization of normal vibrational modes in terms of internal vibrational modes. International Journal of Quantum Chemistry, 1998, 67, 29-40.	2.0	128
201	A new way of analyzing vibrational spectra. IV. Application and testing of adiabatic modes within the concept of the characterization of normal modes. International Journal of Quantum Chemistry, 1998, 67, 41-55.	2.0	90
202	A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes. International Journal of Quantum Chemistry, 1998, 67, 1-9.	2.0	3
203	Diabatic ordering of vibrational normal modes in reaction valley studies. Journal of Computational Chemistry, 1997, 18, 1282-1294.	3.3	26
204	A CCSD(T) and DFT investigation of m-benzyne and 4-hydroxy-m-benzyne. Chemical Physics Letters, 1997, 268, 313-320.	2.6	70
205	New Developments in Many Body Perturbation Theory and Coupled Cluster Theory. , 1997, , 239-318.		5
206	Nature of the Si(SiMe3)3+ Cation in Aromatic Solvents. Organometallics, 1996, 15, 5495-5501.	2.3	29
207	Prediction of Nitrogen and Oxygen NMR Chemical Shifts in Organic Compounds by Density Functional Theory. The Journal of Physical Chemistry, 1996, 100, 16881-16891.	2.9	51
208	Solvated Silylium Cations:Â Structure Determination by NMR Spectroscopy and the NMR/Ab Initio/IGLO Method. Journal of the American Chemical Society, 1996, 118, 5120-5131.	13.7	81
209	1, 3â€Didehydrobenzol (<i>meta</i> â€Benzin). Angewandte Chemie, 1996, 108, 825-827.	2.0	21
210	Application of quadratic CI with singles, doubles, and triples (QCISDT): An attractive alternative to CCSDT. International Journal of Quantum Chemistry, 1996, 57, 157-172.	2.0	16
211	Sixth-order many-body perturbation theory. I. Basic theory and derivation of the energy formula. International Journal of Quantum Chemistry, 1996, 59, 15-29.	2.0	28
212	Sixth-order many-body perturbation theory. II. Implementation and application. International Journal of Quantum Chemistry, 1996, 59, 31-55.	2.0	21
213	Sixth-order many-body perturbation theory. III. Correlation energies of size-extensive MP6 methods. International Journal of Quantum Chemistry, 1996, 59, 57-69.	2.0	19
214	Dimesitylketone O-oxide: verification of an unusually stable carbonyl oxide by NMR chemical shift calculations. Chemical Physics Letters, 1996, 260, 43-50.	2.6	24
215	4,4â€Dimethylbicyclo[3.1.0]Hexaâ€1 (6),2â€Diene— A Highly Strained 1,3â€Bridged Cyclopropene. Chemistry - European Journal, 1996, 2, 967-973.	A _{3.3}	22
216	Sumâ€overâ€states density functional perturbation theory: Prediction of reliable 13C, 15N, and 17O nuclear magnetic resonance chemical shifts. Journal of Chemical Physics, 1996, 105, 8995-9006.	3.0	64

#	Article	IF	CITATIONS
217	Analysis of coupled cluster methods. Theoretica Chimica Acta, 1994, 88, 47-67.	0.8	10
218	Size-extensive QCISDT — implementation and application. Chemical Physics Letters, 1994, 222, 40-45.	2.6	11
219	CCSD(T) Investigation of the Bergman Cyclization of Enediyne. Relative Stability of o-, m-, and p-Didehydrobenzene. Journal of the American Chemical Society, 1994, 116, 4929-4936.	13.7	168
220	Structure, stabilization energies and chemical shifts of the cyclobutenyl cation. Does it have ?aromatic? homocyclopropenium ion character? Anab initio study. Journal of Physical Organic Chemistry, 1993, 6, 445-464.	1.9	37
221	Calculation of NMR Chemical Shifts — The Third Dimension of Quantum Chemistry. Israel Journal of Chemistry, 1993, 33, 369-385.	2.3	74
222	Electric field gradients and nuclear quadrupole coupling constants of isonitriles obtained from Moeller-Plesset and quadratic configuration interaction calculations. The Journal of Physical Chemistry, 1992, 96, 3239-3245.	2.9	28
223	Analytical Energy Gradients in MÃ,ller-Plesset Perturbation and Quadratic Configuration Interaction Methods: Theory and Application. Advances in Quantum Chemistry, 1992, 23, 205-299.	0.8	76
224	Homolytic dissociation energies from GVB-LSDC calculations. Chemical Physics, 1992, 161, 149-153.	1.9	35
225	2,4-Didehydrophenol?First Proof of ameta-Aryne by IR Spectroscopy. Angewandte Chemie International Edition in English, 1992, 31, 1230-1233.	4.4	22
226	1H-Bicyclo[3.1.0]hexa-3,5-dien-2-one. A strained 1,3-bridged cyclopropene. Journal of the American Chemical Society, 1991, 113, 5311-5322.	13.7	67
227	Analysis of coupled cluster and quadratic configuration interaction theory in terms of sixth-order perturbation theory. International Journal of Quantum Chemistry, 1991, 40, 43-70.	2.0	35
228	Calculation of puckered rings with analytical gradients. The Journal of Physical Chemistry, 1990, 94, 5502-5509.	2.9	69
229	Light noble gas chemistry: structures, stabilities, and bonding of helium, neon, and argon compounds. Journal of the American Chemical Society, 1990, 112, 4240-4256.	13.7	103
230	The chemistry of the noble gas elements helium, neon, and argon — Experimental facts and theoretical predictions. Structure and Bonding, 1990, , 17-95.	1.0	77
231	Neon and argon bonding in first-row cations NeX+ and ArX+ (X = Li-Ne). The Journal of Physical Chemistry, 1989, 93, 3410-3418.	2.9	80
232	Helium bonding in singly and doubly charged first-row diatomic cations HeXn+ (X = Li-Ne; n = 1,2). The Journal of Physical Chemistry, 1989, 93, 3397-3410.	2.9	99
233	Calculation and Characterization of Reaction Valleys for Chemical Reactions. , 1989, , 57-71.		10
234	Analytical evaluation of energy gradients in quadratic configuration interaction theory. Chemical Physics Letters, 1988, 150, 280-286.	2.6	218

#	Article	IF	CITATIONS
235	Analytical differentiation of the energy contribution due to triple excitations in fourth-order MÃ,ller-Plesset perturbation theory. Chemical Physics Letters, 1988, 153, 303-308.	2.6	44
236	Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation. Journal of the American Chemical Society, 1988, 110, 8007-8016.	13.7	158
237	Insights into the mechanisms of chemical reactions. Reaction paths for chemical reactions. Faraday Discussions of the Chemical Society, 1987, 84, 427.	2.2	27
238	Helium chemistry: theoretical predictions and experimental challenge. Journal of the American Chemical Society, 1987, 109, 5917-5934.	13.7	207
239	Implementation of analytical energy gradients at third- and fourth-order MÃ,ller-Plesset perturbation theory. Chemical Physics Letters, 1987, 138, 131-140.	2.6	47
240	Structures, stabilities, and bonding in CBe2, C2Be, and C2Be2. Journal of the American Chemical Society, 1986, 108, 5732-5737.	13.7	34
241	Puckered Structures of 1,3-Dihydro-1,3-diboretes and Bicyclobutane-2,4-dione: Nonplanar Hückel 2Ï€-Electron Aromatic Molecules. Angewandte Chemie International Edition in English, 1984, 23, 374-375.	4.4	31
242	Chemical Bonds without Bonding Electron Density ? Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond?. Angewandte Chemie International Edition in English, 1984, 23, 627-628.	4.4	1,276
243	Theoretical determination of molecular structure and conformation. Computational and Theoretical Chemistry, 1984, 110, 277-291.	1.5	32
244	Theoretical Determination of Molecular Structure and Conformation. XI. The Puckering of Oxolanes. Israel Journal of Chemistry, 1983, 23, 72-84.	2.3	56
245	Theoretical determination of molecular structure and conformation. 8. Energetics of the ozonolysis reaction. Primary ozonide vs. carbonyl oxide control of stereochemistry. Journal of the American Chemical Society, 1981, 103, 3627-3633.	13.7	55
246	Theoretical determination of molecular structure and conformation. 7. Stereoselectivity of the ozonolysis reaction. Journal of the American Chemical Society, 1981, 103, 3619-3626.	13.7	60
247	Stereochemistry of the Ozonolysis of Alkenes: Ozonide-versus Carbonyl Oxide-Control. Angewandte Chemie International Edition in English, 1981, 20, 888-889.	4.4	14
248	Theoretical determination of molecular structure and conformation. Journal of Molecular Structure, 1981, 75, 225-240.	3.6	65
249	A General Definition of Ring Substituent Positions. Israel Journal of Chemistry, 1980, 20, 12-19.	2.3	49
250	Theoretical determination of molecular structure and conformation. IV. Electronic effects 1979, 70, 1911-1927.	3.0	26
251	Theoretical determination of molecular structure and conformation. III. The pseudorotation surface of 1,2,3â€ŧrioxolane and 1,2,4â€ŧrioxolane. Journal of Chemical Physics, 1979, 70, 1898-1910.	3.0	53
252	Theoretical determination of molecular structure and conformation. V. Electronic effects influencing the stability of methyl substituted final ozonides. Journal of Chemical Physics, 1979, 70, 1928-1938.	3.0	18

#	Article	IF	CITATIONS
253	On the r0- and re-structures of H2O2. Journal of Molecular Spectroscopy, 1979, 74, 480-482.	1.2	42
254	General and Theoretical Aspects of the Cyclopropyl Group. , 0, , 43-137.		19
255	Cyclopropyl Homoconjugation, Homoaromaticity and Homoantiaromaticity—Theoretical Aspects and Analysis. , 0, , 339-410.		9
256	Substituted hydrocarbon: a CCSD(T) and local vibrational mode investigation. Molecular Physics, 0, , e1970844.	1.7	3
257	Pancake Bonding Seen through the Eyes of Spectroscopy. , 0, , .		1
258	A Closer Look at the Isomerization of 5-androstene-3,17-dione to 4-androstene-3,17-dione in Ketosteroid Isomerase. Journal of Computational Biophysics and Chemistry, 0, , 1-21.	1.7	2