Rafael GonzÃ;lez Cano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7016610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling. Cell Reports, 2018, 22, 1301-1312.	6.4	142
2	Tetrodotoxin (TTX) as a Therapeutic Agent for Pain. Marine Drugs, 2012, 10, 281-305.	4.6	122
3	Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell, 2019, 176, 716-728.e18.	28.9	98
4	Modulation of Peripheral <i>μ</i> -Opioid Analgesia by <i>σ</i> ₁ Receptors. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 32-45.	2.5	74
5	Potentiation of morphine-induced mechanical antinociception by Ïf1 receptor inhibition: Role of peripheral Ïf1 receptors. Neuropharmacology, 2013, 70, 348-358.	4.1	63
6	Visceral and somatic pain modalities reveal Na _V 1.7â€independent visceral nociceptive pathways. Journal of Physiology, 2017, 595, 2661-2679.	2.9	61
7	Up–Down Reader: An Open Source Program for Efficiently Processing 50% von Frey Thresholds. Frontiers in Pharmacology, 2018, 9, 433.	3.5	44
8	Ïf1Receptors Are Involved in the Visceral Pain Induced by Intracolonic Administration of Capsaicin in Mice. Anesthesiology, 2013, 118, 691-700.	2.5	42
9	The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going?. Neuroscience and Biobehavioral Reviews, 2020, 113, 238-261.	6.1	37
10	Sigma-1 receptors control immune-driven peripheral opioid analgesia during inflammation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8396-8401.	7.1	33
11	Sigma-1 receptor: A drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacological Research, 2021, 163, 105339.	7.1	32
12	Nonsurgical mouse model of endometriosis-associated pain that responds to clinically active drugs. Pain, 2020, 161, 1321-1331.	4.2	28
13	Effects of Tetrodotoxin in Mouse Models of Visceral Pain. Marine Drugs, 2017, 15, 188.	4.6	27
14	Sigma-1 Receptor Agonism Promotes Mechanical Allodynia After Priming the Nociceptive System with Capsaicin. Scientific Reports, 2016, 6, 37835.	3.3	24
15	Modality-specific peripheral antinociceptive effects of μ-opioid agonists on heat and mechanical stimuli: Contribution of sigma-1 receptors. Neuropharmacology, 2018, 135, 328-342.	4.1	22
16	Identification of FAM173B as a protein methyltransferase promoting chronic pain. PLoS Biology, 2018, 16, e2003452.	5.6	22
17	Tetrodotoxin, a Potential Drug for Neuropathic and Cancer Pain Relief?. Toxins, 2021, 13, 483.	3.4	19
18	Mild Social Stress in Mice Produces Opioid-Mediated Analgesia in Visceral but Not Somatic Pain States. Journal of Pain, 2017, 18, 716-725.	1.4	13

2

RAFAEL GONZÃILEZ CANO

#	Article	IF	CITATIONS
19	Targeting immune-driven opioid analgesia by sigma-1 receptors: Opening the door to novel perspectives for the analgesic use of sigma-1 antagonists. Pharmacological Research, 2018, 131, 224-230.	7.1	12
20	Urinary bladder sigma-1 receptors: A new target for cystitis treatment. Pharmacological Research, 2020, 155, 104724.	7.1	10
21	Two independent mouse lines carrying the Nav1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype. Pain, 2021, 162, 1758-1770.	4.2	9
22	Automated preclinical detection of mechanical pain hypersensitivity and analgesia. Pain, 2022, 163, 2326-2336.	4.2	9
23	Dual Sigma-1 receptor antagonists and hydrogen sulfide-releasing compounds for pain treatment: Design, synthesis, and pharmacological evaluation. European Journal of Medicinal Chemistry, 2022, 230, 114091.	5.5	7
24	Intracolonic Mustard Oil Induces Visceral Pain in Mice by TRPA1-Dependent and -Independent Mechanisms: Role of Tissue Injury and P2X Receptors. Frontiers in Pharmacology, 2020, 11, 613068.	3.5	6
25	Synthesis of tropane-based σ1 receptor antagonists with antiallodynic activity. European Journal of Medicinal Chemistry, 2022, 230, 114113.	5.5	3
26	Reading and writing: the evolution of molecular pain genetics. Pain, 2019, 160, 2177-2185.	4.2	2
27	Automated Detection of Mouse Pain Behavioral Readouts by Alternating Bottom-Up Pose and Paw Contact Measurements. SSRN Electronic Journal, 0, , .	0.4	1
28	245 ROLE OF SIGMAâ€a RECEPTORS IN COLD ALLODYNIA INDUCED BY PACLITAXEL. European Journal of Pain, 2009, 13, S78.	2.8	0
29	275 ANTINOCICEPTIVE EFFECTS OF MORPHINE AFTER ACUTE AND REPEATED INJECTION IN WILDâ€TYPE AND SIGMAâ€1 RECEPTOR KNOCKOUT MICE. European Journal of Pain, 2009, 13, S86a.	2.8	0
30	F270 ROLE OF VOLTAGE-GATED SODIUM CHANNEL NAV1.7 IN VISCERAL PAIN. European Journal of Pain Supplements, 2011, 5, 144-144.	0.0	0
31	Pain Analgesic Developments in the Genomic Era. , 2020, , 209-237.		0
32	Soluble Epoxide Hydrolase Inhibitors: Design, Synthesis, <i>in vitro</i> Profiling and <i>in vivo</i> Evaluation in Murine Models of Pain. FASEB Journal, 2022, 36, .	0.5	0