
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/701615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 2015, 34, 1993-2024.	8.9	3,589
2	A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage, 2015, 115, 117-137.	4.2	939
3	Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging, 1999, 18, 897-908.	8.9	903
4	Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging, 1999, 18, 885-896.	8.9	529
5	A Generative Model for Image Segmentation Based on Label Fusion. IEEE Transactions on Medical Imaging, 2010, 29, 1714-1729.	8.9	423
6	Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging, 2001, 20, 677-688.	8.9	417
7	Automated segmentation of hippocampal subfields from ultraâ€high resolution in vivo MRI. Hippocampus, 2009, 19, 549-557.	1.9	381
8	A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. NeuroImage, 2018, 183, 314-326.	4.2	334
9	High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. NeuroImage, 2017, 155, 370-382.	4.2	304
10	Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage, 2015, 111, 526-541.	4.2	284
11	Automatic brain tumor segmentation by subject specific modification of atlas priors1. Academic Radiology, 2003, 10, 1341-1348.	2.5	246
12	A unifying framework for partial volume segmentation of brain MR images. IEEE Transactions on Medical Imaging, 2003, 22, 105-119.	8.9	242
13	Bayesian segmentation of brainstem structures in MRI. Neurolmage, 2015, 113, 184-195.	4.2	186
14	A Generative Model for Brain Tumor Segmentation in Multi-Modal Images. Lecture Notes in Computer Science, 2010, 13, 151-159.	1.3	132
15	Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases. NeuroImage, 2016, 141, 542-555.	4.2	130
16	Patchâ€based generation of a pseudo CT from conventional MRI sequences for MRIâ€only radiotherapy of the brain. Medical Physics, 2015, 42, 1596-1605.	3.0	119
17	Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling. NeuroImage, 2016, 143, 235-249.	4.2	101
18	Mild Cognitive Impairment: Differential Atrophy in the Hippocampal Subfields. American Journal of Neuroradiology, 2011, 32, 1658-1661.	2.4	100

#	Article	IF	CITATIONS
19	Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference. IEEE Transactions on Medical Imaging, 2019, 38, 1875-1884.	8.9	96
20	Predicting the location of entorhinal cortex from MRI. NeuroImage, 2009, 47, 8-17.	4.2	94
21	A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times. Physics in Medicine and Biology, 2014, 59, 7501-7519.	3.0	89
22	Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI. NeuroImage, 2013, 64, 32-42.	4.2	81
23	ls Synthesizing MRI Contrast Useful for Inter-modality Analysis?. Lecture Notes in Computer Science, 2013, 16, 631-638.	1.3	81
24	Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling. Neurolmage, 2020, 219, 117044.	4.2	73
25	A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation— With Application to Tumor and Stroke. IEEE Transactions on Medical Imaging, 2016, 35, 933-946.	8.9	67
26	Encoding Probabilistic Brain Atlases Using Bayesian Inference. IEEE Transactions on Medical Imaging, 2009, 28, 822-837.	8.9	65
27	Segmentation of image ensembles via latent atlases. Medical Image Analysis, 2010, 14, 654-665.	11.6	64
28	A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis. Medical Physics, 2016, 43, 4742-4752.	3.0	63
29	Automatic Brain and Tumor Segmentation. Lecture Notes in Computer Science, 2002, , 372-379.	1.3	59
30	Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. NeuroImage: Clinical, 2018, 17, 1006-1018.	2.7	56
31	A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis. NeuroImage, 2021, 225, 117471.	4.2	54
32	Regional Hippocampal Atrophy and Higher Levels of Plasma Amyloid-Beta Are Associated With Subjective Memory Complaints in Nondemented Elderly Subjects. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1210-1215.	3.6	49
33	A unified framework for cross-modality multi-atlas segmentation of brain MRI. Medical Image Analysis, 2013, 17, 1181-1191.	11.6	46
34	A Generative Approach for Image-Based Modeling of Tumor Growth. Lecture Notes in Computer Science, 2011, 22, 735-747.	1.3	45
35	The Relevance Voxel Machine (RVoxM): A Self-Tuning Bayesian Model for Informative Image-Based Prediction. IEEE Transactions on Medical Imaging, 2012, 31, 2290-2306.	8.9	41
36	Improved inference in Bayesian segmentation using Monte Carlo sampling: Application to hippocampal subfield volumetry. Medical Image Analysis, 2013, 17, 766-778.	11.6	36

#	Article	IF	CITATIONS
37	Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain. Acta Oncológica, 2015, 54, 1496-1500.	1.8	34
38	PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data. Journal of Nuclear Medicine, 2017, 58, 840-845.	5.0	32
39	A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning. Medical Image Analysis, 2019, 54, 220-237.	11.6	31
40	PSACNN: Pulse sequence adaptive fast whole brain segmentation. NeuroImage, 2019, 199, 553-569.	4.2	29
41	Asymmetric Image-Template Registration. Lecture Notes in Computer Science, 2009, 12, 565-573.	1.3	26
42	Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape. Lecture Notes in Computer Science, 2016, , 168-180.	1.3	25
43	A generative model for multi-atlas segmentation across modalities. , 2012, , 888-891.		21
44	JNCL patients show marked brain volume alterations on longitudinal MRI in adolescence. Journal of Neurology, 2008, 255, 1226-1230.	3.6	20
45	Thalami and corona radiata in juvenile NCL (CLN3): a voxel-based morphometric study. European Journal of Neurology, 2007, 14, 447-450.	3.3	19
46	Probabilistic Brain Atlas Encoding Using Bayesian Inference. Lecture Notes in Computer Science, 2006, 9, 704-711.	1.3	19
47	The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction. Lecture Notes in Computer Science, 2011, 14, 99-106.	1.3	19
48	Model-Based Segmentation of Hippocampal Subfields in Ultra-High Resolution In Vivo MRI. Lecture Notes in Computer Science, 2008, 11, 235-243.	1.3	19
49	Characterization of highly multiplexed monolithic PET / gamma camera detector modules. Physics in Medicine and Biology, 2018, 63, 075017.	3.0	18
50	Quantification of Cerebral Grey and White Matter Asymmetry from MRI. Lecture Notes in Computer Science, 1999, , 348-357.	1.3	18
51	An algorithm for optimal fusion of atlases with different labeling protocols. NeuroImage, 2015, 106, 451-463.	4.2	16
52	Computed tomography synthesis from magnetic resonance images in the pelvis using multiple random forests and auto-context features. Proceedings of SPIE, 2016, , .	0.8	16
53	A dosimetric study on the use of bolus materials for treatment of superficial tumors with BNCT. Applied Radiation and Isotopes, 2004, 61, 787-791.	1.5	15
54	Association of intramyocellular, intraperitoneal and liver fat with glucose tolerance in severely obseverely obsevered adolescents. European Journal of Endocrinology, 2010, 163, 413-419.	3.7	15

#	Article	IF	CITATIONS
55	A machine learning method for fast and accurate characterization of depth-of-interaction gamma cameras. Physics in Medicine and Biology, 2017, 62, 8376-8401.	3.0	15
56	Automated Segmentation of MS Lesions from Multi-channel MR Images. Lecture Notes in Computer Science, 1999, , 11-21.	1.3	13
57	Automatic segmentation of brain tissues and MR bias field correction using a digital brain atlas. Lecture Notes in Computer Science, 1998, , 1222-1229.	1.3	12
58	A Generative Model for Probabilistic Label Fusion of Multimodal Data. Lecture Notes in Computer Science, 2012, 7509, 115-133.	1.3	12
59	Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models. Lecture Notes in Computer Science, 2013, 16, 727-734.	1.3	11
60	Subjects With Intellectual Disability and Familial Need for Full-Time Special Education Show Regional Brain Alterations: A Voxel-Based Morphometry Study. Pediatric Research, 2009, 66, 306-311.	2.3	10
61	Reliability and sensitivity of two whole-brain segmentation approaches included in FreeSurfer – ASEG and SAMSEG. NeuroImage, 2021, 237, 118113.	4.2	10
62	A Cautionary Analysis of STAPLE Using Direct Inference of Segmentation Truth. Lecture Notes in Computer Science, 2014, 17, 398-406.	1.3	8
63	MRâ€based CT metal artifact reduction for headâ€andâ€neck photon, electron, and proton radiotherapy. Medical Physics, 2019, 46, 4314-4323.	3.0	7
64	Incorporating Parameter Uncertainty in Bayesian Segmentation Models: Application to Hippocampal Subfield Volumetry. Lecture Notes in Computer Science, 2012, 15, 50-57.	1.3	7
65	A Contrast Augmentation Approach to Improve Multi-Scanner Generalization in MRI. Frontiers in Neuroscience, 2021, 15, 708196.	2.8	6
66	Supervised Nonparametric Image Parcellation. Lecture Notes in Computer Science, 2009, 12, 1075-1083.	1.3	6
67	A Statistical Framework for Partial Volume Segmentation. Lecture Notes in Computer Science, 2001, , 204-212.	1.3	5
68	Joint Inference on Structural and Diffusion MRI for Sequence-Adaptive Bayesian Segmentation of Thalamic Nuclei with Probabilistic Atlases. Lecture Notes in Computer Science, 2019, 11492, 767-779.	1.3	5
69	Magnetic resonance-based computed tomography metal artifact reduction using Bayesian modelling. Physics in Medicine and Biology, 2019, 64, 245012.	3.0	4
70	Cone beam computed tomography based image guidance and quality assessment of prostate cancer for magnetic resonance imaging-only radiotherapy in the pelvis. Physics and Imaging in Radiation Oncology, 2021, 18, 55-60.	2.9	4
71	Cerebral measurements and their correlation with the onset age and the duration of opioid abuse. Journal of Opioid Management, 2010, 6, 423-429.	0.5	4
72	Joint Segmentation of Image Ensembles via Latent Atlases. Lecture Notes in Computer Science, 2009, 12, 272-280.	1.3	4

KOEN VAN LEEMPUT

#	Article	IF	CITATIONS
73	Joint Segmentation Of Multiple Sclerosis Lesions And Brain Anatomy In MRI Scans Of Any Contrast And Resolution With CNNs. , 2021, 2021, 1971-1974.		3
74	3D Reconstruction and Segmentation of Dissection Photographs for MRI-Free Neuropathology. Lecture Notes in Computer Science, 2020, , 204-214.	1.3	3
75	An Inference Language for Imaging. Lecture Notes in Computer Science, 2014, , 61-72.	1.3	3
76	A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis. Lecture Notes in Computer Science, 2020, , 119-128.	1.3	3
77	Nonparametric Mixture Models for Supervised Image Parcellation. , 2009, 12, 301-313.		3
78	Prediction ofÂMGMT Methylation Status ofÂGlioblastoma Using Radiomics andÂLatent Space Shape Features. Lecture Notes in Computer Science, 2022, , 222-231.	1.3	3
79	A generative model for segmentation of tumor and organs-at-risk for radiation therapy planning of glioblastoma patients. Proceedings of SPIE, 2016, , .	0.8	2
80	Simultaneous Whole-Brain Segmentation and White Matter Lesion Detection Using Contrast-Adaptive Probabilistic Models. Lecture Notes in Computer Science, 2016, , 9-20.	1.3	2
81	CT metal artifact reduction using MR image patches. , 2018, , .		2
82	Bayesian Tomographic Reconstruction Using Riemannian MCMC. Lecture Notes in Computer Science, 2015, , 619-626.	1.3	2
83	An Augmentation Strategy to Mimic Multi-Scanner Variability in MRI. , 2021, , .		1
84	4-D PET-MR with Volumetric Navigators and Compressed Sensing. Lecture Notes in Computational Vision and Biomechanics, 2015, , 93-101.	0.5	1
85	Skull segmentation from MR scans using a higher-order shape model based on convolutional restricted Boltzmann machines. , 2018, , .		1
86	A Probabilistic, Non-parametric Framework for Inter-modality Label Fusion. Lecture Notes in Computer Science, 2013, 16, 576-583.	1.3	1
87	On Feature Relevance in Image-Based Prediction Models: An Empirical Study. Lecture Notes in Computer Science, 2013, , 171-178.	1.3	1
88	Fast Nonparametric Mutual-Information-based Registration and Uncertainty Estimation. Lecture Notes in Computer Science, 2019, , 42-51.	1.3	1
89	Relevance Vector Machines for Harmonization of MRI Brain Volumes Using Image Descriptors. Lecture Notes in Computer Science, 2019, , 77-85.	1.3	1

90 Model-Based Brain Tissue Classification. , 2005, , 1-55.

KOEN VAN LEEMPUT

#	Article	IF	CITATIONS
91	Improved resolution and reliability in dynamic PET using Bayesian regularization of MRTM2. , 2014, , .		Ο
92	Validation of Nonlinear Spatial Filtering to Improve Tissue Segmentation of MR Brain Images. Lecture Notes in Computer Science, 2001, , 507-515.	1.3	0
93	An Improved Optimization Method for the Relevance Voxel Machine. Lecture Notes in Computer Science, 2013, , 147-154.	1.3	Ο
94	An automatically generated texture-based atlas of the lungs. , 2018, , .		0
95	Semi-supervised Variational Autoencoder for Survival Prediction. Lecture Notes in Computer Science, 2020, , 124-134.	1.3	0
95		1.3	0