Nicholas Abbott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014484/publications.pdf

Version: 2024-02-01

368 papers 19,861 citations

73 h-index 21843 118 g-index

376 all docs

376 docs citations

376 times ranked

13795 citing authors

#	Article	IF	CITATIONS
1	Strongly Chiral Liquid Crystals in Nanoemulsions. Small, 2022, , 2105835.	5.2	4
2	Stimuliâ€Responsive Liquid Crystal Printheads for Spatial and Temporal Control of Polymerization. Advanced Materials, 2022, , 2106535.	11.1	8
3	Surfaces Decorated with Enantiomorphically Pure Polymer Nanohelices via Hierarchical Chirality Transfer across Multiple Length Scales. Advanced Materials, 2022, 34, e2108386.	11.1	9
4	Programming Solitons in Liquid Crystals Using Surface Chemistry. Langmuir, 2022, 38, 3575-3584.	1.6	5
5	Interfacial Polyelectrolyte–Surfactant Complexes Regulate Escape of Microdroplets Elastically Trapped in Thermotropic Liquid Crystals. Langmuir, 2022, 38, 332-342.	1.6	2
6	Sharing of Strain Between Nanofiber Forests and Liquid Crystals Leads to Programmable Responses to Electric Fields. Advanced Functional Materials, 2022, 32, .	7.8	5
7	Formation of versus Recruitment to RNA-Rich Condensates: Controlling Effects Exerted by Peptide Side Chain Identity. Journal of the American Chemical Society, 2022, 144, 10386-10395.	6.6	11
8	Influence of multifluorophenyloxy terminus on the mesomorphism of the alkoxy and alkyl cyanobiphenyl compounds in search of new ambient nematic liquid crystals and mixtures. Liquid Crystals, 2021, 48, 672-688.	0.9	8
9	Active motion of multiphase oil droplets: emergent dynamics of squirmers with evolving internal structure. Soft Matter, 2021, 17, 2985-2993.	1.2	24
10	Designing chemically selective liquid crystalline materials that respond to oxidizing gases. Journal of Materials Chemistry C, 2021, 9, 6507-6517.	2.7	9
11	Coupling the chemical reactivity of bimetallic surfaces to the orientations of liquid crystals. Materials Horizons, 2021, 8, 2050-2056.	6.4	8
12	Using machine learning and liquid crystal droplets to identify and quantify endotoxins from different bacterial species. Analyst, The, 2021, 146, 1224-1233.	1.7	26
13	Sculpting the shapes of giant unilamellar vesicles using isotropic–nematic–isotropic phase cycles. Soft Matter, 2021, 17, 9078-9086.	1.2	2
14	Design of Chemoresponsive Soft Matter Using Hydrogen-Bonded Liquid Crystals. Materials, 2021, 14, 1055.	1.3	4
15	Cationic Side Chain Identity Directs the Hydrophobically Driven Self-Assembly of Amphiphilic Î ² -Peptides in Aqueous Solution. Langmuir, 2021, 37, 3288-3298.	1.6	16
16	Changing the Wound: Covalent Immobilization of the Epidermal Growth Factor. ACS Biomaterials Science and Engineering, 2021, 7, 2649-2660.	2.6	2
17	Using Liquid Crystals for <i>ln Situ</i> Optical Mapping of Interfacial Mobility and Surfactant Concentrations at Flowing Aqueous–Oil Interfaces. Langmuir, 2021, 37, 5810-5822.	1.6	10
18	Using Liquid Crystals to Probe the Organization of Helical Polypeptide Brushes Induced by Solvent Pretreatment. Macromolecules, 2021, 54, 7786-7795.	2.2	4

#	Article	IF	CITATIONS
19	Structured Liquid Droplets as Chemical Sensors that Function Inside Living Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42502-42512.	4.0	11
20	Synthesis and properties of fluorine tail-terminated cyanobiphenyls and terphenyls for chemoresponsive liquid crystals. Liquid Crystals, 2020, 47, 3-16.	0.9	17
21	New room temperature nematogens by cyano tail termination of alkoxy and alkylcyanobiphenyls and their anchoring behavior on metal salt-decorated surface. Liquid Crystals, 2020, 47, 540-556.	0.9	10
22	A New Strategy for Reporting Specific Protein Binding Events at Aqueous–Liquid Crystal Interfaces in the Presence of Non-Specific Proteins. ACS Applied Materials & Interfaces, 2020, 12, 7869-7878.	4.0	19
23	Steering Active Emulsions with Liquid Crystals. Langmuir, 2020, 36, 6948-6956.	1.6	14
24	Biomolecular Binding at Aqueous Interfaces of Langmuir Monolayers of Bioconjugated Amphiphilic Mesogenic Molecules: A Molecular Dynamics Study. Langmuir, 2020, 36, 12281-12287.	1.6	16
25	Dynamic and reversible shape response of red blood cells in synthetic liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26083-26090.	3.3	14
26	Prolate and oblate chiral liquid crystal spheroids. Science Advances, 2020, 6, eaba6728.	4.7	27
27	Areas of opportunity related to design of chemical and biological sensors based on liquid crystals. Liquid Crystals Today, 2020, 29, 24-35.	2.3	30
28	Structural and Optical Response of Polymer-Stabilized Blue Phase Liquid Crystal Films to Volatile Organic Compounds. ACS Applied Materials & Interfaces, 2020, 12, 42099-42108.	4.0	24
29	Liquid Crystal Emulsions That Intercept and Report on Bacterial Quorum Sensing. ACS Applied Materials & Description (1988) Materials & Description (1988) ACS Applied (1988) Materials & Description (1988) ACS Applied (1988)	4.0	13
30	Programming van der Waals interactions with complex symmetries into microparticles using liquid crystallinity. Science Advances, 2020, 6, eabb1327.	4.7	7
31	Convolutional Network Analysis of Optical Micrographs for Liquid Crystal Sensors. Journal of Physical Chemistry C, 2020, 124, 15152-15161.	1.5	39
32	Binding of Organophosphorus Nerve Agents and Their Simulants to Metal Salts. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30941-30953.	4.0	8
33	Influence of immobilized cations on the thermodynamic signature of hydrophobic interactions at chemically heterogeneous surfaces. Molecular Systems Design and Engineering, 2020, 5, 835-846.	1.7	4
34	Self-Assembly of Macromolecules Within Single Topological Defects of Nematic Solvents. Chemistry of Materials, 2020, 32, 6753-6764.	3.2	5
35	Control of the Folding Dynamics of Selfâ€Reconfiguring Magnetic Microbots Using Liquid Crystallinity. Advanced Intelligent Systems, 2020, 2, 1900114.	3.3	17
36	Optical "Blinking―Triggered by Collisions of Single Supramolecular Assemblies of Amphiphilic Molecules with Interfaces of Liquid Crystals. Journal of the American Chemical Society, 2020, 142, 6139-6148.	6.6	20

3

#	Article	IF	CITATIONS
37	Cuboidal liquid crystal phases under multiaxial geometrical frustration. Soft Matter, 2020, 16, 870-880.	1.2	8
38	BREWing better broader impacts. MRS Bulletin, 2020, 45, 84-86.	1.7	0
39	Bacterial Quorum Sensing Signals Self-Assemble in Aqueous Media to Form Micelles and Vesicles: An Integrated Experimental and Molecular Dynamics Study. Journal of Physical Chemistry B, 2020, 124, 3616-3628.	1.2	12
40	Synthesis and properties of hydroxy tail-terminated cyanobiphenyl liquid crystals. Liquid Crystals, 2019, 46, 397-407.	0.9	22
41	Soft matter from liquid crystals. Soft Matter, 2019, 15, 6913-6929.	1.2	53
42	Toluene-induced phase transitions in blue phase liquid crystals. Liquid Crystals, 2019, 46, 1925-1936.	0.9	18
43	Amplification of Elementary Surface Reaction Steps on Transition Metal Surfaces Using Liquid Crystals: Dissociative Adsorption and Dehydrogenation. Journal of the American Chemical Society, 2019, 141, 16003-16013.	6.6	18
44	Understanding lipopolysaccharide aggregation and its influence on activation of Factor C. Journal of Colloid and Interface Science, 2019, 552, 540-553.	5.0	8
45	Thermally reconfigurable Janus droplets with nematic liquid crystalline and isotropic perfluorocarbon oil compartments. Soft Matter, 2019, 15, 2580-2590.	1.2	19
46	Reconfigurable Multicompartment Emulsion Drops Formed by Nematic Liquid Crystals and Immiscible Perfluorocarbon Oils. Langmuir, 2019, 35, 16312-16323.	1.6	12
47	Retention of Coiled-Coil Dimer Formation in the Absence of Ion Pairing at Positions Flanking the Hydrophobic Core. Biochemistry, 2019, 58, 4821-4826.	1.2	9
48	Polymeric Films Containing Sodium Chlorite That Release Disinfectant Gas upon Activation with UV Light. Advanced Functional Materials, 2019, 29, 1804851.	7.8	11
49	Molecular Order Affects Interfacial Water Structure and Temperature-Dependent Hydrophobic Interactions between Nonpolar Self-Assembled Monolayers. Langmuir, 2019, 35, 2078-2088.	1.6	38
50	Design Principles for Triggerable Polymeric Amphiphiles with Mesogenic Side Chains for Multiscale Responses with Liquid Crystals. Macromolecules, 2018, 51, 1978-1985.	2,2	11
51	Responsive superabsorbent hydrogels via photopolymerization in lyotropic liquid crystal templates. Polymer, 2018, 142, 119-126.	1.8	23
52	Multiâ€6cale Responses of Liquid Crystals Triggered by Interfacial Assemblies of Cleavable Homopolymers. ChemPhysChem, 2018, 19, 2037-2045.	1.0	16
53	Computational Chemistryâ€Guided Design of Selective Chemoresponsive Liquid Crystals Using Pyridine and Pyrimidine Functional Groups. Advanced Functional Materials, 2018, 28, 1703581.	7.8	27
54	Chiral interactions in liquid crystals. Nature Materials, 2018, 17, 14-15.	13.3	13

#	Article	IF	CITATIONS
55	Tough aliphatic-aromatic copolyester and chicken egg white flexible biopolymer blend with bacteriostatic effects. Food Packaging and Shelf Life, 2018, 15, 9-16.	3.3	12
56	The role of anions in adsorbate-induced anchoring transitions of liquid crystals on surfaces with discrete cation binding sites. Soft Matter, 2018, 14, 797-805.	1.2	27
57	Using a Tabletop Scanning Electron Microscope as an Outreach Tool to Engage the Public With Cutting-edge Research. Microscopy and Microanalysis, 2018, 24, 2344-2345.	0.2	0
58	Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science, 2018, 362, 804-808.	6.0	57
59	Amphiphile-Induced Phase Transition of Liquid Crystals at Aqueous Interfaces. ACS Applied Materials & Amp; Interfaces, 2018, 10, 37618-37624.	4.0	23
60	Machine Learning Algorithms for Liquid Crystal-Based Sensors. ACS Sensors, 2018, 3, 2237-2245.	4.0	44
61	Liquid Crystals with Interfacial Ordering that Enhances Responsiveness to Chemical Targets. Advanced Materials, 2018, 30, e1706707.	11.1	43
62	Redoxâ€Triggered Orientational Responses of Liquid Crystals to Chlorine Gas. Angewandte Chemie - International Edition, 2018, 57, 9665-9669.	7.2	39
63	Oligomers as Triggers for Responsive Liquid Crystals. Langmuir, 2018, 34, 10092-10101.	1.6	20
64	Self-reporting and self-regulating liquid crystals. Nature, 2018, 557, 539-544.	13.7	93
65	Phosphorylation status of peptide monolayers modulates hydrogen bonding and orientations of nematic liquid crystals. Liquid Crystals, 2018, 45, 2253-2268.	0.9	2
66	Redoxâ€Triggered Orientational Responses of Liquid Crystals to Chlorine Gas. Angewandte Chemie, 2018, 130, 9813-9817.	1.6	11
67	Design of Chemoresponsive Liquid Crystals through Integration of Computational Chemistry and Experimental Studies. Chemistry of Materials, 2017, 29, 3563-3571.	3.2	33
68	Molecular Structure of Canonical Liquid Crystal Interfaces. Journal of the American Chemical Society, 2017, 139, 3841-3850.	6.6	56
69	Engineered Surface-Immobilized Enzyme that Retains High Levels of Catalytic Activity in Air. Journal of the American Chemical Society, 2017, 139, 2872-2875.	6.6	37
70	Generation of Gaseous ClO ₂ from Thin Films of Solid NaClO ₂ by Sequential Exposure to Ultraviolet Light and Moisture. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16594-16603.	4.0	7
71	Influence of Order within Nonpolar Monolayers on Hydrophobic Interactions. Langmuir, 2017, 33, 4628-4637.	1.6	27
72	Segregation of liquid crystal mixtures in topological defects. Nature Communications, 2017, 8, 15064.	5 . 8	25

#	Article	IF	Citations
73	Redox-triggered mixing and demixing of surfactants within assemblies formed in solution and at surfaces. Journal of Colloid and Interface Science, 2017, 502, 122-133.	5.0	10
74	Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films. Soft Matter, 2017, 13, 8999-9006.	1.2	18
75	Active Janus Particles at Interfaces of Liquid Crystals. Langmuir, 2017, 33, 10917-10926.	1.6	20
76	Nonadditive Interactions Mediated by Water at Chemically Heterogeneous Surfaces: Nonionic Polar Groups and Hydrophobic Interactions. Journal of the American Chemical Society, 2017, 139, 18536-18544.	6.6	32
77	Patterned surface anchoring of nematic droplets at miscible liquid–liquid interfaces. Soft Matter, 2017, 13, 5714-5723.	1.2	23
78	A Practical Guide to the Preparation of Liquid Crystal-Templated Microparticles. Chemistry of Materials, 2017, 29, 53-61.	3.2	44
79	Controlled deformation of vesicles by flexible structured media. Science Advances, 2016, 2, e1600978.	4.7	16
80	Self-Assembly of Bioconjugated Amphiphilic Mesogens Having Specific Binding Moieties at Aqueous–Liquid Crystal Interfaces. Chemistry of Materials, 2016, 28, 1170-1178.	3.2	37
81	Straining soft colloids in aqueous nematic liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5564-5569.	3.3	17
82	Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13114-13122.	4.0	37
83	Synthesis of Optically Complex, Porous, and Anisometric Polymeric Microparticles by Templating from Liquid Crystalline Droplets. Advanced Functional Materials, 2016, 26, 7343-7351.	7.8	35
84	Species variation and spatial differences in mucin expression from corneal epithelial cells. Experimental Eye Research, 2016, 152, 43-48.	1.2	23
85	Positioning colloids at the surfaces of cholesteric liquid crystal droplets. Soft Matter, 2016, 12, 8781-8789.	1.2	19
86	Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents. ACS Applied Materials & Date: Accordance of the Accordan	4.0	5
87	Experimental Insights into the Nanostructure of the Cores of Topological Defects in Liquid Crystals. Physical Review Letters, 2016, 116, 147801.	2.9	66
88	Towards first-principles molecular design of liquid crystal-based chemoresponsive systems. Nature Communications, 2016, 7, 13338.	5.8	34
89	Using Chemoattractants to Lure Bacteria to Contactâ€Killing Surfaces. Angewandte Chemie - International Edition, 2016, 55, 5698-5702.	7.2	17
90	Structural Transitions in Cholesteric Liquid Crystal Droplets. ACS Nano, 2016, 10, 6484-6490.	7.3	66

#	Article	IF	CITATIONS
91	Using Chemoattractants to Lure Bacteria to Contactâ€Killing Surfaces. Angewandte Chemie, 2016, 128, 5792-5796.	1.6	2
92	Design of Responsive and Active (Soft) Materials Using Liquid Crystals. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 163-196.	3.3	101
93	Interaction of the Hydrophobic Tip of an Atomic Force Microscope with Oligopeptides Immobilized Using Short and Long Tethers. Langmuir, 2016, 32, 2985-2995.	1.6	12
94	Topological defects in liquid crystals as templates for molecular self-assembly. Nature Materials, 2016, 15, 106-112.	13.3	211
95	Liquid Crystals: Liquid Crystal Interfaces Programmed with Enzyme-Responsive Polymers and Surfactants (Small 43/2015). Small, 2015, 11, 5722-5722.	5.2	1
96	Sensors: Liquid Crystal Enabled Early Stage Detection of Beta Amyloid Formation on Lipid Monolayers (Adv. Funct. Mater. 38/2015). Advanced Functional Materials, 2015, 25, 6147-6147.	7.8	1
97	Galliumâ€Loaded Dissolvable Microfilm Constructs that Provide Sustained Release of Ga ³⁺ for Management of Biofilms. Advanced Healthcare Materials, 2015, 4, 2849-2859.	3.9	10
98	Importance of defining experimental conditions in a mouse excisional wound model. Wound Repair and Regeneration, 2015, 23, 251-261.	1.5	26
99	Stimuliâ€Responsive Cubosomes Formed from Blue Phase Liquid Crystals. Advanced Materials, 2015, 27, 6892-6898.	11.1	44
100	Liquid Crystal Interfaces Programmed with Enzymeâ€Responsive Polymers and Surfactants. Small, 2015, 11, 5747-5751.	5.2	21
101	Inhibition of <i>Pseudomonas aeruginosa</i> biofilm formation on wound dressings. Wound Repair and Regeneration, 2015, 23, 842-854.	1.5	21
102	Liquid Crystal Enabled Early Stage Detection of Beta Amyloid Formation on Lipid Monolayers. Advanced Functional Materials, 2015, 25, 6050-6060.	7.8	79
103	Effect of Stratification on Surface Properties of Corneal Epithelial Cells. , 2015, 56, 8340.		31
104	Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes. Langmuir, 2015, 31, 10638-10648.	1.6	7
105	Synthetic Mimics of Bacterial Lipid A Trigger Optical Transitions in Liquid Crystal Microdroplets at Ultralow Picogram-per-Milliliter Concentrations. Langmuir, 2015, 31, 12850-12855.	1.6	25
106	Modulation of hydrophobic interactions by proximally immobilized ions. Nature, 2015, 517, 347-350.	13.7	163
107	Hierarchical Microstructures Formed by Bidisperse Colloidal Suspensions within Colloid-in-Liquid Crystal Gels. ACS Applied Materials & Diterfaces, 2015, 7, 7153-7162.	4.0	4
108	Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films. Soft Matter, 2015, 11, 6821-6831.	1.2	44

#	Article	IF	Citations
109	Nanoparticle self-assembly at the interface of liquid crystal droplets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5297-5302.	3.3	98
110	Dynamic anchoring transitions at aqueous–liquid crystal interfaces induced by specific and non-specific binding of vesicles to proteins. Journal of Colloid and Interface Science, 2015, 449, 452-461.	5 . 0	12
111	Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides. Chemical Communications, 2015, 51, 16844-16847.	2.2	31
112	Blue-phase liquid crystal droplets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13195-13200.	3. 3	48
113	Comparison between Free and Immobilized Ion Effects on Hydrophobic Interactions: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2015, 119, 13152-13159.	1.2	18
114	Bacterial transport of colloids in liquid crystalline environments. Soft Matter, 2015, 11, 8404-8408.	1.2	49
115	Covalent Immobilization of Caged Liquid Crystal Microdroplets on Surfaces. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 26892-26903.	4.0	15
116	An Evolved Mxe GyrA Intein for Enhanced Production of Fusion Proteins. ACS Chemical Biology, 2015, 10, 527-538.	1.6	18
117	PDGF-BB Does Not Accelerate Healing in Diabetic Mice with Splinted Skin Wounds. PLoS ONE, 2014, 9, e104447.	1.1	39
118	Liquid Crystal-Based Sensors for Rapid Analysis of Fatty Acid Contamination in Biodiesel. Molecular Crystals and Liquid Crystals, 2014, 594, 42-54.	0.4	13
119	Reduction in Wound Bioburden using a Silverâ€Loaded Dissolvable Microfilm Construct. Advanced Healthcare Materials, 2014, 3, 916-928.	3.9	29
120	Surface Adsorption in Nonpolarizable Atomic Models. Journal of Chemical Theory and Computation, 2014, 10, 5616-5624.	2.3	4
121	Interfacial Phenomena and the Ocular Surface. Ocular Surface, 2014, 12, 178-201.	2.2	53
122	Influence of the phase state of selfâ€assembling redox mediators on their electrochemical activity. AICHE Journal, 2014, 60, 1381-1392.	1.8	2
123	Liquid crystal droplet-based amplification of microvesicles that are shed by mammalian cells. Analyst, The, 2014, 139, 2386-2396.	1.7	13
124	Liquid Crystals Anchored on Mixed Monolayers of Chiral versus Achiral Molecules: Continuous Change in Orientation as a Function of Enantiomeric Excess. Angewandte Chemie - International Edition, 2014, 53, 8079-8083.	7.2	7
125	Fullâ€thickness splinted skin wound healing models in db/db and heterozygous mice: Implications for wound healing impairment. Wound Repair and Regeneration, 2014, 22, 368-380.	1.5	48
126	Epidermal Growth Factor–Functionalized Polymeric Multilayer Films: Interplay between Spatial Location and Bioavailability of EGF. Journal of Investigative Dermatology, 2014, 134, 1757-1760.	0.3	8

#	Article	IF	CITATIONS
127	Measuring liquid crystal elastic constants with free energy perturbations. Soft Matter, 2014, 10, 882-893.	1.2	42
128	Dynamic self-assembly of motile bacteria in liquid crystals. Soft Matter, 2014, 10, 88-95.	1.2	106
129	Colloid-in-liquid crystal gels formed via spinodal decomposition. Soft Matter, 2014, 10, 1602.	1.2	25
130	Design of Functional Materials Based on Liquid Crystalline Droplets. Chemistry of Materials, 2014, 26, 496-506.	3.2	130
131	Comparison of the Influence of Humidity and <scp>d</scp> -Mannitol on the Organization of Tetraethylene Glycol-Terminated Self-Assembled Monolayers and Immobilized Antimicrobial Peptides. Langmuir, 2014, 30, 7143-7151.	1.6	5
132	Helical versus All-Trans Conformations of Oligo(ethylene glycol)-Terminated Alkanethiol Self-Assembled Monolayers. Langmuir, 2014, 30, 10263-10269.	1.6	12
133	Surfactant-Induced Ordering and Wetting Transitions of Droplets of Thermotropic Liquid Crystals "Cagedâ€Inside Partially Filled Polymeric Capsules. Langmuir, 2014, 30, 14944-14953.	1.6	16
134	Hierarchical organization in liquid crystal-in-liquid crystal emulsions. Soft Matter, 2014, 10, 8627-8634.	1.2	20
135	Reversible Switching of Liquid Crystalline Order Permits Synthesis of Homogeneous Populations of Dipolar Patchy Microparticles. Advanced Functional Materials, 2014, 24, 6219-6226.	7.8	26
136	Organized assemblies of colloids formed at the poles of micrometer-sized droplets of liquid crystal. Soft Matter, 2014, 10, 8821-8828.	1.2	28
137	Using Liquid Crystals to Reveal How Mechanical Anisotropy Changes Interfacial Behaviors of Motile Bacteria. Biophysical Journal, 2014, 107, 255-265.	0.2	61
138	Adsorbate-Induced Anchoring Transitions of Liquid Crystals on Surfaces Presenting Metal Salts with Mixed Anions. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2362-2369.	4.0	23
139	Raman Spectroscopy Enables Noninvasive Biochemical Characterization and Identification of the Stage of Healing of a Wound. Analytical Chemistry, 2014, 86, 3764-3772.	3.2	36
140	Liquid Crystals: Colloid-in-Liquid Crystal Gels that Respond to Biomolecular Interactions (Small) Tj ETQq0 0 0 rgBT	/ <u>Gy</u> erlock	10 Tf 50 22
141	Facile Chemical Functionalization of Proteins through Intein-Linked Yeast Display. Bioconjugate Chemistry, 2013, 24, 1634-1644.	1.8	17
142	Colloidâ€inâ€Liquid Crystal Gels that Respond to Biomolecular Interactions. Small, 2013, 9, 2785-2792.	5.2	18
143	Chemical and biological sensing using liquid crystals. Liquid Crystals Reviews, 2013, 1, 29-51.	1.1	294
144	Analysis of the Internal Configurations of Droplets of Liquid Crystal Using Flow Cytometry. Analytical Chemistry, 2013, 85, 10296-10303.	3.2	41

#	Article	IF	Citations
145	Nematic-Field-Driven Positioning of Particles in Liquid Crystal Droplets. Physical Review Letters, 2013, 111, 227801.	2.9	50
146	Colloid Science Collides with Liquid Crystals. Science, 2013, 342, 1326-1327.	6.0	7
147	Amplification of the Stereochemistry of Biomolecular Adsorbates by Deracemization of Chiral Domains in Bentâ€Core Liquid Crystals. Advanced Materials, 2013, 25, 245-249.	11.1	31
148	Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets. Soft Matter, 2013, 9, 374-382.	1.2	87
149	Dynamics of the chemo-optical response of supported films of nematic liquid crystals. Sensors and Actuators B: Chemical, 2013, 183, 71-80.	4.0	35
150	Introduction to Optical Methods for Characterizing Liquid Crystals at Interfaces. Langmuir, 2013, 29, 3154-3169.	1.6	113
151	Liquid Crystal-Based Emulsions for Synthesis of Spherical and Non-Spherical Particles with Chemical Patches. Journal of the American Chemical Society, 2013, 135, 9972-9975.	6.6	63
152	Redox-Based Control of the Transformation and Activation of siRNA Complexes in Extracellular Environments Using Ferrocenyl Lipids. Journal of the American Chemical Society, 2013, 135, 9111-9120.	6.6	19
153	The use of native chemical functional groups presented by wound beds for the covalent attachment of polymeric microcarriers of bioactive factors. Biomaterials, 2013, 34, 340-352.	5.7	25
154	Liquid Crystal Chemical Sensors That Cells Can Wear. Angewandte Chemie - International Edition, 2013, 52, 14011-14015.	7.2	75
155	Spatial Control of Cell Transfection Using Soluble or Solid-Phase Redox Agents and a Redox-Active Ferrocenyl Lipid. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8283-8288.	4.0	14
156	Tryptophan Inhibits Biofilm Formation by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2013, 57, 1921-1925.	1.4	66
157	Antibacterial Efficacy of Silver-Impregnated Polyelectrolyte Multilayers Immobilized on a Biological Dressing in a Murine Wound Infection Model. Annals of Surgery, 2012, 256, 371-377.	2.1	38
158	Improving Liquid-Crystal-Based Biosensing in Aqueous Phases. ACS Applied Materials & Emp; Interfaces, 2012, 4, 6884-6890.	4.0	55
159	Microfluidic sensing devices employing in situ-formed liquid crystal thin film for detection of biochemical interactions. Lab on A Chip, 2012, 12, 3746.	3.1	42
160	Imide Photodissociation Investigated by X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 7048-7054.	1.2	6
161	Chemical oxidation of a redox-active, ferrocene-containing cationic lipid: Influence on interactions with DNA and characterization in the context of cell transfection. Journal of Colloid and Interface Science, 2012, 387, 56-64.	5.0	15
162	Dimerization of Helical Î ² -Peptides in Solution. Biophysical Journal, 2012, 102, 1435-1442.	0.2	5

#	Article	IF	Citations
163	Liquid Crystalline Materials for Biological Applications. Chemistry of Materials, 2012, 24, 746-758.	3.2	153
164	Influence of Specific Anions on the Orientational Ordering of Thermotropic Liquid Crystals at Aqueous Interfaces. Langmuir, 2012, 28, 12796-12805.	1.6	47
165	Ordering Transitions Triggered by Specific Binding of Vesicles to Protein-Decorated Interfaces of Thermotropic Liquid Crystals. Langmuir, 2012, 28, 6364-6376.	1.6	42
166	Influence of Simple Electrolytes on the Orientational Ordering of Thermotropic Liquid Crystals at Aqueous Interfaces. Langmuir, 2012, 28, 31-36.	1.6	80
167	Liquid-crystal-mediated self-assembly at nanodroplet interfaces. Nature, 2012, 485, 86-89.	13.7	91
168	Liquid Crystal Mediated Interactions Between Nanoparticles in a Nematic Phase. Langmuir, 2012, 28, 6124-6131.	1.6	52
169	Enantiomeric Interactions between Liquid Crystals and Organized Monolayers of Tyrosine-Containing Dipeptides. Journal of the American Chemical Society, 2012, 134, 548-558.	6.6	30
170	Morphological transitions in liquid crystal nanodroplets. Soft Matter, 2012, 8, 8679.	1.2	61
171	The mobilities of micro- and nano-particles at interfaces of nematic liquid crystals. Soft Matter, 2012, 8, 2026.	1.2	17
172	Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings. Biomaterials, 2012, 33, 6783-6792.	5.7	73
173	Addition of ascorbic acid to the extracellular environment activates lipoplexes of a ferrocenyl lipid and promotes cell transfection. Journal of Controlled Release, 2012, 157, 249-259.	4.8	12
174	Single-Molecule Force Spectroscopy of \hat{l}^2 -Peptides That Display Well-Defined Three-Dimensional Chemical Patterns. Journal of the American Chemical Society, 2011, 133, 3981-3988.	6.6	20
175	Lateral Transport of Solutes in Microfluidic Channels Using Electrochemically Generated Gradients in Redox-Active Surfactants. Analytical Chemistry, 2011, 83, 3033-3041.	3.2	10
176	Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids. Soft Matter, 2011, 7, 6828.	1.2	37
177	Influence of Biological Media on the Structure and Behavior of Ferrocene-Containing Cationic Lipid/DNA Complexes Used for DNA Delivery. Langmuir, 2011, 27, 6615-6621.	1.6	25
178	Recent Advances in Colloidal and Interfacial Phenomena Involving Liquid Crystals. Langmuir, 2011, 27, 5719-5738.	1.6	114
179	Lyotropic Liquid Crystals Formed from ACHC-Rich \hat{l}^2 -Peptides. Journal of the American Chemical Society, 2011, 133, 13604-13613.	6.6	56
180	Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets. Science, 2011, 332, 1297-1300.	6.0	339

#	Article	lF	Citations
181	Ordering Transitions in Nematic Liquid Crystals Induced by Vesicles Captured through Liganda Receptor Interactions. Langmuir, 2011, 27, 1419-1429.	1.6	15
182	Polymeric Multilayers that Contain Silver Nanoparticles can be Stamped onto Biological Tissues to Provide Antibacterial Activity. Advanced Functional Materials, 2011, 21, 1863-1873.	7.8	53
183	Design of Biomolecular Interfaces Using Liquid Crystals Containing Oligomeric Ethylene Glycol. Advanced Functional Materials, 2010, 20, 2098-2106.	7.8	31
184	Langmuir films of flexible polymers transferred to aqueous/liquid crystal interfaces induce uniform azimuthal alignment of the liquid crystal. Journal of Colloid and Interface Science, 2010, 341, 124-135.	5.0	22
185	Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials, 2010, 31, 680-690.	5.7	233
186	Chemoresponsive assemblies of microparticles at liquid crystalline interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3998-4003.	3.3	87
187	Adsorbate-Induced Ordering Transitions of Nematic Liquid Crystals on Surfaces Decorated with Aluminum Perchlorate Salts. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1857-1865.	4.0	40
188	Immobilization of Polymer-Decorated Liquid Crystal Droplets on Chemically Tailored Surfaces. Langmuir, 2010, 26, 10234-10242.	1.6	70
189	Effects of Divalent Ligand Interactions on Surface-Induced Ordering of Liquid Crystals. Chemistry of Materials, 2010, 22, 5474-5482.	3.2	17
190	Spontaneous Formation of Water Droplets at Oilâ^'Solid Interfaces. Langmuir, 2010, 26, 13797-13804.	1.6	28
191	Characterization of Surfaces Presenting Covalently Immobilized Oligopeptides Using Near-Edge X-ray Absorption Fine Structure Spectroscopy. Langmuir, 2010, 26, 6464-6470.	1.6	10
192	Characterization of the Nanostructure of Complexes Formed by Single- or Double-Stranded Oligonucleotides with a Cationic Surfactant. Journal of Physical Chemistry B, 2010, 114, 15554-15564.	1.2	17
193	Design of Surfaces for Liquid Crystal-Based Bioanalytical Assays. ACS Applied Materials & Design of Surfaces, 2010, 2, 722-731.	4.0	33
194	Flow induced deformation of defects around nanoparticles and nanodroplets suspended in liquid crystals. Soft Matter, 2010, 6, 896.	1.2	35
195	Nematic ordering drives the phase separation of mixed monolayers containing phospholipids modified with poly(ethylene glycol) at aqueous–liquid crystal interfaces. Soft Matter, 2010, 6, 4095.	1.2	18
196	Autonomous microfluidic sensing device employing liquid crystal for detection of biological interactions., 2009,,.		3
197	Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses. Advanced Functional Materials, 2009, 19, 2260-2265.	7.8	245
198	Sizeâ€Dependent Ordering of Liquid Crystals Observed in Polymeric Capsules with Micrometer and Smaller Diameters. Angewandte Chemie - International Edition, 2009, 48, 1652-1655.	7.2	137

#	Article	IF	CITATIONS
199	Chemically Responsive Gels Prepared from Microspheres Dispersed in Liquid Crystals. Small, 2009, 5, 2589-2596.	5.2	26
200	Ordering transitions in micrometer-thick films of nematic liquid crystals driven by self-assembly of ganglioside GM1. Journal of Colloid and Interface Science, 2009, 336, 90-99.	5.0	20
201	Spatial and temporal control of surfactant systems. Journal of Colloid and Interface Science, 2009, 339, 1-18.	5.0	98
202	Single Nanoparticle Tracking Reveals Influence of Chemical Functionality of Nanoparticles on Local Ordering of Liquid Crystals and Nanoparticle Diffusion Coefficients. Nano Letters, 2009, 9, 2794-2801.	4.5	64
203	Characterization of the Reversible Interaction of Pairs of Nanoparticles Dispersed in Nematic Liquid Crystals. Langmuir, 2009, 25, 13318-13321.	1.6	51
204	Electrochemical Generation of Gradients in Surfactant Concentration Across Microfluidic Channels. Analytical Chemistry, 2009, 81, 772-781.	3.2	10
205	Principles for Manipulation of the Lateral Organization of Aqueous-Soluble Surface-Active Molecules at the Liquid Crystalâ°'Aqueous Interface. Langmuir, 2009, 25, 2026-2033.	1.6	44
206	Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets. Langmuir, 2009, 25, 9016-9024.	1.6	102
207	Surface Activity of Amphiphilic Helical Î ² -Peptides from Molecular Dynamics Simulation. Langmuir, 2009, 25, 2811-2823.	1.6	27
208	Association of Helical \hat{I}^2 -Peptides and their Aggregation Behavior from the Potential of Mean Force in Explicit Solvent. Biophysical Journal, 2009, 96, 4349-4362.	0.2	15
209	A Sensing Device Using Liquid Crystal in a Micropillar Array Supporting Structure. Journal of Microelectromechanical Systems, 2009, 18, 973-982.	1.7	25
210	Nanofibers and Lyotropic Liquid Crystals from a Class of Selfâ€Assembling βâ€Peptides. Angewandte Chemie - International Edition, 2008, 47, 1241-1244.	7.2	96
211	Ordering Transitions in Thermotropic Liquid Crystals Induced by the Interfacial Assembly and Enzymatic Processing of Oligopeptide Amphiphiles. Advanced Materials, 2008, 20, 1185-1190.	11.1	104
212	Optically Responsive and Mechanically Tunable Colloidâ€Inâ€Liquid Crystal Gels that Support Growth of Fibroblasts. Advanced Materials, 2008, 20, 4804-4809.	11.1	40
213	Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surface Science Reports, 2008, 63, 255-293.	3.8	159
214	Chemical Activation of Lipoplexes Formed from DNA and a Redox-Active, Ferrocene-Containing Cationic Lipid. Bioconjugate Chemistry, 2008, 19, 2120-2128.	1.8	24
215	Mechanical Stability of Helical \hat{l}^2 -Peptides and a Comparison of Explicit and Implicit Solvent Models. Biophysical Journal, 2008, 95, 3123-3136.	0.2	10
216	Dynamic Ordering Transitions of Liquid Crystals Driven by Interfacial Complexes Formed between Polyanions and Amphiphilic Polyamines. Langmuir, 2008, 24, 13231-13236.	1.6	19

#	Article	IF	Citations
217	Elastic Energy-Driven Phase Separation of Phospholipid Monolayers at the Nematic Liquid-Crystal–Aqueous Interface. Physical Review Letters, 2008, 100, 048301.	2.9	60
218	Using Localized Surface Plasmon Resonances to Probe the Nanoscopic Origins of Adsorbate-Driven Ordering Transitions of Liquid Crystals in Contact with Chemically Functionalized Gold Nanodots. Nano Letters, 2008, 8, 2362-2368.	4.5	33
219	Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: Epidermal growth factor receptor as a model system. Lab on A Chip, 2008, 8, 1357.	3.1	10
220	Characterization of the Nanostructure of Complexes Formed by a Redox-Active Cationic Lipid and DNA. Journal of Physical Chemistry B, 2008, 112, 5849-5857.	1.2	35
221	Preparation of Microscopic and Planar Oilâ^'Water Interfaces That Are Decorated with Prescribed Densities of Insoluble Amphiphiles. Journal of the American Chemical Society, 2008, 130, 4326-4333.	6.6	57
222	Characterization of the Growth of Polyelectrolyte Multilayers Formed at Interfaces between Aqueous Phases and Thermotropic Liquid Crystals. Langmuir, 2008, 24, 5534-5542.	1.6	16
223	Quantitative Methods Based on Twisted Nematic Liquid Crystals for Mapping Surfaces Patterned with Bio/Chemical Functionality Relevant to Bioanalytical Assays. Analytical Chemistry, 2008, 80, 2637-2645.	3.2	25
224	Monodisperse Emulsions through Templating Polyelectrolyte Multilayer Capsules. Chemistry of Materials, 2008, 20, 2063-2065.	3.2	67
225	Ordering of Solid Microparticles at Liquid Crystalâ^'Water Interfaces. Journal of Physical Chemistry B, 2008, 112, 16552-16558.	1.2	18
226	ORDERING TRANSITIONS IN LIQUID CRYSTALS PERMIT IMAGING OF SPATIAL AND TEMPORAL PATTERNS FORMED BY PROTEINS PENETRATING INTO LIPID-LADEN INTERFACES. Chemical Engineering Communications, 2008, 196, 234-251.	1.5	23
227	A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals. Smart Materials and Structures, 2008, 17, 012001.	1.8	38
228	Capacitive Based Liquid Crystal Chemical and Biological Sensors., 2007,,.		4
229	A Liquid Crystal Based Gas Sensor Using Microfabricated Pillar Arrays as a Support Structure. , 2007, ,		1
230	Sequence Dependent Behavior of Amphiphilic \hat{l}^2 -Peptides on Gold Surfaces. Chemistry of Materials, 2007, 19, 4436-4441.	3.2	28
231	Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals. Chemistry of Materials, 2007, 19, 1053-1061.	3.2	44
232	Nanoparticles in nematic liquid crystals: Interactions with nanochannels. Journal of Chemical Physics, 2007, 127, 124702.	1.2	34
233	Self-assembly of biomolecules at surfaces characterized by NEXAFS. Canadian Journal of Chemistry, 2007, 85, 793-800.	0.6	16
234	Characterization of the interactions between synthetic nematic LCs and model cell membranes. Liquid Crystals, 2007, 34, 1387-1396.	0.9	6

#	Article	lF	CITATIONS
235	General Method for Site-Specific Protein Immobilization by Staudinger Ligation. Bioconjugate Chemistry, 2007, 18, 1064-1069.	1.8	72
236	Coupling of the Orientations of Thermotropic Liquid Crystals to Protein Binding Events at Lipid-Decorated Interfaces. Langmuir, 2007, 23, 8497-8507.	1.6	107
237	Effect of Light on Self-Assembly of Aqueous Mixtures of Sodium Dodecyl Sulfate and a Cationic, Bolaform Surfactant Containing Azobenzene. Langmuir, 2007, 23, 4819-4829.	1.6	38
238	Using Nonuniform Electric Fields To Accelerate the Transport of Viruses to Surfaces from Media of Physiological Ionic Strength. Langmuir, 2007, 23, 3840-3848.	1.6	37
239	Using Measurements of Anchoring Energies of Liquid Crystals on Surfaces To Quantify Proteins Captured by Immobilized Ligands. Journal of the American Chemical Society, 2007, 129, 11223-11231.	6.6	57
240	Methods for Generation of Spatial Gradients in Concentration of Monomeric Surfactants and Micelles in Microfluidic Systems. Langmuir, 2007, 23, 9578-9585.	1.6	6
241	Reversible Condensation of DNA Using a Redox-Active Surfactant. Langmuir, 2007, 23, 5609-5614.	1.6	38
242	Lipoplexes Formed by DNA and Ferrocenyl Lipids: Effect of Lipid Oxidation State on Size, Internal Dynamics, and ζ-Potential. Biophysical Journal, 2007, 93, 4414-4424.	0.2	23
243	Detection of organophosphorous nerve agents using liquid crystals supported on chemically functionalized surfaces. Sensors and Actuators B: Chemical, 2007, 128, 91-98.	4.0	78
244	Infrared Spectroscopy of Competitive Interactions between Liquid Crystals, Metal Salts, and Dimethyl Methylphosphonate at Surfaces. Journal of Physical Chemistry B, 2006, 110, 26081-26088.	1.2	43
245	Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality. Chemistry of Materials, 2006, 18, 2357-2363.	3.2	34
246	Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly. Nano Letters, 2006, 6, 2243-2248.	4.5	155
247	Formation of Oligopeptide-Based Polymeric Membranes at Interfaces between Aqueous Phases and Thermotropic Liquid Crystals. Chemistry of Materials, 2006, 18, 6147-6151.	3.2	53
248	Characterization of Protein Immobilization at Silver Surfaces by Near Edge X-ray Absorption Fine Structure Spectroscopy. Langmuir, 2006, 22, 7719-7725.	1.6	39
249	Lyotropic Liquid Crystals from Designed Helical \hat{l}^2 -Peptides. Journal of the American Chemical Society, 2006, 128, 8730-8731.	6.6	80
250	Measurement of the Azimuthal Anchoring Energy of Liquid Crystals in Contact with Oligo(ethylene) Tj ETQq0 0 0 0 Langmuir, 2006, 22, 4654-4659.	rgBT /Ove 1.6	rlock 10 Tf 5 31
251	Anchoring Energies of Liquid Crystals Measured on Surfaces Presenting Oligopeptides. Langmuir, 2006, 22, 7776-7782.	1.6	19
252	Anchoring of Nematic Liquid Crystals on Viruses with Different Envelope Structures. Nano Letters, 2006, 6, 1053-1058.	4.5	99

#	Article	IF	CITATIONS
253	Influence of 4-cyano-4′-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces. Journal of Colloid and Interface Science, 2006, 304, 459-473.	5.0	25
254	Ferrocene-containing cationic lipids for the delivery of DNA: Oxidation state determines transfection activity. Journal of Controlled Release, 2006, 112, 129-138.	4.8	40
255	Detection and switching of the oxidation state of Fe in a self-assembled monolayer. Surface Science, 2005, 587, L191-L196.	0.8	29
256	Compatibility of lyotropic liquid crystals with viruses and mammalian cells that support the replication of viruses. Biomaterials, 2005, 26, 7173-7182.	5.7	28
257	Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Methods, 2005, 2, 515-520.	9.0	324
258	Self-assembly of surfactants and phospholipids at interfaces between aqueous phases and thermotropic liquid crystals. Current Opinion in Colloid and Interface Science, 2005, 10, 111-120.	3.4	81
259	Use of self-assembled monolayers, metal ions and smectic liquid crystals to detect organophosphonates. Sensors and Actuators B: Chemical, 2005, 104, 50-56.	4.0	59
260	Defect structures and three-body potential of the mean force for nanoparticles in a nematic host. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1033-1040.	2.4	17
261	Quenched disorder in a liquid-crystal biosensor: Adsorbed nanoparticles at confining walls. Journal of Chemical Physics, 2005, 122, 184711.	1.2	63
262	Using Liquid Crystals to Report Membrane Proteins Captured by Affinity Microcontact Printing from Cell Lysates and Membrane Extracts. Journal of the American Chemical Society, 2005, 127, 8912-8913.	6.6	70
263	Influence of Lyotropic Liquid Crystals on the Ability of Antibodies To Bind to Surface-Immobilized Antigens. Chemistry of Materials, 2005, 17, 4774-4782.	3.2	36
264	Electrochemical Control of the Interactions of Polymers and Redox-Active Surfactants. Langmuir, 2005, 21, 12007-12015.	1.6	16
265	Ferrocene-Containing Cationic Lipids: Influence of Redox State on Cell Transfection. Journal of the American Chemical Society, 2005, 127, 11576-11577.	6.6	65
266	Functional Monolayers for Improved Resistance to Protein Adsorption:  Oligo(ethylene) Tj ETQq0 0 0 rgBT /C	Dverlock 1	0 Tf 50 222 1
267	Role of Desorption Kinetics in Determining Marangoni Flows Generated by Using Electrochemical Methods and Redox-Active Surfactants. Langmuir, 2005, 21, 2235-2241.	1.6	16
268	Formation and Characterization of Phospholipid Monolayers Spontaneously Assembled at Interfaces between Aqueous Phases and Thermotropic Liquid Crystals. Langmuir, 2005, 21, 2218-2228.	1.6	104
269	Antigen Binding Forces of Single Antilysozyme Fv Fragments Explored by Atomic Force Microscopy. Langmuir, 2005, 21, 5517-5523.	1.6	105
270	Influence of Surfactant Tail Branching and Organization on the Orientation of Liquid Crystals at Aqueousâ^'Liquid Crystal Interfaces. Langmuir, 2005, 21, 6805-6814.	1.6	120

#	Article	IF	Citations
271	Small-Angle Neutron Scattering from Mixtures of Sodium Dodecyl Sulfate and a Cationic, Bolaform Surfactant Containing Azobenzene. Langmuir, 2005, 21, 6131-6136.	1.6	65
272	Interactions of Liquid Crystal-Forming Molecules with Phospholipid Bilayers Studied by Molecular Dynamics Simulations. Biophysical Journal, 2005, 89, 3141-3158.	0.2	20
273	Orientations of Nematic Liquid Crystals on Surfaces Presenting Controlled Densities of Peptides: Amplification of Proteinâ°'Peptide Binding Events. Langmuir, 2005, 21, 6451-6461.	1.6	110
274	Dipole-induced structure in aromatic-terminated self-assembled monolayers—A study by near edge x-ray absorption fine structure spectroscopy. Journal of Chemical Physics, 2004, 120, 10792-10798.	1.2	20
275	Turning Cutting-Edge Research into Secondary Curriculum. Materials Research Society Symposia Proceedings, 2004, 861, 36.	0.1	0
276	Using ?prosurfactants? to enhance rates of delivery of surfactants. AICHE Journal, 2004, 50, 708-714.	1.8	5
277	Deciphering the interactions between liquid crystals and chemically functionalized surfaces: Role of hydrogen bonding on orientations of liquid crystals. Surface Science, 2004, 570, 43-56.	0.8	40
278	Mechanistic Study of the Anchoring Behavior of Liquid Crystals Supported on Metal Salts and Their Orientational Responses to Dimethyl Methylphosphonate. Journal of Physical Chemistry B, 2004, 108, 20180-20186.	1.2	68
279	Non-toxic thermotropic liquid crystals for use with mammalian cells. Liquid Crystals, 2004, 31, 611-621.	0.9	48
280	Imaging of Affinity Microcontact Printed Proteins by Using Liquid Crystals. Langmuir, 2004, 20, 6818-6826.	1.6	56
281	Stepped Silicon Surfaces as Templates for One-Dimensional Nanostructuresâ€. Journal of Physical Chemistry B, 2004, 108, 14484-14490.	1.2	37
282	Interactions between spherical colloids mediated by a liquid crystal: A molecular simulation and mesoscale study. Journal of Chemical Physics, 2004, 121, 1949-1961.	1.2	49
283	Covalently Modified Silicon and Diamond Surfaces:Â Resistance to Nonspecific Protein Adsorption and Optimization for Biosensing. Journal of the American Chemical Society, 2004, 126, 10220-10221.	6.6	189
284	Orientational Behavior of Thermotropic Liquid Crystals on Surfaces Presenting Electrostatically Bound Vesicular Stomatitis Virus. Langmuir, 2004, 20, 2375-2385.	1.6	46
285	Imaging the Binding Ability of Proteins Immobilized on Surfaces with Different Orientations by Using Liquid Crystals. Journal of the American Chemical Society, 2004, 126, 9024-9032.	6.6	105
286	Redox-Dependent Surface Tension and Surface Phase Transitions of a Ferrocenyl Surfactant:Â Equilibrium and Dynamic Analyses with Fluorescence Images. Langmuir, 2003, 19, 8292-8301.	1.6	50
287	Using Liquid Crystals to Amplify Proteinâ^'Receptor Interactions: Design of Surfaces with Nanometer-Scale Topography that Present Histidine-Tagged Protein Receptorsâ€. Langmuir, 2003, 19, 1671-1680.	1.6	111
288	Active Control of the Anchoring of 4â€~-Pentyl-4-cyanobiphenyl (5CB) at an Aqueousâ^'Liquid Crystal Interface By Using a Redox-Active Ferrocenyl Surfactant. Langmuir, 2003, 19, 8629-8637.	1.6	71

#	Article	IF	CITATIONS
289	Orientational Transitions of Liquid Crystals Driven by Binding of Organoamines to Carboxylic Acids Presented at Surfaces with Nanometer-Scale Topography. Langmuir, 2003, 19, 275-284.	1.6	61
290	Characterization of the Molecular Orientation of Self-Assembled Monolayers of Alkanethiols on Obliquely Deposited Gold Films by Using Infraredâ "Visible Sum-Frequency Spectroscopy. Langmuir, 2003, 19, 10501-10509.	1.6	27
291	Defect Structure around Two Colloids in a Liquid Crystal. Physical Review Letters, 2003, 91, 235507.	2.9	106
292	Effect of Surfactant Structure on the Orientation of Liquid Crystals at Aqueousâ^'Liquid Crystal Interfacesâ€. Langmuir, 2003, 19, 6436-6442.	1.6	198
293	Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals. Science, 2003, 302, 2094-2097.	6.0	584
294	Surface-Driven Switching of Liquid Crystals Using Redox-Active Groups on Electrodes. Science, 2003, 301, 623-626.	6.0	128
295	Monte Carlo simulations and dynamic field theory for suspended particles in liquid crystalline systems. Journal of Chemical Physics, 2003, 119, 2444-2455.	1.2	25
296	Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate. Journal of Chemical Physics, 2002, 117, 7781-7787.	1.2	89
297	Amplification of Specific Binding Events between Biological Species Using Lyotropic Liquid Crystals. Langmuir, 2002, 18, 5031-5035.	1.6	43
298	Manipulation of the Orientational Response of Liquid Crystals to Proteins Specifically Bound to Covalently Immobilized and Mechanically Sheared Films of Functionalized Bovine Serum Albumin. Langmuir, 2002, 18, 5269-5276.	1.6	32
299	Influence of Surface Tension-Driven Convection on Cyclic Voltammograms of Langmuir Films of Redox-Active Amphiphiles. Langmuir, 2002, 18, 9882-9887.	1.6	7
300	An Experimental System for Imaging the Reversible Adsorption of Amphiphiles at Aqueousâ^'Liquid Crystal Interfaces. Langmuir, 2002, 18, 6101-6109.	1.6	226
301	Effect of Electrolyte Concentration on Interfacial and Bulk Solution Properties of Ferrocenyl Surfactants with Anionic Headgroups. Langmuir, 2002, 18, 7826-7830.	1.6	31
302	Anchoring of Liquid Crystals on Surface-Initiated Polymeric Brushes. ChemPhysChem, 2002, 3, 448.	1.0	14
303	Applications of functional surfactants. Current Opinion in Colloid and Interface Science, 2002, 7, 267-275.	3.4	78
304	Combining Molecular Dynamics Simulations and Transition State Theory to Evaluate the Sorption Rate Constants for Decanol at the Surface of Water. Langmuir, 2001, 17, 8434-8443.	1.6	22
305	Comparison of the Surface Activity and Bulk Aggregation of Ferrocenyl Surfactants with Cationic and Anionic Headgroups. Langmuir, 2001, 17, 5703-5706.	1.6	95
306	Principles for Measurement of Chemical Exposure Based on Recognition-Driven Anchoring Transitions in Liquid Crystals. Science, 2001, 293, 1296-1299.	6.0	271

#	Article	IF	CITATIONS
307	Influence of Nanometer-Scale Topography of Surfaces on the Orientational Response of Liquid Crystals to Proteins Specifically Bound to Surface-Immobilized Receptors. Langmuir, 2001, 17, 5448-5457.	1.6	50
308	Principles for Microscale Separations Based on Redox-Active Surfactants and Electrochemical Methods. Analytical Chemistry, 2001, 73, 4808-4814.	3.2	39
309	Coupling of the Orientations of Liquid Crystals to Electrical Double Layers Formed by the Dissociation of Surface-Immobilized Salts. Journal of Physical Chemistry B, 2001, 105, 4936-4950.	1.2	66
310	Influence of Molecular-Level Interactions on the Orientations of Liquid Crystals Supported on Nanostructured Surfaces Presenting Specifically Bound Proteins. Langmuir, 2001, 17, 5595-5604.	1.6	54
311	Active Control of Surfactants. Studies in Surface Science and Catalysis, 2001, 132, 49-54.	1.5	1
312	Stannous(II) trifluoromethane sulfonate: a versatile catalyst for the controlled ring-opening polymerization of lactides: Formation of stereoregular surfaces from polylactide "brushes― Journal of Polymer Science Part A, 2001, 39, 3529-3538.	2.5	75
313	Interfacial Properties of Unsymmetrical Bolaform Amphiphiles with One Ionic and One Nonionic Head Group. Journal of Colloid and Interface Science, 2001, 242, 411-418.	5.0	17
314	New horizons for surfactant science in chemical engineering. AICHE Journal, 2001, 47, 2634-2639.	1.8	14
315	Rubbed Films of Functionalized Bovine Serum Albumin as Substrates for the Imaging of Protein-Receptor Interactions Using Liquid Crystals. Advanced Materials, 2001, 13, 1445-1449.	11.1	44
316	Functionalization of silicon step arrays II: Molecular orientation of alkanes and DNA. Journal of Applied Physics, 2001, 90, 3291-3295.	1.1	36
317	Observation of Long-Range Orientational Ordering in Metal Films Evaporated at Oblique Incidence onto Glass. Materials Research Society Symposia Proceedings, 2000, 615, 771.	0.1	0
318	Active control of interfacial properties. Current Opinion in Colloid and Interface Science, 2000, 5, 81-87.	3.4	46
319	Evolution of a preferred orientation of polycrystalline grains in obliquely deposited gold films on an amorphous substrate. Physical Review B, 2000, 62, R4833-R4836.	1.1	21
320	Orientations of Liquid Crystals on Mechanically Rubbed Films of Bovine Serum Albumin: A Possible Substrate for Biomolecular Assays Based on Liquid Crystals. Analytical Chemistry, 2000, 72, 4646-4653.	3.2	54
321	Quantitative Interpretation of the Optical Textures of Liquid Crystals Caused by Specific Binding of Immunoglobulins to Surface-Bound Antigens. Langmuir, 2000, 16, 3529-3536.	1.6	74
322	Alignment of Liquid Crystals on Stepped and Passivated Silicon Templates Prepared in Ultrahigh Vacuum. Langmuir, 2000, 16, 6731-6738.	1.6	13
323	Observation of Saturn-Ring Defects around Solid Microspheres in Nematic Liquid Crystals. Physical Review Letters, 2000, 85, 4719-4722.	2.9	255
324	Self-Assembled Monolayers on Electroless Gold Impart pH-Responsive Transport of Ions in Porous Membranes. Langmuir, 2000, 16, 2401-2404.	1.6	85

#	Article	IF	Citations
325	A Chemodegradable Surfactant System Based on Oxidation of Disulfide Bonds Using Hypochlorite. Langmuir, 2000, 16, 5553-5561.	1.6	18
326	Using Atom Transfer Radical Polymerization To Amplify Monolayers of Initiators Patterned by Microcontact Printing into Polymer Brushes for Pattern Transfer. Macromolecules, 2000, 33, 597-605.	2.2	392
327	Surface-Initiated Polymerization for Amplification of Self-Assembled Monolayers Patterned by Microcontact Printing. Angewandte Chemie - International Edition, 1999, 38, 647-649.	7.2	233
328	Using Light to Control Dynamic Surface Tensions of Aqueous Solutions of Water Soluble Surfactants. Langmuir, 1999, 15, 4404-4410.	1.6	165
329	Self-Assembled Monolayers Formed on Electroless Gold Deposited on Silica Gel:Â A Potential Stationary Phase for Biological Assays. Analytical Chemistry, 1999, 71, 327-332.	3.2	41
330	Electrochemical Principles for Active Control of Liquids on Submillimeter Scales. Science, 1999, 283, 57-60.	6.0	437
331	Using Droplets of Nematic Liquid Crystal To Probe the Microscopic and Mesoscopic Structure of Organic Surfaces. Langmuir, 1999, 15, 7213-7223.	1.6	35
332	Using Liquid Crystals To Image Reactants and Products of Acidâ^Base Reactions on Surfaces with Micrometer Resolution. Journal of the American Chemical Society, 1999, 121, 11300-11310.	6.6	57
333	Quantitative Characterization of Obliquely Deposited Substrates of Gold by Atomic Force Microscopy:  Influence of Substrate Topography on Anchoring of Liquid Crystals. Chemistry of Materials, 1999, 11, 612-623.	3.2	80
334	Self-Assembled Monolayers on (111) Textured Electroless Gold. Langmuir, 1999, 15, 3011-3014.	1.6	26
335	A Molecular-Thermodynamic Model for Gibbs Monolayers Formed from Redox-Active Surfactants at the Surfaces of Aqueous Solutions:Â Redox-Induced Changes in Surface Tension. Langmuir, 1999, 15, 722-730.	1.6	63
336	Rate-Dependent Lowering of Surface Tension during Transformations of Water-Soluble Surfactants from Bolaform to Monomeric Structures. Langmuir, 1998, 14, 2235-2237.	1.6	17
337	Electroless Gold as a Substrate for Self-Assembled Monolayers. Langmuir, 1998, 14, 3287-3297.	1.6	91
338	Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals. Science, 1998, 279, 2077-2080.	6.0	433
339	Comparison of the anchoring of nematic liquid crystals on self-assembled monolayers formed from semifluorinated thiols and alkanethiols. Liquid Crystals, 1997, 23, 175-184.	0.9	18
340	Influence of van der Waals Forces from Metallic Substrates on Fluids Supported on Self-Assembled Monolayers Formed from Alkanethiols. Langmuir, 1997, 13, 7106-7114.	1.6	73
341	Active Control of Interfacial Properties:Â A Comparison of Dimeric and Monomeric Ferrocenyl Surfactants at the Surface of Aqueous Solutions. Langmuir, 1997, 13, 203-208.	1.6	32
342	Design of Surfaces for Patterned Alignment of Liquid Crystals on Planar and Curved Substrates. Science, 1997, 276, 1533-1536.	6.0	236

#	Article	IF	CITATIONS
343	Surface effects on orientation of liquid crystals. Current Opinion in Colloid and Interface Science, 1997, 2, 76-82.	3.4	17
344	Using Isotropic, Nematic, and Smectic Fluids for the Study of Self-Assembled Monolayers Formed from Alkanethiols on Gold. Chemistry of Materials, 1996, 8, 1366-1369.	3.2	25
345	Dispensing Surfactants from Electrodes:  Marangoni Phenomenon at the Surface of Aqueous Solutions of (11-Ferrocenylundecyl)trimethylammonium Bromide. Journal of the American Chemical Society, 1996, 118, 6499-6505.	6.6	59
346	Uniform Anchoring of Nematic Liquid Crystals on Self-Assembled Monolayers Formed from Alkanethiols on Obliquely Deposited Films of Gold. Langmuir, 1996, 12, 2587-2593.	1.6	88
347	Ferrocenyl Surfactants at the Surface of Water:Â Principles for Active Control of Interfacial Properties. Langmuir, 1996, 12, 4116-4124.	1.6	98
348	Azimuthal anchoring transition of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols. Physical Review E, 1996, 54, R4540-R4543.	0.8	78
349	Planar anchoring of nematic 4â€nâ€pentylâ€4′â€cyanobiphenyl on selfâ€assembled monolayers formed from alkanethiols on gold. Applied Physics Letters, 1996, 69, 1852-1854.	1.5	35
350	Anchoring of Nematic Liquid Crystals on Self-Assembled Monolayers Formed from Alkanethiols on Semitransparent Films of Gold. The Journal of Physical Chemistry, 1995, 99, 16511-16515.	2.9	104
351	In Situ and Reversible Control of the Surface Activity of Ferrocenyl Surfactants in Aqueous Solutions. Langmuir, 1995, 11, 4209-4212.	1.6	76
352	Active Control of Wetting Using Applied Electrical Potentials and Self-Assembled Monolayers. Langmuir, 1995, 11, 16-18.	1.6	131
353	Patterned Self-Assembled Monolayers and Meso-Scale Phenomena. Accounts of Chemical Research, 1995, 28, 219-226.	7.6	390
354	Combining Micromachining and Molecular Self-Assembly To Fabricate Microelectrodes. Langmuir, 1994, 10, 2672-2682.	1.6	46
355	Using finite element analysis to calculate the shapes of geometrically confined drops of liquid on patterned, self-assembled monolayers: a new method to estimate excess interfacial free energies .gamma.svgamma.sl. Journal of the American Chemical Society, 1994, 116, 290-294.	6.6	17
356	Using Micromachining, Molecular Self-Assembly, and Wet Etching to Fabricate 0.1-1mu.m-scale structures of Gold and Silicon. Chemistry of Materials, 1994, 6, 596-602.	3.2	68
357	Diblock, ABC triblock, and random methacrylic polyampholytes: synthesis by group transfer polymerization and solution behavior. Macromolecules, 1994, 27, 930-937.	2.2	200
358	Diblock, ABC triblock, and random methacrylic polyampholytes: synthesis by group transfer polymerization and solution behavior. [Erratum to document cited in CA120(10):107863g]. Macromolecules, 1994, 27, 2364-2364.	2.2	15
359	Potential-Dependent Wetting of Aqueous Solutions on Self-Assembled Monolayers Formed from 15-(Ferrocenylcarbonyl)pentadecanethiol on Gold. Langmuir, 1994, 10, 1493-1497.	1.6	120
360	Protein partitioning in two-phase aqueous polymer systems. 5. Decoupling of the effects of protein concentration, salt type, and polymer molecular weight. Macromolecules, 1993, 26, 825-828.	2.2	19

#	Article	IF	CITATIONS
361	Protein partitioning in two-phase aqueous nonionic micellar solutions. Macromolecules, 1992, 25, 4797-4806.	2.2	91
362	Manipulation of the Wettability of Surfaces on the 0.1- to 1-Micrometer Scale Through Micromachining and Molecular Self-Assembly. Science, 1992, 257, 1380-1382.	6.0	263
363	Protein partitioning in two-phase aqueous polymer systems. 4. Proteins in solutions of entangled polymers. Macromolecules, 1992, 25, 5192-5200.	2.2	33
364	Protein partitioning in two-phase aqueous polymer systems. 2. On the free energy of mixing globular colloids and flexible polymers. Macromolecules, 1992, 25, 3917-3931.	2.2	37
365	The use of self-assembled monolayers and a selective etch to generate patterned gold features. Journal of the American Chemical Society, 1992, 114, 9188-9189.	6.6	174
366	Protein partitioning in two-phase aqueous polymer systems. 3. A neutron scattering investigation of the polymer solution structure and protein-polymer interactions. Macromolecules, 1992, 25, 3932-3941.	2.2	63
367	Protein partitioning in two-phase aqueous polymer systems. 1. Novel physical pictures and a scaling thermodynamic formulation. Macromolecules, 1991, 24, 4334-4348.	2.2	73
368	On protein partitioning in two-phase aqueous polymer systems. Bioseparation, 1990, 1, 191-225.	0.7	70