David Traver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014352/publications.pdf Version: 2024-02-01

Πλυίο Τρλυέρ

#	Article	IF	CITATIONS
1	Notch signaling enhances bone regeneration in the zebrafish mandible. Development (Cambridge), 2022, 149, .	2.5	10
2	A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood Advances, 2021, 5, 796-811.	5.2	17
3	Endothelial struts enable the generation of large lumenized blood vessels de novo. Nature Cell Biology, 2021, 23, 322-329.	10.3	4
4	Evaluation of the Cunningham Panelâ,,¢ in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): Changes in antineuronal antibody titers parallel changes in patient symptoms. Journal of Neuroimmunology, 2020, 339, 577138.	2.3	38
5	Haematopoietic stem cell-dependent Notch transcription is mediated by p53 through the Histone chaperone Supt16h. Nature Cell Biology, 2020, 22, 1411-1422.	10.3	9
6	Impact of COVID-19 on early career scientists: an optimistic guide for the future. BMC Biology, 2020, 18, 95.	3.8	36
7	Zebrafish Kit ligands cooperate with erythropoietin to promote erythroid cell expansion. Blood Advances, 2020, 4, 5915-5924.	5.2	4
8	3041 – ENDOTHELIAL STRUTS, A NOVEL MECHANISM OF BLOOD VESSEL FORMATION THROUGH ORGANIZATION OF ARTERIAL, VENOUS AND HEMATOPOIETIC STEM CELL PRECURSORS Experimental Hematology, 2020, 88, S51-S52.	0.4	0
9	Direct Visualization of Live Zebrafish Glycans via Singleâ€Step Metabolic Labeling with Fluorophoreâ€Tagged Nucleotide Sugars. Angewandte Chemie - International Edition, 2019, 58, 14327-14333.	13.8	17
10	1035 - DECODING THE MOLECULAR CUES THAT REGULATE HSC SPECIFICATION Experimental Hematology, 2019, 76, S40.	0.4	0
11	Direct Visualization of Live Zebrafish Glycans via Singleâ€Step Metabolic Labeling with Fluorophoreâ€Tagged Nucleotide Sugars. Angewandte Chemie, 2019, 131, 14465-14471.	2.0	5
12	Enrichment of hematopoietic stem/progenitor cells in the zebrafish kidney. Scientific Reports, 2019, 9, 14205.	3.3	29
13	AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science, 2019, 363, 1085-1088.	12.6	90
14	EGFR is required for Wnt9a–Fzd9b signalling specificity in haematopoietic stem cells. Nature Cell Biology, 2019, 21, 721-730.	10.3	42
15	Embryonic Immune Cells Remodel the Heart. Developmental Cell, 2019, 48, 595-596.	7.0	3
16	Zebra "Fishing" the Role of Granulin in Hematopoiesis. Blood, 2019, 134, 1194-1194.	1.4	1
17	Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nature Communications, 2018, 9, 1310.	12.8	22
18	Wnt Signaling in Hematological Malignancies. Progress in Molecular Biology and Translational Science, 2018, 153, 321-341.	1.7	40

#	Article	IF	CITATIONS
19	Proinflammatory Signals as Fuel for the Fire of Hematopoietic Stem Cell Emergence. Trends in Cell Biology, 2018, 28, 58-66.	7.9	40
20	Blood flow-induced Notch activation and endothelial migration enable vascular remodeling in zebrafish embryos. Nature Communications, 2018, 9, 5314.	12.8	54
21	Zebrafish snai2 mutants fail to phenocopy morphant phenotypes. PLoS ONE, 2018, 13, e0202747.	2.5	4
22	Embryonic Microglia Derive from Primitive Macrophages and Are Replaced by cmyb-Dependent Definitive Microglia in Zebrafish. Cell Reports, 2018, 24, 130-141.	6.4	81
23	WNT9A Is a Conserved Regulator of Hematopoietic Stem and Progenitor Cell Development. Genes, 2018, 9, 66.	2.4	19
24	Wnt9a Interacts Specifically with Frizzled9b to Regulate the Emergence of Hematopoietic Stem Cells. Experimental Hematology, 2018, 64, S25-S26.	0.4	0
25	Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics, 2017, 49, 457-464.	21.4	66
26	A Four-Well Dish for High-Resolution Longitudinal Imaging of the Tail and Posterior Trunk of Larval Zebrafish. Zebrafish, 2017, 14, 489-491.	1.1	6
27	The role of Wnt signaling in hematopoietic stem cell development. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 414-424.	5.2	54
28	The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger. Nature Communications, 2017, 8, 14911.	12.8	27
29	Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis. Scientific Reports, 2017, 7, 44644.	3.3	15
30	Mecp2 regulates <i>tnfa</i> during zebrafish embryonic development and acute inflammation. DMM Disease Models and Mechanisms, 2017, 10, 1439-1451.	2.4	31
31	CRISPR Guide RNA Validation <i>In Vitro</i> . Zebrafish, 2017, 14, 383-386.	1.1	13
32	Clonal fate mapping quantifies the number ofÂhaematopoietic stem cells that arise duringÂdevelopment. Nature Cell Biology, 2017, 19, 17-27.	10.3	90
33	Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes. PLoS ONE, 2017, 12, e0169923.	2.5	29
34	Utilizing zebrafish for new insights into the cellular and molecular mechanisms of microglia ontogeny. Experimental Hematology, 2017, 53, S57.	0.4	0
35	Ndrg1b and fam49ab modulate the PTEN pathway to control T-cell lymphopoiesis in the zebrafish. Blood, 2016, 128, 3052-3060.	1.4	6
36	The NF-κB family: Key players during embryonic development and HSCÂemergence. Experimental Hematology, 2016, 44, 519-527.	0.4	71

#	Article	IF	CITATIONS
37	Ex vivo tools for the clonal analysis of zebrafish hematopoiesis. Nature Protocols, 2016, 11, 1007-1020.	12.0	24
38	De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome. American Journal of Human Genetics, 2016, 99, 711-719.	6.2	81
39	Wnt9a Is Required for the Aortic Amplification of Nascent Hematopoietic Stem Cells. Cell Reports, 2016, 17, 1595-1606.	6.4	46
40	Complex regulation of HSC emergence by the Notch signaling pathway. Developmental Biology, 2016, 409, 129-138.	2.0	64
41	Conserved IL-2RÎ ³ c Signaling Mediates Lymphopoiesis in Zebrafish. Journal of Immunology, 2016, 196, 135-143.	0.8	23
42	Streptococcus agalactiae infection in zebrafish larvae. Microbial Pathogenesis, 2015, 79, 57-60.	2.9	44
43	Intimacy of the Niche: Perivascular Remodeling Cuddles Incoming HSCs. Cell Stem Cell, 2015, 16, 109-110.	11.1	1
44	Bacterial induction of Snail1 contributes to blood-brain barrier disruption. Journal of Clinical Investigation, 2015, 125, 2473-2483.	8.2	114
45	Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development (Cambridge), 2015, 142, 1050-1061.	2.5	117
46	Zebrafish embryonic stromal trunk (ZEST) cells support hematopoietic stem and progenitor cell (HSPC) proliferation, survival, and differentiation. Experimental Hematology, 2015, 43, 1047-1061.	0.4	18
47	Going with the flow: How shear stress signals the emergence of adult hematopoiesis. Journal of Experimental Medicine, 2015, 212, 600-600.	8.5	6
48	FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nature Communications, 2014, 5, 5583.	12.8	37
49	FGF signalling restricts haematopoietic stem cell specification via modulation of the BMP pathway. Nature Communications, 2014, 5, 5588.	12.8	45
50	Perspectives on antigen presenting cells in zebrafish. Developmental and Comparative Immunology, 2014, 46, 63-73.	2.3	48
51	Proinflammatory Signaling Regulates Hematopoietic Stem Cell Emergence. Cell, 2014, 159, 1070-1085.	28.9	262
52	Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO Journal, 2014, 33, 2363-2373.	7.8	87
53	Cell signaling pathways involved in hematopoietic stem cell specification. Experimental Cell Research, 2014, 329, 227-233.	2.6	30
54	Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature, 2014, 512, 319-323.	27.8	126

#	Article	IF	CITATIONS
55	A Systems Biology Approach for Defining the Molecular Framework of the Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 376-391.	11.1	63
56	Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nature Communications, 2014, 5, 4814.	12.8	51
57	Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood, 2014, 124, 220-228.	1.4	47
58	Signalling pathways that control vertebrate haematopoietic stem cell specification. Nature Reviews Immunology, 2013, 13, 336-348.	22.7	126
59	An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood, 2013, 122, e1-e11.	1.4	163
60	Fish pharming: zebrafish antileukemia screening. Blood, 2012, 119, 5614-5615.	1.4	6
61	Cellular Dissection of Zebrafish Hematopoiesis. Methods in Cell Biology, 2011, 101, 75-110.	1.1	72
62	A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature, 2011, 474, 220-224.	27.8	192
63	Small Molecule–Mediated Activation of the Integrin CD11b/CD18 Reduces Inflammatory Disease. Science Signaling, 2011, 4, ra57.	3.6	118
64	Characterization of the mononuclear phagocyte system in zebrafish. Blood, 2011, 117, 7126-7135.	1.4	186
65	Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood, 2010, 115, 2777-2783.	1.4	97
66	Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood, 2010, 116, 3944-3954.	1.4	147
67	Developmental and tissue-specific expression of NITRs. Immunogenetics, 2010, 62, 117-122.	2.4	33
68	T-Lymphoblastic Lymphoma Cells Express High Levels of BCL2, S1P1, and ICAM1, Leading to a Blockade of Tumor Cell Intravasation. Cancer Cell, 2010, 18, 353-366.	16.8	141
69	Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 2010, 464, 108-111.	27.8	885
70	High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIα as a Clock Regulatory Kinase. PLoS Biology, 2010, 8, e1000559.	5.6	216
71	Identification of dendritic antigen-presenting cells in the zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15850-15855.	7.1	222
72	Adult Langerhans Cells Derive Directly From Embryonic Macrophages Blood, 2010, 116, 3788-3788.	1.4	0

#	Article	IF	CITATIONS
73	Wnt16 Is Required for Specification of Vertebrate Hematopoietic Stem Cells through Notch Blood, 2010, 116, 2616-2616.	1.4	1
74	Zebrafish <i>wnt3</i> is expressed in developing neural tissue. Developmental Dynamics, 2009, 238, 1788-1795.	1.8	30
75	CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell, 2009, 138, 271-285.	28.9	1,282
76	Hematopoietic cell development in the zebrafish embryo. Current Opinion in Hematology, 2009, 16, 243-248.	2.5	68
77	Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood, 2009, 114, 279-289.	1.4	74
78	Both Primitive and Definitive Hematopoiesis Arise From Precursors with Endothelial Potential in the Zebrafish Blood, 2009, 114, 697-697.	1.4	0
79	Mutations in the Cilia Gene ARL13B Lead to the Classical Form of Joubert Syndrome. American Journal of Human Genetics, 2008, 83, 170-179.	6.2	352
80	Low natural killer cell cytotoxic activity in autism: The role of glutathione, IL-2 and IL-15. Journal of Neuroimmunology, 2008, 205, 148-154.	2.3	99
81	CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development (Cambridge), 2008, 135, 1853-1862.	2.5	197
82	Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development (Cambridge), 2007, 134, 4147-4156.	2.5	289
83	Structural characteristics of zebrafish orthologs of adaptor molecules that associate with transmembrane immune receptors. Gene, 2007, 401, 154-164.	2.2	41
84	The zebrafish activating immune receptor Nitr9 signals via Dap12. Immunogenetics, 2007, 59, 813-821.	2.4	43
85	The Ontogeny of Definitive Hematopoiesis in the Zebrafish Blood, 2007, 110, 438-438.	1.4	1
86	Mitoferrin is essential for erythroid iron assimilation. Nature, 2006, 440, 96-100.	27.8	514
87	Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenetics, 2006, 58, 31-40.	2.4	34
88	Hematopoietic Stem and Progenitor Cell Biology in the Zebrafish Blood, 2006, 108, 4160-4160.	1.4	0
89	Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood, 2005, 106, 3803-3810.	1.4	341
90	BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma. Current Biology, 2005, 15, 249-254.	3.9	626

#	Article	IF	CITATIONS
91	Hematopoietic stem cell fate is established by the Notch–Runx pathway. Genes and Development, 2005, 19, 2331-2342.	5.9	358
92	The Complex Cartography of Stem Cell Commitment. Cell, 2005, 121, 160-162.	28.9	35
93	Regulation of the Imo2 promoter during hematopoietic and vascular development in zebrafish. Developmental Biology, 2005, 281, 256-269.	2.0	95
94	Ferroportin1 is required for normal iron cycling in zebrafish. Journal of Clinical Investigation, 2005, 115, 1532-1541.	8.2	80
95	Increased Expression of CD47 Is a Constant Marker in Mouse and Human Myeloid Leukemias Blood, 2005, 106, 3260-3260.	1.4	0
96	The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1Î ³ , an Essential Regulator of Hematopoiesis. PLoS Biology, 2004, 2, e237.	5.6	117
97	Cellular Dissection of Zebrafish Hematopoiesis. Methods in Cell Biology, 2004, 76, 127-149.	1.1	64
98	In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proceedings of the United States of America, 2004, 101, 7369-7374.	7.1	389
99	Lineage Commitment and Developmental Plasticity in Early Lymphoid Progenitor Subsets. Advances in Immunology, 2004, 83, 1-54.	2.2	17
100	Plasmacytoid Dendritic Cells Activate Lymphoid-Specific Genetic Programs Irrespective of Their Cellular Origin. Immunity, 2004, 21, 43-53.	14.3	211
101	The Use of Zebrafish to Understand Immunity. Immunity, 2004, 20, 367-379.	14.3	557
102	The pu.1 promoter drives myeloid gene expression in zebrafish. Blood, 2004, 104, 1291-1297.	1.4	133
103	Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood, 2004, 104, 1298-1305.	1.4	161
104	Ferroportin1-Deficient Zebrafish Treated with Iron Dextran Develop Anemia Despite Increased Macrophage Iron Stores Blood, 2004, 104, 3691-3691.	1.4	0
105	Frascati , a Mitochondrial Solute Transporter, and Its Role in Vertebrate Erythropoiesis Blood, 2004, 104, 49-49.	1.4	7
106	Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunology, 2003, 4, 1238-1246.	14.5	718
107	The Zebrafish as a Model Organism to Study Development of the Immune System. Advances in Immunology, 2003, , 254-330.	2.2	104
108	Intrinsic Requirement for Zinc Finger Transcription Factor Gfi-1 in Neutrophil Differentiation. Immunity, 2003, 18, 109-120.	14.3	334

#	Article	IF	CITATIONS
109	Expression of <i>BCR/ABL</i> and <i>BCL-2</i> in myeloid progenitors leads to myeloid leukemias. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10002-10007.	7.1	156
110	Myc-Induced T Cell Leukemia in Transgenic Zebrafish. Science, 2003, 299, 887-890.	12.6	506
111	Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood, 2003, 101, 508-516.	1.4	328
112	The zebrafish as a model organism to study development of the immune system. Advances in Immunology, 2003, 81, 253-330.	2.2	135
113	Myeloid progenitors protect against invasive aspergillosis andPseudomonas aeruginosa infection following hematopoietic stem cell transplantation. Blood, 2002, 100, 4660-4667.	1.4	102
114	Walking the Walk. Cell, 2002, 108, 731-734.	28.9	64
115	Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. Journal of Clinical Investigation, 2002, 109, 1579-1585.	8.2	95
116	Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood, 2001, 97, 3333-3341.	1.4	357
117	The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood, 2001, 98, 618-626.	1.4	147
118	Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood, 2001, 98, 627-635.	1.4	112
119	Dendritic Cell Development from Common Myeloid Progenitors. Annals of the New York Academy of Sciences, 2001, 938, 167-174.	3.8	55
120	A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature, 2000, 404, 193-197.	27.8	2,194
121	Mice Defective in Two Apoptosis Pathways in the Myeloid Lineage Develop Acute Myeloblastic Leukemia. Immunity, 1998, 9, 47-57.	14.3	171