Michal Szostak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7013509/publications.pdf

Version: 2024-02-01

235 papers 14,606 citations

68 h-index 26613 107 g-index

247 all docs

 $\begin{array}{c} 247 \\ \text{docs citations} \end{array}$

times ranked

247

6619 citing authors

#	Article	IF	CITATIONS
1	Buchwaldâ€Hartwig Amination of Coordinating Heterocycles Enabled by Largeâ€butâ€Flexible Pdâ€BIANâ€NHC Catalysts**. Chemistry - A European Journal, 2022, 28, .	3.3	16
2	Synthesis of Natural Products by Câ^'H Functionalization of Heterocycless. Chemistry - A European Journal, 2022, 28, .	3.3	24
3	Palladium-NHC (NHC = N-heterocyclic Carbene)-Catalyzed Suzuki–Miyaura Cross-Coupling of Alkyl Amides. ACS Catalysis, 2022, 12, 2426-2433.	11.2	23
4	Chemoselective Transamidation of Thioamides by Transitionâ€Metalâ€Free Nâ^'C(S) Transacylation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
5	Transamidation of thioamides with nucleophilic amines: thioamide N–C(S) activation by ground-state-destabilization. Organic and Biomolecular Chemistry, 2022, 20, 5981-5988.	2.8	12
6	Decarbonylative Pd-Catalyzed Suzuki Cross-Coupling for the Synthesis of Structurally Diverse Heterobiaryls. Organic Letters, 2022, 24, 1678-1683.	4.6	10
7	Cobalt–N-Heterocyclic Carbene Complexes in Catalysis. ACS Catalysis, 2022, 12, 3111-3137.	11.2	33
8	Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic Nâ^'C(O) Activation by Amideâ€toâ€Acyl Iodide Reâ€routing. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
9	Mechanochemical Synthesis of Ketones via Chemoselective Suzuki–Miyaura Cross-Coupling of Acyl Chlorides. Organic Letters, 2022, 24, 2338-2343.	4.6	11
10	N-Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes. Organometallics, 2022, 41, 1806-1815.	2.3	12
11	Mechanochemical Solventâ€Free Suzuki–Miyaura Crossâ€Coupling of Amides via Highly Chemoselective Nâ^'C Cleavage. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
12	Mechanochemical Solventâ€Free Suzuki–Miyaura Crossâ€Coupling of Amides via Highly Chemoselective Nâ^'C Cleavage. Angewandte Chemie, 2022, 134, .	2.0	7
13	Application of Indazolin-3-ylidenes in Catalysis: Steric Tuning of Nonclassical Formally Normal <i>N</i> Heterocyclic Carbenes with Dual Electronic Character for Catalysis. Organometallics, 2022, 41, 1115-1124.	2.3	11
14	Frontispiece: Synthesis of Natural Products by Câ^'H Functionalization of Heterocycless. Chemistry - A European Journal, 2022, 28, .	3.3	0
15	Thiazol-2-ylidenes as N-Heterocyclic carbene ligands with enhanced electrophilicity for transition metal catalysis. Communications Chemistry, 2022, 5, .	4.5	17
16	An air-stable, well-defined palladium–BIAN–NHC chloro dimer: a fast-activating, highly efficient catalyst for cross-coupling. Chemical Communications, 2022, 58, 7404-7407.	4.1	4
17	Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on Nâ°C(X) Resonance. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
18	Cobaltâ^'NHC Catalyzed C(sp ²)â^'C(sp ³) and C(sp ²)â^'C(sp ²) Kumada Crossâ€Coupling of Aryl Tosylates with Alkyl and Aryl Grignard Reagents. ChemCatChem, 2021, 13, 202-206.	3.7	9

#	Article	IF	Citations
19	Reductive Deuteration of Aromatic Esters for the Synthesis of $\hat{l}\pm,\hat{l}\pm$ -Dideuterio Benzyl Alcohols Using D2O as Deuterium Source. Synlett, 2021, 32, 51-56.	1.8	19
20	Protocol for Palladium/N-Heterocyclic Carbene-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation. Synthesis, 2021, 53, 682-687.	2.3	5
21	Metal-free tandem carbene N–H insertions and C–C bond cleavages. Chemical Science, 2021, 12, 803-811.	7.4	21
22	Green Solvent Selection for Suzuki–Miyaura Coupling of Amides. ACS Sustainable Chemistry and Engineering, 2021, 9, 552-559.	6.7	31
23	Acyl fluorides as direct precursors to fluoride ketyl radicals: reductive deuteration using Sml ₂ and D ₂ O. Chemical Communications, 2021, 57, 5195-5198.	4.1	11
24	IPr# – highly hindered, broadly applicable N-heterocyclic carbenes. Chemical Science, 2021, 12, 10583-10589.	7.4	51
25	General and practical intramolecular decarbonylative coupling of thioesters <i>via</i> palladium catalysis. Organic Chemistry Frontiers, 2021, 8, 1587-1592.	4.5	16
26	BIANâ€NHC Ligands in Transitionâ€Metalâ€Catalysis: A Perfect Union of Sterically Encumbered, Electronically Tunable Nâ€Heterocyclic Carbenes?. Chemistry - A European Journal, 2021, 27, 4478-4499.	3.3	57
27	Suzuki–Miyaura cross-coupling of esters by selective O–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(μ-Cl)Cl] ₂ precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2021, 11, 3189-3197.	4.1	34
28	<i>N</i> -Butylpyrrolidone (NBP) as a non-toxic substitute for NMP in iron-catalyzed C(sp ²)–C(sp ³) cross-coupling of aryl chlorides. Green Chemistry, 2021, 23, 7515-7521.	9.0	8
29	Conversion of esters to thioesters under mild conditions. Organic and Biomolecular Chemistry, 2021, 19, 2991-2996.	2.8	13
30	Transamidation of Amides and Amidation of Esters by Selective Nâ€"C(O)/Oâ€"C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)â€"NHC Complexes. Molecules, 2021, 26, 188.	3.8	18
31	Cull-Catalyzed Coupling with Two Ynone Units by Selective Triple and Sigma C–C and C–H Bond Cleavages. Organic Letters, 2021, 23, 1928-1933.	4.6	12
32	Frontispiece: BIANâ€NHC Ligands in Transitionâ€Metalâ€Catalysis: A Perfect Union of Sterically Encumbered, Electronically Tunable Nâ€Heterocyclic Carbenes?. Chemistry - A European Journal, 2021, 27, .	3.3	0
33	Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via Câ€O/Câ€H Coupling. Angewandte Chemie - International Edition, 2021, 60, 10690-10699.	13.8	64
34	Recent Advances in Metalâ€Catalyzed Functionalization of Indoles. Advanced Synthesis and Catalysis, 2021, 363, 2723-2739.	4.3	89
35	Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via Câ€O/Câ€H Coupling. Angewandte Chemie, 2021, 133, 10785-10794.	2.0	7
36	Synthesis of Sulfoxonium Ylides from Amides by Selective N–C(O) Activation. Organic Letters, 2021, 23, 4818-4822.	4.6	17

3

#	Article	IF	CITATIONS
37	Decarbonylative Sonogashira Cross-Coupling of Carboxylic Acids. Organic Letters, 2021, 23, 4726-4730.	4.6	15
38	Rh(I)-Catalyzed Intramolecular Decarbonylation of Thioesters. Journal of Organic Chemistry, 2021, 86, 10829-10837.	3.2	17
39	Evaluation of Cyclic Amides as Activating Groups in N–C Bond Cross-Coupling: Discovery of <i>N</i> -Acyl-Î-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. Journal of Organic Chemistry, 2021, 86, 10455-10466.	3.2	12
40	Acyclic Twisted Amides. Chemical Reviews, 2021, 121, 12746-12783.	47.7	107
41	Forging Câ^'S Bonds Through Decarbonylation: New Perspectives for the Synthesis of Privileged Aryl Sulfides. ChemCatChem, 2021, 13, 4878-4881.	3.7	12
42	Synthesis of \hat{l}_{\pm} -Deuterated Primary Amines <i>via</i> Reductive Deuteration of Oximes Using D ₂ O as a Deuterium Source. Journal of Organic Chemistry, 2021, 86, 2907-2916.	3.2	15
43	Recent advances in the synthesis and reactivity of azetidines: strain-driven character of the four-membered heterocycle. Organic and Biomolecular Chemistry, 2021, 19, 3274-3286.	2.8	52
44	Decarbonylative sulfide synthesis from carboxylic acids and thioesters <i>via</i> cross-over C–S activation and acyl capture. Organic Chemistry Frontiers, 2021, 8, 4805-4813.	4.5	17
45	Pd-Catalyzed Double-Decarbonylative Aryl Sulfide Synthesis through Aryl Exchange between Amides and Thioesters. Organic Letters, 2021, 23, 8098-8103.	4.6	27
46	Green-Solvent Selection for Acyl Buchwald–Hartwig Cross-Coupling of Amides (Transamidation). ACS Sustainable Chemistry and Engineering, 2021, 9, 14937-14945.	6.7	21
47	Recent Advances in the Synthesis of Piperazines: Focus on C–H Functionalization. Organics, 2021, 2, 337-347.	1.3	11
48	[(NHC)PdCl ₂ (Aniline)] Complexes: Easily Synthesized, Highly Active Pd(II)–NHC Precatalysts for Cross-Coupling Reactions. Journal of Organic Chemistry, 2021, 86, 15648-15657.	3.2	35
49	Palladium-Catalyzed Decarbonylative Borylation of Aryl Anhydrides. Journal of Organic Chemistry, 2021, 86, 17445-17452.	3.2	7
50	Decarbonylative Sonogashira cross-coupling: a fruitful marriage of alkynes with carboxylic acid electrophiles. Organic Chemistry Frontiers, 2021, 9, 216-222.	4.5	9
51	Engineering 2―oxoglutarate dehydrogenase to a 2â€oxo aliphatic dehydrogenase complex by optimizing consecutive components. AICHE Journal, 2020, 66, e16769.	3.6	4
52	Kinetically Controlled, Highly Chemoselective Acylation of Functionalized Grignard Reagents with Amides by Nâ°C Cleavage. Chemistry - A European Journal, 2020, 26, 611-615.	3.3	30
53	Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of $\hat{l}\pm,\hat{l}\pm$ -Dideuterio Alcohols Using SmI (sub) 2 (sub) and D (sub) 2 (sub) 0 as a Deuterium Source. Organic Letters, 2020, 22, 1249-1253.	4.6	20
54	Buchwald–Hartwig cross-coupling of amides (transamidation) by selective N–C(O) cleavage mediated by air- and moisture-stable [Pd(NHC)(allyl)Cl] precatalysts: catalyst evaluation and mechanism. Catalysis Science and Technology, 2020, 10, 710-716.	4.1	57

#	Article	IF	CITATIONS
55	Transitionâ€Metalâ€Free Activation of Amides by Nâ^'C Bond Cleavage. Chemical Record, 2020, 20, 649-659.	5.8	75
56	Ring-Opening Olefin Metathesis of Twisted Amides: Activation of Amide Bonds by Câ•C Cleavage. ACS Catalysis, 2020, 10, 737-742.	11.2	9
57	Electrophilicity Scale of Activated Amides: 17 Oâ€NMR and 15 Nâ€NMR Chemical Shifts of Acyclic Twisted Amides in Nâ°C(O) Crossâ€Coupling. Chemistry - A European Journal, 2020, 26, 16246-16250.	3.3	13
58	Preference of <i>cis</i> -Thioamide Structure in <i>N</i> -Thioacyl- <i>N</i> -methylanilines. Organic Letters, 2020, 22, 9500-9505.	4.6	12
59	Decarbonylative Suzuki–Miyaura Cross-Coupling of Aroyl Chlorides. Organic Letters, 2020, 22, 6434-6440.	4.6	27
60	Palladium-catalyzed cross-couplings by C–O bond activation. Catalysis Science and Technology, 2020, 10, 5702-5739.	4.1	46
61	[Pd(NHC)(Î ¹ /4-Cl)Cl]2: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products. IScience, 2020, 23, 101377.	4.1	56
62	Rh-Catalyzed Base-Free Decarbonylative Borylation of Twisted Amides. Journal of Organic Chemistry, 2020, 85, 15676-15685.	3.2	14
63	Ruthenium(II)-Catalyzed C–H Arylation of N,N-Dialkyl Thiobenzamides with Boronic Acids by Sulfur Coordination in 2-MeTHF. Organic Letters, 2020, 22, 6884-6890.	4.6	22
64	Introduction to a New MDPI Open Access Journal: Organics. Organics, 2020, 1, 1-2.	1.3	0
65	N-Acylcarbazoles and N-Acylindoles: Electronically Activated Amides for N–C(O) Cross-Coupling by Nlp to Ar Conjugation Switch. Organic Letters, 2020, 22, 4703-4709.	4.6	23
66	Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage. Synthesis, 2020, 52, 2579-2599.	2.3	58
67	Ruthenium(II)-Catalyzed <i>Ortho</i> -C–H Alkylation of Naphthylamines with Diazo Compounds for Synthesis of 2,2-Disubstituted π-Extended 3-Oxindoles in Water. Organic Letters, 2020, 22, 5187-5192.	4.6	33
68	<i>N</i> -Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling. Journal of Organic Chemistry, 2020, 85, 5475-5485.	3.2	21
69	Suzuki–Miyaura Cross-Coupling of Amides Using Well-Defined, Air- and Moisture-Stable Nickel/NHC (NHC = N-Heterocyclic Carbene) Complexes. Catalysts, 2020, 10, 372.	3.5	13
70	Suzukiâ€Miyaura Crossâ€Coupling of Amides using Wellâ€Defined, Airâ€Stable [(PR ₃) ₂ Pd(II)X ₂] Precatalysts. Advanced Synthesis and Catalysis, 2020, 362, 1887-1892.	4.3	14
71	Editorial for "Organometallic Chemistry―Section, in Journal Molecules. Molecules, 2020, 25, 3038.	3.8	0
72	Highly Selective and Divergent Acyl and Aryl Cross-Couplings of Amides via Ir-Catalyzed C–H Borylation/N–C(O) Activation. Organic Letters, 2020, 22, 6010-6015.	4.6	23

#	Article	IF	Citations
73	Thioesterification and Selenoesterification of Amides via Selective N–C Cleavage at Room Temperature: N–C(O) to S/Se–C(O) Interconversion. Synthesis, 2020, 52, 1060-1066.	2.3	19
74	Synthesis of C6-Substituted Isoquinolino[1,2- <i>b</i>)quinazolines via Rh(III)-Catalyzed C–H Annulation with Sulfoxonium Ylides. Journal of Organic Chemistry, 2020, 85, 3192-3201.	3.2	62
75	N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chemical Reviews, 2020, 120, 1981-2048.	47.7	429
76	Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Aryl Chlorobenzoates with Alkyl Grignard Reagents. Molecules, 2020, 25, 230.	3.8	11
77	<i>N</i> -Acyl-5,5-Dimethylhydantoins: Mild Acyl-Transfer Reagents for the Synthesis of Ketones Using Pd–PEPPSI or Pd/Phosphine Catalysts. Organic Process Research and Development, 2020, 24, 1043-1051.	2.7	7
78	Synthesis of biaryl ketones by arylation of Weinreb amides with functionalized Grignard reagents under thermodynamic control vs. kinetic control of N,N-Boc2-amides. Organic and Biomolecular Chemistry, 2020, 18, 3827-3831.	2.8	12
79	Amide Bond Activation: The Power of Resonance. Trends in Chemistry, 2020, 2, 914-928.	8.5	154
80	Metal-Free Transamidation of Secondary Amides by N–C Cleavage. Journal of Organic Chemistry, 2019, 84, 12091-12100.	3.2	66
81	Rh(III)-Catalyzed C–H Amidation of 2-Arylindoles with Dioxazolones: A Route to Indolo[1,2- <i>c</i>]quinazolines. Organic Letters, 2019, 21, 7038-7043.	4.6	45
82	Ligand Effect on Ironâ€Catalyzed Crossâ€Coupling Reactions: Evaluation of Amides as Oâ€Coordinating Ligands. ChemCatChem, 2019, 11, 5733-5737.	3.7	9
83	Ruthenium(0)-Catalyzed Cross-Coupling of Anilines with Organoboranes by Selective Carbon–Nitrogen Cleavage. ACS Catalysis, 2019, 9, 8171-8177.	11.2	27
84	Ruthenium(0)-sequential catalysis for the synthesis of sterically hindered amines by C–H arylation/hydrosilylation. Chemical Communications, 2019, 55, 9003-9006.	4.1	15
85	2â€Methyltetrahydrofuran (2â€MeTHF): A Green Solvent for Pdâ°'NHCâ€Catalyzed Amide and Ester Suzukiâ€Miyaura Crossâ€Coupling by Nâ°'C/Oâ°'C Cleavage. Advanced Synthesis and Catalysis, 2019, 361, 5654-5660.	4.3	37
86	Decarbonylative Phosphorylation of Carboxylic Acids via Redox-Neutral Palladium Catalysis. Organic Letters, 2019, 21, 9256-9261.	4.6	42
87	Palladiumâ€Catalyzed Synthesis of Benzothiophenes via Crossâ€Dehydrogenative Coupling of 4â€Arylthiocoumarins and Pyrones. Advanced Synthesis and Catalysis, 2019, 361, 5709-5714.	4.3	28
88	Recent Advances in Acyl Suzuki Cross-Coupling. Catalysts, 2019, 9, 53.	3.5	143
89	Palladium-catalyzed decarbonylative Suzuki–Miyaura cross-coupling of amides by carbon–nitrogen bond activation. Chemical Science, 2019, 10, 9865-9871.	7.4	67
90	Synthesis of Biaryls via Decarbonylative Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Carboxylic Acids. IScience, 2019, 19, 749-759.	4.1	71

#	Article	IF	Citations
91	Sterically Hindered Ketones via Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation. Organic Letters, 2019, 21, 7976-7981.	4.6	27
92	N-Acylphthalimides: Efficient Acyl Coupling Reagents in Suzuki–Miyaura Cross-Coupling by N–C Cleavage Catalyzed by Pd–PEPPSI Precatalysts. Catalysts, 2019, 9, 129.	3.5	26
93	lron-catalyzed C(sp ²)–C(sp ³) cross-coupling at low catalyst loading. Catalysis Science and Technology, 2019, 9, 1092-1097.	4.1	12
94	Highly Chemoselective, Transition-Metal-Free Transamidation of Unactivated Amides and Direct Amidation of Alkyl Esters by N–C/O–C Cleavage. Journal of the American Chemical Society, 2019, 141, 11161-11172.	13.7	172
95	Highly-chemoselective step-down reduction of carboxylic acids to aromatic hydrocarbons <i>via</i> palladium catalysis. Chemical Science, 2019, 10, 5736-5742.	7.4	45
96	[Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available Precatalysts for Suzuki and Buchwald–Hartwig Cross-coupling (Transamidation) of Amides and Esters by N–C/O–C Activation. Organic Letters, 2019, 21, 3304-3309.	4.6	90
97	Redoxâ€Neutral Decarbonylative Crossâ€Couplings Coming of Age. ChemSusChem, 2019, 12, 2983-2987.	6.8	37
98	Recent Advances in the Synthesis and Reactivity of Isothiazoles. Advanced Synthesis and Catalysis, 2019, 361, 3050-3067.	4.3	46
99	Decarbonylative Borylation of Amides by Palladium Catalysis. ACS Omega, 2019, 4, 4901-4907.	3.5	30
100	¹⁷ O NMR and ¹⁵ N NMR chemical shifts of sterically-hindered amides: ground-state destabilization in amide electrophilicity. Chemical Communications, 2019, 55, 4423-4426.	4.1	12
101	Graphene oxide catalyzed ketone î±-alkylation with alkenes: enhancement of graphene oxide activity by hydrogen bonding. Chemical Communications, 2019, 55, 5379-5382.	4.1	17
102	Nickelâ€Catalyzed C(sp 2)â^'C(sp 3) Kumada Crossâ€Coupling of Aryl Tosylates with Alkyl Grignard Reagents. Advanced Synthesis and Catalysis, 2019, 361, 2329-2336.	4.3	15
103	Triflamides: Highly Reactive, Electronically Activated <i>N</i> -Sulfonyl Amides in Catalytic N–C(O) Amide Cross-Coupling. Organic Letters, 2019, 21, 1253-1257.	4.6	32
104	A simple 1H NMR method for determining the if -donor properties of N-heterocyclic carbenes. Tetrahedron Letters, 2019, 60, 378-381.	1.4	70
105	<i>N</i> â€Methylcaprolactam as a Dipolar Aprotic Solvent for Ironâ€Catalyzed Crossâ€Coupling Reactions: Matching Efficiency with Safer Reaction Media. ChemCatChem, 2019, 11, 1196-1199.	3.7	12
106	Tröger's Base Twisted Amides: High Amide Bond Twist and N-/O-Protonation Aptitude. Journal of Organic Chemistry, 2019, 84, 1510-1516.	3.2	16
107	Iron-Catalyzed C(sp ²)–C(sp ³) Cross-Coupling of Chlorobenzenesulfonamides with Alkyl Grignard Reagents: Entry to Alkylated Aromatics. Journal of Organic Chemistry, 2019, 84, 1640-1646.	3.2	17
108	Chemistry of Bridged Lactams: Recent Developments. Molecules, 2019, 24, 274.	3.8	43

#	Article	IF	Citations
109	Synthesis of Amides by Mild Palladium-Catalyzed Aminocarbonylation of Arylsilanes with Amines Enabled by Copper(II) Fluoride. Journal of Organic Chemistry, 2019, 84, 338-345.	3.2	34
110	Ironâ€Catalyzed C(sp 2)â^'C(sp 3) Crossâ€Coupling of Chlorobenzamides with Alkyl Grignard Reagents: Development of Catalyst System, Synthetic Scope, and Application. Advanced Synthesis and Catalysis, 2019, 361, 85-95.	4.3	17
111	Eisenkatalysierte Kreuzkupplungen in der Synthese von Pharmazeutika: Streben nach Nachhaltigkeit. Angewandte Chemie, 2018, 130, 11284-11297.	2.0	54
112	2â€Methyltetrahydrofuran: A Green Solvent for Iron atalyzed Cross oupling Reactions. ChemSusChem, 2018, 11, 1290-1294.	6.8	44
113	Mechanistic Study of Suzuki–Miyaura Crossâ€Coupling Reactions of Amides Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. ChemCatChem, 2018, 10, 3096-3106.	3.7	78
114	<i>N</i> -Acyl-glutarimides: Resonance and Proton Affinities of Rotationally-Inverted Twisted Amides Relevant to N〓C(O) Cross-Coupling. Organic Letters, 2018, 20, 1342-1345.	4.6	65
115	Ironâ€Catalyzed Crossâ€Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angewandte Chemie - International Edition, 2018, 57, 11116-11128.	13.8	214
116	Barriers to Rotation in ortho-Substituted Tertiary Aromatic Amides: Effect of Chloro-Substitution on Resonance and Distortion. Journal of Organic Chemistry, 2018, 83, 3159-3163.	3.2	29
117	Pdâ€PEPPSI: Waterâ€Assisted Suzukiâ^Miyaura Crossâ€Coupling of Aryl Esters at Room Temperature using a Practical Palladiumâ€NHC (NHC=Nâ€Heterocyclic Carbene) Precatalyst. Advanced Synthesis and Catalysis, 2018, 360, 1538-1543.	4.3	46
118	Decarbonylative thioetherification by nickel catalysis using air- and moisture-stable nickel precatalysts. Chemical Communications, 2018, 54, 2130-2133.	4.1	95
119	<i>N</i> â€Acylâ€Glutarimides: Privileged Scaffolds in Amide N–C Bond Crossâ€Coupling. European Journal of Organic Chemistry, 2018, 2018, 2352-2365.	2.4	116
120	Transamidation of $\langle i \rangle N \langle i \rangle$ -acyl-glutarimides with amines. Organic and Biomolecular Chemistry, 2018, 16, 1322-1329.	2.8	57
121	Ruthenium(II)-Catalyzed Direct C–H Arylation of Indoles with Arylsilanes in Water. Organic Letters, 2018, 20, 341-344.	4.6	79
122	The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species. Free Radical Biology and Medicine, 2018, 115, 136-145.	2.9	43
123	Reversible Twisting of Primary Amides via Ground State N–C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides. Journal of the American Chemical Society, 2018, 140, 727-734.	13.7	155
124	Decarbonylative cross-coupling of amides. Organic and Biomolecular Chemistry, 2018, 16, 7998-8010.	2.8	138
125	Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of Pentafluorophenyl Esters. Molecules, 2018, 23, 3134.	3.8	18
126	The Most Twisted Acyclic Amides: Structures and Reactivity. Organic Letters, 2018, 20, 7771-7774.	4.6	41

#	Article	IF	CITATIONS
127	Well-Defined Palladium(II)–NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N–C/O–C Cleavage. Accounts of Chemical Research, 2018, 51, 2589-2599.	15.6	316
128	Highly selective transition-metal-free transamidation of amides and amidation of esters at room temperature. Nature Communications, 2018, 9, 4165.	12.8	164
129	Palladium/NHC (NHC = <i>N</i> -Heterocyclic Carbene)-Catalyzed B-Alkyl Suzuki Cross-Coupling of Amides by Selective N–C Bond Cleavage. Organic Letters, 2018, 20, 6789-6793.	4.6	53
130	Palladium atalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation. Angewandte Chemie - International Edition, 2018, 57, 16721-16726.	13.8	98
131	Twisted <i>N</i> -Acyl-hydantoins: Rotationally Inverted Urea-Imides of Relevance in N–C(O) Cross-coupling. Journal of Organic Chemistry, 2018, 83, 14676-14682.	3.2	13
132	Structures and energetic properties of 4-halobenzamides. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1395-1402.	0.5	1
133	Palladium atalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation. Angewandte Chemie, 2018, 130, 16963-16968.	2.0	71
134	Transition-Metal-Free Esterification of Amides via Selective N–C Cleavage under Mild Conditions. Organic Letters, 2018, 20, 5622-5625.	4.6	78
135	Transition-metal-catalyzed decarbonylation of carboxylic acids to olefins: exploiting acyl C–O activation for the production of high value products. Organic Chemistry Frontiers, 2018, 5, 2515-2521.	4.5	45
136	Acyl and Decarbonylative Suzuki Coupling of <i>N</i> -Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbonâ€"Nitrogen Bond Cleavage. ACS Catalysis, 2018, 8, 9131-9139.	11.2	91
137	Highly chemoselective ruthenium(<scp>ii</scp>)-catalyzed direct arylation of cyclic and N,N-dialkyl benzamides with aryl silanes. Chemical Science, 2017, 8, 3204-3210.	7.4	77
138	Sc(OTf)3-catalyzed synthesis of anhydrides from twisted amides. Organic and Biomolecular Chemistry, 2017, 15, 1780-1785.	2.8	19
139	Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of N-Mesylamides by N–C Cleavage: Electronic Effect of the Mesyl Group. Organic Letters, 2017, 19, 1434-1437.	4.6	74
140	General Method for the Suzuki–Miyaura Cross-Coupling of Amides Using Commercially Available, Airand Moisture-Stable Palladium/NHC (NHC = ⟨i⟩N⟨/i⟩-Heterocyclic Carbene) Complexes. ACS Catalysis, 2017, 7, 1960-1965.	11.2	160
141	A General Method for Two-Step Transamidation of Secondary Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (<i>N</i> Heterocyclic Carbene) Complexes. Organic Letters, 2017, 19, 2158-2161.	4.6	138
142	Ïf N–C Bond Difunctionalization in Bridged Twisted Amides: Sew-and-Cut Activation Approach to Functionalized Isoquinolines. Organic Letters, 2017, 19, 2386-2389.	4.6	20
143	The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate. Free Radical Biology and Medicine, 2017, 108, 644-654.	2.9	23
144	Ruthenium(<scp>ii</scp>)-catalyzed ortho-Câ€"H arylation of diverse N-heterocycles with aryl silanes by exploiting solvent-controlled N-coordination. Organic and Biomolecular Chemistry, 2017, 15, 4783-4788.	2.8	31

#	Article	IF	Citations
145	Mechanistic Study of Sml ₂ /H ₂ O and Sml ₂ /Amine/H ₂ O-Promoted Chemoselective Reduction of Aromatic Amides (Primary, Secondary, Tertiary) to Alcohols via Aminoketyl Radicals. Journal of Organic Chemistry, 2017, 82, 6528-6540.	3.2	33
146	Suzuki–Miyaura Cross-Coupling of <i>N</i> -Acylpyrroles and Pyrazoles: Planar, Electronically Activated Amides in Catalytic N–C Cleavage. Organic Letters, 2017, 19, 3596-3599.	4.6	91
147	Resonance Destabilization in <i>N</i> -Acylanilines (Anilides): Electronically-Activated Planar Amides of Relevance in N–C(O) Cross-Coupling. Journal of Organic Chemistry, 2017, 82, 6373-6378.	3.2	82
148	Frontispiece: Twisted Amides: From Obscurity to Broadly Useful Transitionâ€Metalâ€Catalyzed Reactions by Nâ^'C Amide Bond Activation. Chemistry - A European Journal, 2017, 23, .	3.3	1
149	Decarbonylative Cyanation of Amides by Palladium Catalysis. Organic Letters, 2017, 19, 3095-3098.	4.6	95
150	Nickel-Catalyzed Negishi Cross-Coupling of N-Acylsuccinimides: Stable, Amide-Based, Twist-Controlled Acyl-Transfer Reagents via N–C Activation. Synthesis, 2017, 49, 3602-3608.	2.3	35
151	Metal-Free Transamidation of Secondary Amides via Selective N–C Cleavage under Mild Conditions. Organic Letters, 2017, 19, 1614-1617.	4.6	152
152	Pd-PEPPSI: A General Pd-NHC Precatalyst for Suzuki–Miyaura Cross-Coupling of Esters by C–O Cleavage. Organometallics, 2017, 36, 3784-3789.	2.3	64
153	N-Acylsuccinimides: twist-controlled, acyl-transfer reagents in Suzuki–Miyaura cross-coupling by N–C amide bond activation. Organic and Biomolecular Chemistry, 2017, 15, 8867-8871.	2.8	43
154	Iron-Catalyzed Câ^O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3865-3865.	6.8	0
155	Cyclic ureas (DMI, DMPU) as efficient, sustainable ligands in iron-catalyzed C(sp2)–C(sp3) coupling of aryl chlorides and tosylates. Green Chemistry, 2017, 19, 5361-5366.	9.0	46
156	Ironâ€Catalyzed Câ^O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3964-3981.	6.8	95
157	<i>N</i> -Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N–C(O) Cleavage. Organic Letters, 2017, 19, 4656-4659.	4.6	59
158	Site-Selective Câ€"H/Câ€"N Activation by Cooperative Catalysis: Primary Amides as Arylating Reagents in Directed Câ€"H Arylation. ACS Catalysis, 2017, 7, 7251-7256.	11,2	77
159	Pd–PEPPSI: a general Pd–NHC precatalyst for Buchwald–Hartwig cross-coupling of esters and amides (transamidation) under the same reaction conditions. Chemical Communications, 2017, 53, 10584-10587.	4.1	153
160	Suzuki–Miyaura cross-coupling of amides and esters at room temperature: correlation with barriers to rotation around C–N and C–O bonds. Chemical Science, 2017, 8, 6525-6530.	7.4	148
161	Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Crossâ€Coupling of Amide Derivatives. Angewandte Chemie, 2017, 129, 12892-12896.	2.0	37
162	Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Crossâ€Coupling of Amide Derivatives. Angewandte Chemie - International Edition, 2017, 56, 12718-12722.	13.8	152

#	Article	IF	Citations
163	Ironâ€Catalyzed C(sp ²)–C(sp ³) Crossâ€Coupling of Alkyl Grignard Reagents with Polyaromatic Tosylates. European Journal of Organic Chemistry, 2017, 2017, 7271-7276.	2.4	18
164	General Method for the Suzuki–Miyaura Cross-Coupling of Primary Amide-Derived Electrophiles Enabled by [Pd(NHC)(cin)Cl] at Room Temperature. Organic Letters, 2017, 19, 6510-6513.	4.6	60
165	Recent Developments in Ruthenium-Catalyzed C–H Arylation: Array of Mechanistic Manifolds. ACS Catalysis, 2017, 7, 5721-5745.	11.2	248
166	Pd-PEPPSI: Pd-NHC Precatalyst for Suzuki–Miyaura Cross-Coupling Reactions of Amides. Journal of Organic Chemistry, 2017, 82, 6638-6646.	3.2	102
167	Twisted Amides: From Obscurity to Broadly Useful Transitionâ€Metalâ€Catalyzed Reactions by Nâ^'C Amide Bond Activation. Chemistry - A European Journal, 2017, 23, 7157-7173.	3.3	278
168	Synthesis of Nitrogen Heterocycles Using Samarium(II) Iodide. Molecules, 2017, 22, 2018.	3.8	24
169	Efficient Synthesis of Diaryl Ketones by Nickelâ€Catalyzed Negishi Crossâ€Coupling of Amides by Carbon–Nitrogen Bond Cleavage at Room Temperature Accelerated by a Solvent Effect. Chemistry - A European Journal, 2016, 22, 10420-10424.	3.3	113
170	Sterically-controlled intermolecular Friedel–Crafts acylation with twisted amides via selective N–C cleavage under mild conditions. Chemical Communications, 2016, 52, 6841-6844.	4.1	59
171	Chemoselective Ketone Synthesis by the Addition of Organometallics to <i>N</i> -Acylazetidines. Organic Letters, 2016, 18, 2375-2378.	4.6	73
172	Cyclization of Imides to 2-Azabicycles via Aminoketyl Radicals by Using Samarium(II) lodide–Water: Reaction Development, Synthetic Scope, and Mechanistic Studies. Synthesis, 2016, 48, 1825-1854.	2.3	13
173	Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides via Site-Selective N–C Bond Cleavage by Cooperative Catalysis. ACS Catalysis, 2016, 6, 7335-7339.	11.2	139
174	Cross-Coupling of Amides by N–C Bond Activation. Synlett, 2016, 27, 2530-2540.	1.8	207
175	Proton-coupled electron transfer in the reduction of carbonyls using Sml ₂ â€"H ₂ 0: implications for the reductive coupling of acyl-type ketyl radicals with Sml ₂ â€"H ₂ 0. Organic and Biomolecular Chemistry, 2016, 14, 9151-9157.	2.8	19
176	Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N–C Cross-Coupling. Journal of Organic Chemistry, 2016, 81, 8091-8094.	3.2	121
177	<i>N</i> -Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki–Miyaura Coupling via N–C Cleavage. Organic Letters, 2016, 18, 4194-4197.	4.6	103
178	Structures of Highly Twisted Amides Relevant to Amide Nâ^'C Crossâ€Coupling: Evidence for Groundâ€State Amide Destabilization. Chemistry - A European Journal, 2016, 22, 14494-14498.	3.3	94
179	Ruthenium(0)-Catalyzed C–H Arylation of Aromatic Imines under Neutral Conditions: Access to Biaryl Aldehydes. Organic Letters, 2016, 18, 4186-4189.	4.6	52
180	Highly Chemoselective Synthesis of Indolizidine Lactams by Sml ₂ â€Induced Umpolung of the Amide Bond via Aminoketyl Radicals: Efficient Entry to Alkaloid Scaffolds. Chemistry - A European Journal, 2016, 22, 11949-11953.	3.3	33

#	Article	IF	Citations
181	Ruthenium(0)-catalyzed hydroarylation of alkynes via ketone-directed C–H functionalization using in situ-generated ruthenium complexes. Chemical Communications, 2016, 52, 9715-9718.	4.1	35
182	<i>N</i> -Acylsaccharins as Amide-Based Arylating Reagents via Chemoselective N–C Cleavage: Pd-Catalyzed Decarbonylative Heck Reaction. Journal of Organic Chemistry, 2016, 81, 12023-12030.	3.2	87
183	Nickel-Catalyzed Diaryl Ketone Synthesis by N–C Cleavage: Direct Negishi Cross-Coupling of Primary Amides by Site-Selective <i>N</i> N-Di-Boc Activation. Organic Letters, 2016, 18, 5872-5875.	4.6	112
184	Structural Characterization of Nâ€Alkylated Twisted Amides: Consequences for Amide Bond Resonance and Nâ^'C Cleavage. Angewandte Chemie, 2016, 128, 5146-5150.	2.0	18
185	Synthesis of Biaryls through Nickelâ€Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Bond Cleavage. Angewandte Chemie, 2016, 128, 7073-7077.	2.0	68
186	Ruthenium(II)-Catalyzed Regioselective C–H Arylation of Cyclic and <i>N</i> , <i>N</i> -Dialkyl Benzamides with Boronic Acids by Weak Coordination. ACS Catalysis, 2016, 6, 4755-4759.	11.2	90
187	Structural Characterization of Nâ€Alkylated Twisted Amides: Consequences for Amide Bond Resonance and Nâ^'C Cleavage. Angewandte Chemie - International Edition, 2016, 55, 5062-5066.	13.8	67
188	Synthesis of Biaryls through Nickelâ€Catalyzed Suzukiâ€"Miyaura Coupling of Amides by Carbonâ€"Nitrogen Bond Cleavage. Angewandte Chemie - International Edition, 2016, 55, 6959-6963.	13.8	279
189	P-Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism. ACS Nano, 2016, 10, 2305-2315.	14.6	276
190	Rhodium-Catalyzed Câ€"H Bond Functionalization with Amides by Double Câ€"H/Câ€"N Bond Activation. Organic Letters, 2016, 18, 796-799.	4.6	183
191	Palladium-catalyzed Suzuki–Miyaura coupling of amides by carbon–nitrogen cleavage: general strategy for amide N–C bond activation. Organic and Biomolecular Chemistry, 2016, 14, 5690-5707.	2.8	136
192	General Olefin Synthesis by the Palladiumâ€Catalyzed Heck Reaction of Amides: Sterically Controlled Chemoselective NC Activation. Angewandte Chemie - International Edition, 2015, 54, 14518-14522.	13.8	271
193	Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Advanced Synthesis and Catalysis, 2015, 357, 2583-2614.	4.3	263
194	An efficient computational model to predict protonation at the amide nitrogen and reactivity along the $Cae^{\circ}N$ rotational pathway. Chemical Communications, 2015, 51, 6395-6398.	4.1	79
195	Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C–N Rotational Pathway. Journal of Organic Chemistry, 2015, 80, 7905-7927.	3.2	59
196	Graphene-Catalyzed Direct Friedel–Crafts Alkylation Reactions: Mechanism, Selectivity, and Synthetic Utility. Journal of the American Chemical Society, 2015, 137, 14473-14480.	13.7	147
197	Aminoketyl Radicals in Organic Synthesis: Stereoselective Cyclization of Five- and Six-Membered Cyclic Imides to 2-Azabicycles Using Sml ₂ â€"H ₂ O. Organic Letters, 2015, 17, 5144-5147.	4.6	54
198	Sterically Controlled Pd-Catalyzed Chemoselective Ketone Synthesis via N–C Cleavage in Twisted Amides. Organic Letters, 2015, 17, 4364-4367.	4.6	240

#	Article	IF	Citations
199	On the Role of Pre―and Postâ€Electronâ€Transfer Steps in the Sml ₂ /Amine/H ₂ Oâ€Mediated Reduction of Esters: New Mechanistic Insights and Kinetic Studies. Chemistry - A European Journal, 2014, 20, 4222-4226.	3.3	23
200	Determination of the Effective Redox Potentials of Sml ₂ , SmBr ₂ , SmCl ₂ , and their Complexes with Water by Reduction of Aromatic Hydrocarbons. Reduction of Anthracene and Stilbene by Samarium(II) Iodide–Water Complex. Journal of Organic Chemistry, 2014, 79, 2522-2537.	3.2	81
201	Cross-Coupling Reactions Using Samarium(II) Iodide. Chemical Reviews, 2014, 114, 5959-6039.	47.7	351
202	Stereoselective Capture of N-Acyliminium Ions Generated from \hat{l} ±-Hydroxy-N-acylcarbamides: Direct Synthesis of Uracils from Barbituric Acids Enabled by SmI2 Reduction. Organic Letters, 2014, 16, 452-455.	4.6	15
203	Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to α-hydroxy-N-acyl-carbamides. Chemical Communications, 2014, 50, 2518.	4.1	13
204	Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using Sml ₂ /Amine/H ₂ O under Mild Conditions. Journal of the American Chemical Society, 2014, 136, 2268-2271.	13.7	131
205	Switching between Reaction Pathways by an Alcohol Cosolvent Effect: SmI ₂ –Ethylene Glycol vs SmI ₂ –H ₂ O Mediated Synthesis of Uracils. Organic Letters, 2014, 16, 5694-5697.	4.6	26
206	Mechanistic investigation of the selective reduction of Meldrum's acids to \hat{l}^2 -hydroxy acids using Sml ₂ and H ₂ O. Chemical Communications, 2014, 50, 8391-8394.	4.1	11
207	Selective Synthesis of α,α-Dideuterio Alcohols by the Reduction of Carboxylic Acids Using Sml sub>2 and D ₂ O as Deuterium Source under SET Conditions. Organic Letters, 2014, 16, 5052-5055.	4.6	52
208	Mechanism of Sml ₂ /Amine/H ₂ O-Promoted Chemoselective Reductions of Carboxylic Acid Derivatives (Esters, Acids, and Amides) to Alcohols. Journal of Organic Chemistry, 2014, 79, 11988-12003.	3.2	40
209	Electron Transfer Reduction of Nitriles Using Sml ₂ –Et ₃ N–H ₂ O: Synthetic Utility and Mechanism. Organic Letters, 2014, 16, 1092-1095.	4.6	58
210	Ketyl-Type Radicals from Cyclic and Acyclic Esters are Stabilized by Sml ₂ (H ₂ 0) _{<i>n</i>>/i>} : The Role of Sml ₂ (H ₂ 0) _{<i>n</i>>/i>} in Post-Electron Transfer Steps. Journal of the American Chemical Society, 2014, 136, 8459-8466.	13.7	66
211	Uncovering the Importance of Proton Donors in Tml ₂ â€Promoted Electron Transfer: Facile CN Bond Cleavage in Unactivated Amides. Angewandte Chemie - International Edition, 2013, 52, 7237-7241.	13.8	33
212	Recent advances in the chemoselective reduction of functional groups mediated by samarium(ii) iodide: a single electron transfer approach. Chemical Society Reviews, 2013, 42, 9155.	38.1	188
213	Selective Reduction of Barbituric Acids Using Sml ₂ /H ₂ O: Synthesis, Reactivity, and Structural Analysis of Tetrahedral Adducts. Angewandte Chemie - International Edition, 2013, 52, 12559-12563.	13.8	62
214	Chemistry of Bridged Lactams and Related Heterocycles. Chemical Reviews, 2013, 113, 5701-5765.	47.7	223
215	Substrate-Directable Electron Transfer Reactions. Dramatic Rate Enhancement in the Chemoselective Reduction of Cyclic Esters Using Sml ₂ –H ₂ O: Mechanism, Scope, and Synthetic Utility. Journal of the American Chemical Society, 2013, 135, 15702-15705.	13.7	42
216	A general electron transfer reduction of lactones using Sml2–H2O. Organic and Biomolecular Chemistry, 2012, 10, 5820.	2.8	41

#	Article	IF	CITATIONS
217	Preparation of Samarium(II) lodide: Quantitative Evaluation of the Effect of Water, Oxygen, and Peroxide Content, Preparative Methods, and the Activation of Samarium Metal. Journal of Organic Chemistry, 2012, 77, 3049-3059.	3.2	82
218	Beyond Samarium Diiodide: Vistas in Reductive Chemistry Mediated by Lanthanides(II). Angewandte Chemie - International Edition, 2012, 51, 9238-9256.	13.8	151
219	Electron Transfer Reduction of Carboxylic Acids Using Sml ₂ –H ₂ O–Et ₃ N. Organic Letters, 2012, 14, 840-843.	4.6	60
220	Selective synthesis of 3-hydroxy acids from Meldrum's acids using Sml2-H2O. Nature Protocols, 2012, 7, 970-977.	12.0	32
221	Selective reductive transformations using samarium diiodide-water. Chemical Communications, 2012, 48, 330-346.	4.1	112
222	Electron transfer reduction of unactivated esters using Sml2–H2O. Chemical Communications, 2011, 47, 10254.	4.1	76
223	Medium-bridged lactams: a new class of non-planar amides. Organic and Biomolecular Chemistry, 2011, 9, 27-35.	2.8	76
224	Concise Syntheses of Strychnine and Englerinâ€A: the Power of Reductive Cyclizations Triggered by Samarium Iodide. Angewandte Chemie - International Edition, 2011, 50, 7737-7739.	13.8	65
225	Synthesis of Medium-Bridged Twisted Lactams via Cationâ^'Ï€ Control of the Regiochemistry of the Intramolecular Schmidt Reaction. Journal of Organic Chemistry, 2010, 75, 1235-1243.	3.2	24
226	Structural Characterization of N-Protonated Amides: Regioselective N-Activation of Medium-Bridged Twisted Lactams. Journal of the American Chemical Society, 2010, 132, 8836-8837.	13.7	46
227	Proximity Effects in Nucleophilic Addition Reactions to Medium-Bridged Twisted Lactams: Remarkably Stable Tetrahedral Intermediates. Journal of the American Chemical Society, 2010, 132, 2078-2084.	13.7	42
228	Synthesis, Structural Analysis, and Reactivity of Bridged Orthoamides by Intramolecular Schmidt Reaction. Journal of the American Chemical Society, 2010, 132, 2530-2531.	13.7	21
229	Coreyâ^'Chaykovsky Epoxidation of Twisted Amides: Synthesis and Reactivity of Bridged Spiro-epoxyamines. Journal of the American Chemical Society, 2009, 131, 13246-13247.	13.7	35
230	Direct Synthesis of Medium-Bridged Twisted Amides via a Transannular Cyclization Strategy. Organic Letters, 2009, 11, 3878-3881.	4.6	27
231	Stability of Medium-Bridged Twisted Amides in Aqueous Solutions. Journal of Organic Chemistry, 2009, 74, 1869-1875.	3.2	40
232	Cationâ°'n Control of Regiochemistry of Intramolecular Schmidt Reactions en Route to Bridged Bicyclic Lactams. Organic Letters, 2009, 11, 4386-4389.	4.6	24
233	Synthesis and rearrangement of a bridged thioamide. Chemical Communications, 2009, , 7122.	4.1	34
234	Chemoselective Transamidation of Thioamides by Transitionâ€Metalâ€Free N–C(S) Transacylation. Angewandte Chemie, 0, , .	2.0	2

#	Article	lF	CITATIONS
235	Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N–C(O) Activation via Amideâ€toâ€Acyl lodide Reâ€Routing. Angewandte Chemie, 0, , .	2.0	3