Dimitrios Zarpalas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7013023/publications.pdf

Version: 2024-02-01

39 papers 1,083 citations

623734 14 h-index 25 g-index

40 all docs 40 docs citations

40 times ranked

1008 citing authors

#	Article	IF	CITATIONS
1	Real-Time, Full 3-D Reconstruction of Moving Foreground Objects From Multiple Consumer Depth Cameras. IEEE Transactions on Multimedia, 2013, 15, 339-358.	7.2	143
2	Deep Learning on Multi Sensor Data for Counter UAV Applicationsâ€"A Systematic Review. Sensors, 2019, 19, 4837.	3.8	115
3	OmniDepth: Dense Depth Estimation forÂlndoors Spherical Panoramas. Lecture Notes in Computer Science, 2018, , 453-471.	1.3	105
4	Motion analysis: Action detection, recognition and evaluation based on motion capture data. Pattern Recognition, 2018, 76, 612-622.	8.1	73
5	An Edge-to-Cloud Virtualized Multimedia Service Platform for 5G Networks. IEEE Transactions on Broadcasting, 2019, 65, 369-380.	3.2	65
6	Spherical View Synthesis for Self-Supervised 360 \hat{A}° Depth Estimation. , 2019, , .		62
7	Drone vs. Bird Detection: Deep Learning Algorithms and Results from a Grand Challenge. Sensors, 2021, 21, 2824.	3 . 8	56
8	An Integrated Platform for Live 3D Human Reconstruction and Motion Capturing. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27, 798-813.	8.3	52
9	Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning. Neuroinformatics, 2019, 17, 563-582.	2.8	51
10	Does Deep Super-Resolution Enhance UAV Detection?., 2019,,.		32
11	HUMAN4D: A Human-Centric Multimodal Dataset for Motions and Immersive Media. IEEE Access, 2020, 8,		
	176241-176262.	4.2	28
12		3.2	28
12	Quality of Experience for 3-D Immersive Media Streaming. IEEE Transactions on Broadcasting, 2018, 64,		
	Quality of Experience for 3-D Immersive Media Streaming. IEEE Transactions on Broadcasting, 2018, 64, 379-391. Toward Real-Time and Efficient Compression of Human Time-Varying Meshes. IEEE Transactions on	3.2	27
13	Quality of Experience for 3-D Immersive Media Streaming. IEEE Transactions on Broadcasting, 2018, 64, 379-391. Toward Real-Time and Efficient Compression of Human Time-Varying Meshes. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24, 2099-2116.	3.2	27 26
13	Quality of Experience for 3-D Immersive Media Streaming. IEEE Transactions on Broadcasting, 2018, 64, 379-391. Toward Real-Time and Efficient Compression of Human Time-Varying Meshes. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24, 2099-2116. Self-Supervised Deep Depth Denoising., 2019,,	3.2	27 26 22
13 14 15	Quality of Experience for 3-D Immersive Media Streaming. IEEE Transactions on Broadcasting, 2018, 64, 379-391. Toward Real-Time and Efficient Compression of Human Time-Varying Meshes. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24, 2099-2116. Self-Supervised Deep Depth Denoising., 2019,,	3.2	27 26 22 19

#	Article	IF	CITATIONS
19	Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model. IEEE Journal of Translational Engineering in Health and Medicine, 2014, 2, 1-16.	3.7	16
20	DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors. Sensors, 2019, 19, 282.	3.8	16
21	Benchmarking Open-Source Static 3D Mesh Codecs for Immersive Media Interactive Live Streaming. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 190-203.	3.6	16
22	DeMoCap: Low-Cost Marker-Based Motion Capture. International Journal of Computer Vision, 2021, 129, 3338-3366.	15.6	14
23	Fast deformable model-based human performance capture and FVV using consumer-grade RGB-D sensors. Pattern Recognition, 2018, 79, 260-278.	8.1	11
24	360° Surface Regression with a Hyper-Sphere Loss. , 2019, , .		10
25	Gradient-Based Reliability Maps for ACM-Based Segmentation of Hippocampus. IEEE Transactions on Biomedical Engineering, 2014, 61, 1015-1026.	4.2	9
26	Augmented VR., 2018,,.		9
27	Volume-of-Interest Aware Deep Neural Networks for Rapid Chest CT-Based COVID-19 Patient Risk Assessment. International Journal of Environmental Research and Public Health, 2021, 18, 2842.	2.6	7
28	Single-shot cuboids: Geodesics-based end-to-end Manhattan aligned layout estimation from spherical panoramas. Image and Vision Computing, 2021, 110, 104160.	4.5	7
29	Serverless streaming for emerging media: towards 5G network-driven cost optimization. Multimedia Tools and Applications, 2022, 81, 12211-12250.	3.9	6
30	Hybrid Skip: A Biologically Inspired Skip Connection for the UNet Architecture. IEEE Access, 2022, 10, 53928-53939.	4.2	5
31	A System Architecture for Live Immersive 3D-Media Transcoding Over 5G Networks. , 2018, , .		4
32	Space Wars: An AugmentedVR Game. Lecture Notes in Computer Science, 2019, , 566-570.	1.3	4
33	Dynamic adaptive mesh streaming for real-time 3D teleimmersion. , 2015, , .		3
34	Deep Soft Procrustes for Markerless Volumetric Sensor Alignment. , 2020, , .		3
35	A Survey of Deep Learning-Based Image Restoration Methods for Enhancing Situational Awareness at Disaster Sites: The Cases of Rain, Snow and Haze. Sensors, 2022, 22, 4707.	3.8	3
36	Monocular spherical depth estimation with explicitly connected weak layout cues. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 269-285.	11.1	2

#	Article	IF	CITATIONS
37	Xr360: A Toolkit for Mixed 360 and 3d Productions. , 2020, , .		1
38	Zeroth-order optimizer benchmarking for 3D performance capture. , 2021, , .		1
39	Deep Soft Procrustes for Markerless Volumetric Sensor Alignment. , 2020, , .		O