Wolfgang LA¶scher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7012501/publications.pdf

Version: 2024-02-01

627 papers 42,755 citations

100 h-index 170 g-index

659 all docs 659 docs citations

659 times ranked

22797 citing authors

#	Article	IF	Citations
1	The neurobiology of antiepileptic drugs. Nature Reviews Neuroscience, 2004, 5, 553-564.	10.2	1,044
2	Drug resistance in brain diseases and the role of drug efflux transporters. Nature Reviews Neuroscience, 2005, 6, 591-602.	10.2	804
3	Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure: the Journal of the British Epilepsy Association, 2011, 20, 359-368.	2.0	749
4	Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Research, 1988, 2, 145-181.	1.6	738
5	Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx, 2005, 2, 86-98.	6.0	715
6	The Blood-Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses. Clinical Cancer Research, 2007, 13, 1663-1674.	7.0	601
7	Basic Pharmacology of Valproate. CNS Drugs, 2002, 16, 669-694.	5.9	556
8	Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Progress in Neurobiology, 2005, 76, 22-76.	5.7	544
9	New avenues for anti-epileptic drug discovery and development. Nature Reviews Drug Discovery, 2013, 12, 757-776.	46.4	506
10	Modern antiepileptic drug development has failed to deliver: Ways out of the current dilemma. Epilepsia, 2011, 52, 657-678.	5.1	472
11	Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurology, The, 2017, 16, 976-986.	10.2	472
12	Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Research, 2002, 50, 105-123.	1.6	469
13	Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Progress in Neurobiology, 1999, 58, 31-59.	5.7	468
14	Drug Resistance in Epilepsy: Putative Neurobiologic and Clinical Mechanisms. Epilepsia, 2005, 46, 858-877.	5.1	423
15	The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Medicine, 2004, 10, 685-692.	30.7	416
16	Role of Multidrug Transporters in Pharmacoresistance to Antiepileptic Drugs. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 7-14.	2.5	374
17	Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacological Reviews, 2020, 72, 606-638.	16.0	360
18	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Research, 1991, 8, 171-189.	1.6	349

#	Article	IF	CITATIONS
19	Infections, inflammation and epilepsy. Acta Neuropathologica, 2016, 131, 211-234.	7.7	348
20	Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and Translational Research. Pharmacological Reviews, 2010, 62, 668-700.	16.0	343
21	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Research, 1991, 8, 79-94.	1.6	296
22	Advances in the development of biomarkers for epilepsy. Lancet Neurology, The, 2016, 15, 843-856.	10.2	283
23	THE ROLE OF THE PIRIFORM CORTEX IN KINDLING. Progress in Neurobiology, 1996, 50, 427-481.	5.7	271
24	Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology, 2008, 55, 1364-1375.	4.1	271
25	Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochemical Research, 2017, 42, 1873-1888.	3.3	250
26	Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb LO59) in the kindling model of temporal lobe epilepsy. Journal of Pharmacology and Experimental Therapeutics, 1998, 284, 474-9.	2.5	247
27	Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. European Journal of Pharmacology, 1993, 232, 147-158.	3.5	244
28	Animal models of intractable epilepsy. Progress in Neurobiology, 1997, 53, 239-258.	5.7	239
29	Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022780.	6.2	233
30	D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Research, 1996, 23, 211-223.	1.6	232
31	Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology, 2013, 69, 62-74.	4.1	232
32	P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats. Neuroscience Letters, 2002, 327, 173-176.	2.1	227
33	Functional Inactivation of a Fraction of Excitatory Synapses in Mice Deficient for the Active Zone Protein Bassoon. Neuron, 2003, 37, 787-800.	8.1	226
34	The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia, 2009, 50, 1-23.	5.1	226
35	Multidrug Resistance Protein MRP2 Contributes to Blood-Brain Barrier Function and Restricts Antiepileptic Drug Activity. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 124-131.	2.5	221
36	Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia, 2012, 53, 571-582.	5.1	219

#	Article	IF	Citations
37	Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology, 2007, 52, 333-346.	4.1	218
38	Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation?. Epilepsy Research, 1994, 17, 95-134.	1.6	216
39	New visions in the pharmacology of anticonvulsion. European Journal of Pharmacology, 1998, 342, 1-13.	3.5	214
40	Experimental and Clinical Evidence for Loss of Effect (Tolerance) during Prolonged Treatment with Antiepileptic Drugs. Epilepsia, 2006, 47, 1253-1284.	5.1	206
41	Commonalities in epileptogenic processes from different acute brain insults: Do they translate?. Epilepsia, 2018, 59, 37-66.	5.1	206
42	The multidrug transporter hypothesis of drug resistance in epilepsy: Proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 24, 202-211.	4.4	201
43	P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. NeuroReport, 2001, 12, 3557-3560.	1.2	197
44	Anticonvulsant Effects of Transcranial Direct-current Stimulation (tDCS) in the Rat Cortical Ramp Model of Focal Epilepsy. Epilepsia, 2006, 47, 1216-1224.	5.1	194
45	N-methyl-d-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience, 2003, 118, 727-740.	2.3	192
46	In Vivo Evidence for Pâ€Glycoprotein–Mediated Transport of Phenytoin at the Blood–Brain Barrier of Rats. Epilepsia, 2001, 42, 1231-1240.	5.1	188
47	Current status and future directions in the pharmacotherapy of epilepsy. Trends in Pharmacological Sciences, 2002, 23, 113-118.	8.7	186
48	Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neuroscience Letters, 1991, 128, 150-154.	2.1	182
49	Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Experimental Neurology, 2007, 207, 329-349.	4.1	179
50	Repeated low-dose treatment of rats with pilocarpine: low mortality but high proportion of rats developing epilepsy. Epilepsy Research, 2001, 46, 111-119.	1.6	171
51	Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Progress in Neurobiology, 1998, 54, 721-741.	5.7	163
52	The behavioural effects of MK-801 in rats: involvement of dopaminergic, serotonergic and noradrenergic systems. European Journal of Pharmacology, 1992, 215, 199-208.	3.5	162
53	Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain, 2005, 128, 1358-1368.	7.6	162
54	Is amygdala kindling in rats a model for drug-resistant partial epilepsy?. Experimental Neurology, 1986, 93, 211-226.	4.1	160

#	Article	IF	Citations
55	Seizure Recurrence after Planned Discontinuation of Antiepileptic Drugs in Seizure-free Patients after Epilepsy Surgery: A Review of Current Clinical Experience. Epilepsia, 2004, 45, 179-186.	5.1	159
56	Disease-Modifying Effects of Phenobarbital and the NKCC1 Inhibitor Bumetanide in the Pilocarpine Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2010, 30, 8602-8612.	3.6	159
57	Valproic Acid Is Not a Substrate for P-glycoprotein or Multidrug Resistance Proteins 1 and 2 in a Number of in Vitro and in Vivo Transport Assays. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 331-343.	2.5	155
58	Pharmacological blockade of IL- $1\hat{l}^2$ /IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiology of Disease, 2013, 59, 183-193.	4.4	154
59	The receptor antagonist MK-801 induces increases in dopamine and serotonin metabolism in several brain regions of rats. Neuroscience Letters, 1991, 128, 191-194.	2.1	151
60	Comparison of Brain Extracellular Fluid, Brain Tissue, Cerebrospinal Fluid, and Serum Concentrations of Antiepileptic Drugs Measured Intraoperatively in Patients with Intractable Epilepsy. Epilepsia, 2006, 47, 681-694.	5.1	151
61	Effects of the Novel Antiepileptic Drug Levetiracetam on Spontaneous Recurrent Seizures in the Rat Pilocarpine Model of Temporal Lobe Epilepsy. Epilepsia, 2002, 43, 350-357.	5.1	148
62	How theories evolved concerning the mechanism of action of barbiturates. Epilepsia, 2012, 53, 12-25.	5.1	146
63	Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Experimental Neurology, 2009, 219, 284-297.	4.1	145
64	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Research, 1991, 9, 1-10.	1.6	141
65	Deficit of Striatal Parvalbumin-Reactive GABAergic Interneurons and Decreased Basal Ganglia Output in a Genetic Rodent Model of Idiopathic Paroxysmal Dystonia. Journal of Neuroscience, 2000, 20, 7052-7058.	3.6	141
66	Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochemical Research, 1993, 18, 485-502.	3.3	140
67	Treatment with valproate after status epilepticus: Effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology, 2006, 51, 789-804.	4.1	140
68	Pharmacological evaluation of various metabolites and analogues of valproic acidAnticonvulsant and toxic potencies in mice. Neuropharmacology, 1985, 24, 427-435.	4.1	136
69	GABA in plasma and cerebrospinal fluid of different species. Effects of ?-acetylenic GABA, ?-vinyl GABA and sodium valproate. Journal of Neurochemistry, 1979, 32, 1587-1591.	3.9	133
70	Do ATP-Binding Cassette Transporters Cause Pharmacoresistance in Epilepsy? Problems and Approaches in Determining which Antiepileptic Drugs are Affected. Current Pharmaceutical Design, 2011, 17, 2808-2828.	1.9	132
71	The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Experimental Neurology, 2010, 224, 219-233.	4.1	131
72	Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58, 27-38.	5.1	131

#	Article	IF	CITATIONS
73	Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Research, 2003, 55, 83-103.	1.6	130
74	Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both?. International Journal of Molecular Sciences, 2020, 21, 591.	4.1	130
75	Valproic Acid and Metabolites: Pharmacological and Toxicological Studies. Epilepsia, 1984, 25, S14-22.	5.1	129
76	Behavioral alterations in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Experimental Neurology, 2008, 213, 71-83.	4.1	129
77	Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Research, 2016, 126, 157-184.	1.6	127
78	Influence of inhibitors of the high affinity GABA uptake on seizure thresholds in mice. Neuropharmacology, 1979, 18, 581-590.	4.1	126
79	Models for Epilepsy and Epileptogenesis: Report from the NIH Workshop, Bethesda, Maryland. Epilepsia, 2002, 43, 1410-1420.	5.1	124
80	Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures. Neuroscience, 2004, 123, 751-759.	2.3	121
81	Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs, 2016, 30, 1055-1077.	5.9	119
82	Valproate induced changes in GABA metabolism at the subcellular level. Biochemical Pharmacology, 1981, 30, 1364-1366.	4.4	117
83	Pathophysiology of idiopathic dystonia: findings from genetic animal models. Progress in Neurobiology, 1998, 54, 633-677.	5.7	117
84	The Pharmacokinetics of Antiepileptic Drugs in Rats: Consequences for Maintaining Effective Drug Levels during Prolonged Drug Administration in Rat Models of Epilepsy. Epilepsia, 2007, 48, 1245-1258.	5.1	116
85	International Veterinary Epilepsy Task Force consensus proposal: medical treatment of canine epilepsy in Europe. BMC Veterinary Research, 2015, 11, 176.	1.9	115
86	New horizons in the development of antiepileptic drugs. Epilepsy Research, 2002, 50, 3-16.	1.6	112
87	Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. European Journal of Pharmacology, 2009, 610, 1-11.	3.5	112
88	Antagonism of N-methyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. European Journal of Pharmacology, 1985, 108, 273-280.	3.5	111
89	Seizure suppression in kindling epilepsy by grafts of fetal GABAergic neurons in rat substantia nigra. Journal of Neuroscience Research, 1998, 51, 196-209.	2.9	111
90	Theszmutant hamster: A genetic model of epilepsy or of paroxysmal dystonia?. Movement Disorders, 1989, 4, 219-232.	3.9	109

#	Article	IF	CITATIONS
91	Pgp-Mediated Interaction Between (R)-[11C]Verapamil and Tariquidar at the Human Blood–Brain Barrier: A Comparison With Rat Data. Clinical Pharmacology and Therapeutics, 2012, 91, 227-233.	4.7	108
92	The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs, 2021, 35, 935-963.	5.9	108
93	Studies on the involvement of dopamine D-1 and D-2 receptors in the anticonvulsant effect of dopamine agonists in various rodent models of epilepsy. European Journal of Pharmacology, 1986, 128, 55-65.	3.5	107
94	Pharmacological characterization of phenytoin-resistant amygdala-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy Research, 1993, 15, 207-219.	1.6	106
95	Immunohistochemical Localization of P-glycoprotein in Rat Brain and Detection of Its Increased Expression by Seizures Are Sensitive to Fixation and Staining Variables. Journal of Histochemistry and Cytochemistry, 2005, 53, 517-531.	2.5	106
96	Evidence for impaired GABAergic activity in the substantia nigra of amygdaloid kindled rats. Brain Research, 1985, 339, 146-150.	2.2	104
97	Resistance to antiepileptic drugs and expression of P-glycoprotein in two rat models of status epilepticus. Epilepsy Research, 2008, 82, 70-85.	1.6	104
98	Antiepileptic drug resistant rats differ from drug responsive rats in GABAA receptor subunit expression in a model of temporal lobe epilepsy. Neurobiology of Disease, 2008, 31, 169-187.	4.4	104
99	Tariquidar-Induced P-Glycoprotein Inhibition at the Rat Blood–Brain Barrier Studied with (<i>R</i>)- ¹¹ C-Verapamil and PET. Journal of Nuclear Medicine, 2008, 49, 1328-1335.	5.0	104
100	Transient increase of P-glycoprotein expression in endothelium and parenchyma of limbic brain regions in the kainate model of temporal lobe epilepsy. Epilepsy Research, 2002, 51, 257-268.	1.6	103
101	Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats. Teratology, 1994, 50, 229-237.	1.6	102
102	Epilepsy induced by extended amygdala-kindling in rats: lack of clear association between development of spontaneous seizures and neuronal damage. Epilepsy Research, 2004, 62, 135-156.	1.6	102
103	Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R) -[11C]verapamil PET. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 942-953.	6.4	102
104	Animal Models of Limbic Epilepsies: What Can They Tell Us?. Brain Pathology, 2002, 12, 240-256.	4.1	100
105	A Pilot Study to Assess the Efficacy of Tariquidar to Inhibit P-glycoprotein at the Human Blood–Brain Barrier with (<i>R</i>)- ¹¹ C-Verapamil and PET. Journal of Nuclear Medicine, 2009, 50, 1954-1961.	5.0	99
106	Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology, 2011, 77, 904-910.	1.1	99
107	Kindling as a model of drug-resistant partial epilepsy: selection of phenytoin-resistant and nonresistant rats. Journal of Pharmacology and Experimental Therapeutics, 1991, 258, 483-9.	2.5	98
108	Effects of Weak Alternating Magnetic Fields on Nocturnal Melatonin Production and Mammary Carcinogenesis in Rats. Oncology, 1994, 51, 288-295.	1.9	97

#	Article	IF	CITATIONS
109	Therapeutic efficacy of phenobarbital and primidone in canine epilepsy: a comparison. Journal of Veterinary Pharmacology and Therapeutics, 1985, 8, 113-119.	1.3	96
110	A novel prodrugâ€based strategy to increase effects of bumetanide in epilepsy. Annals of Neurology, 2014, 75, 550-562.	5.3	96
111	Uncontrolled epilepsy following discontinuation of antiepileptic drugs in seizure-free patients: a review of current clinical experience. Acta Neurologica Scandinavica, 2005, 111, 291-300.	2.1	94
112	Epileptic seizures and hippocampal damage after cuprizone-induced demyelination in C57BL/6 mice. Experimental Neurology, 2008, 210, 308-321.	4.1	94
113	New Developments in Antiepileptic Drug Resistance: An Integrative View. Epilepsy Currents, 2009, 9, 47-52.	0.8	94
114	The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology, 2020, 167, 107605.	4.1	94
115	Effect of Inhibitors of GABA Aminotransferase on the Metabolism of GABA in Brain Tissue and Synaptosomal Fractions. Journal of Neurochemistry, 1981, 36, 1521-1527.	3.9	93
116	Further evidence for abnormal GABAergic circuits in amygdala-kindled rats. Brain Research, 1987, 420, 385-390.	2.2	93
117	Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and gamma-aminobutyric acid (GABA) metabolism in the mouse. Journal of Pharmacology and Experimental Therapeutics, 1982, 220, 654-9.	2.5	92
118	Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology, 2010, 58, 1019-1032.	4.1	91
119	Serum protein binding and pharmacokinetics of valproate in man, dog, rat and mouse. Journal of Pharmacology and Experimental Therapeutics, 1978, 204, 255-61.	2.5	91
120	Effect of convulsant and anticonvulsant agents on level and metabolism of ?-aminobutyric acid in mouse brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1977, 296, 263-269.	3.0	90
121	Phenytoin potently increases the threshold for focal seizures in amygdala-kindled rats. Neuropharmacology, 1990, 29, 845-851.	4.1	90
122	Lack of changes in seizure susceptibility during the estrous cycle in kindled rats. Epilepsy Research, 1992, 13, 199-204.	1.6	90
123	Differences in the expression of endogenous efflux transporters in <i>MDR1</i> àê€transfected versus wildtype cell lines affect Pâ€glycoprotein mediated drug transport. British Journal of Pharmacology, 2010, 160, 1453-1463.	5.4	90
124	Low Doses of NMDA Receptor Antagonists Synergistically Increase the Anticonvulsant Effect of the AMPA Receptor Antagonist NBQX in the Kindling Model of Epilepsy. European Journal of Neuroscience, 1993, 5, 1545-1550.	2.6	89
125	A histopathological study on alterations in DMBA-induced mammary carcinogenesis in rats with 50 Hz, $100\hat{l}$ / $\!\!4$ T magnetic field exposure. Carcinogenesis, 1995 , 16 , 119 - 125 .	2.8	89
126	Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats. Epilepsy Research, 2004, 58, 85-91.	1.6	89

#	Article	IF	CITATIONS
127	Striking Differences in Individual Anticonvulsant Response to Phenobarbital in Rats with Spontaneous Seizures after Status Epilepticus. Epilepsia, 2004, 45, 1488-1497.	5.1	87
128	Inter-individual variation in the effect of antiepileptic drugs in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology, 2015, 90, 53-62.	4.1	87
129	Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. European Journal of Pharmacology, 1984, 99, 211-218.	3.5	86
130	Cerebrospinal Fluid γâ€Aminobutyric Acid Levels in Children with Different Types of Epilepsy: Effect of Anticonvulsant Treatment. Epilepsia, 1985, 26, 314-319.	5.1	86
131	Dose-dependent anticonvulsant and proconvulsant effects of nitric oxide synthase inhibitors on seizure threshold in a cortical stimulation model in rats. European Journal of Pharmacology, 1995, 274, 73-81.	3.5	86
132	Issues related to development of antiepileptogenic therapies. Epilepsia, 2013, 54, 35-43.	5.1	86
133	2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs. Journal of Veterinary Internal Medicine, 2016, 30, 477-490.	1.6	85
134	Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology, 1978, 17, 637-642.	4.1	84
135	Genetically Engineered GABA-Producing Cells Demonstrate Anticonvulsant Effects and Long-Term Transgene Expression When Transplanted into the Central Piriform Cortex of Rats. Experimental Neurology, 2002, 176, 183-192.	4.1	84
136	Comparative assay of anticonvulsant and toxic potencies of sixteen GABAmimetic drugs. Neuropharmacology, 1982, 21, 803-810.	4.1	83
137	Delayed Sclerosis, Neuroprotection, and Limbic Epileptogenesis After Status Epilepticus in the Rat. Epilepsia, 2002, 43, 86-95.	5.1	83
138	Increased expression of the multidrug transporter P-glycoprotein in limbic brain regions after amygdala-kindled seizures in rats. Epilepsy Research, 2004, 58, 67-79.	1.6	83
139	Effects of magnetic fields on mammary tumor development induced by 7, 12-dimethylbenz(a)anthracene in rats. Bioelectromagnetics, 1993, 14, 131-143.	1.6	82
140	Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia, 2012, 53, 1868-1876.	5.1	82
141	Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia, 2017, 58, 39-47.	5.1	82
142	Animal studies on the role of 50/60-hertz magnetic fields in carcinogenesis. Life Sciences, 1994, 54, 1531-1543.	4.3	81
143	A comparative study of the pharmacology of inhibitors of GABA-metabolism. Naunyn-Schmiedeberg's Archives of Pharmacology, 1980, 315, 119-128.	3.0	80
144	The intrahippocampal kainate model of temporal lobe epilepsy revisited: Epileptogenesis, behavioral and cognitive alterations, pharmacological response, and hippoccampal damage in epileptic rats. Epilepsy Research, 2013, 103, 135-152.	1.6	80

#	Article	IF	CITATIONS
145	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VI. Seasonal influences on maximal electroshock and pentylenetetrazol seizure thresholds. Epilepsy Research, 1996, 25, 3-10.	1.6	79
146	Neurogenesis in the adult rat piriform cortex. NeuroReport, 2006, 17, 571-574.	1.2	79
147	Tariquidar and Elacridar Are Dose-Dependently Transported by P-Glycoprotein and Bcrp at the Blood-Brain Barrier: A Small-Animal Positron Emission Tomography and In Vitro Study. Drug Metabolism and Disposition, 2013, 41, 754-762.	3.3	79
148	Exposure of DMBA-treated female rats in a 50-Hz, $50\hat{l}$ /4Tesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation. Carcinogenesis, 1996, 17, 903-910.	2.8	78
149	Differences in sensitivity to the convulsant pilocarpine in substrains and sublines of C57BL/6 mice. Genes, Brain and Behavior, 2009, 8, 481-492.	2.2	78
150	Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain, Behavior, and Immunity, 2018, 74, 186-204.	4.1	77
151	Anticonvulsant and proconvulsant effects of inhibitors of GABA degradation in the amygdala-kindling model. European Journal of Pharmacology, 1989, 163, 1-14.	3.5	76
152	Valproate enhances GABA turnover in the substantia nigra. Brain Research, 1989, 501, 198-203.	2.2	76
153	Evaluation of CPP, a selective NMDA antagonist, in various rodent models of epilepsy. Comparison with other NMDA antagonists, and with diazepam and phenobarbital. European Journal of Pharmacology, 1988, 152, 9-17.	3.5	75
154	Comparison of competitive and uncompetitive NMDA receptor antagonists with regard to monoaminergic neuronal activity and behavioural effects in rats. European Journal of Pharmacology, 1993, 242, 263-274.	3.5	75
155	Cell and gene therapies in epilepsy – promising avenues or blind alleys?. Trends in Neurosciences, 2008, 31, 62-73.	8.6	75
156	Pilocarpine vs. lithium–pilocarpine for induction of status epilepticus in mice: Development of spontaneous seizures, behavioral alterations and neuronal damage. European Journal of Pharmacology, 2009, 619, 15-24.	3.5	75
157	Drug Transporters in the Epileptic Brain. Epilepsia, 2007, 48, 8-13.	5.1	74
158	Searching for the Ideal Antiepileptogenic Agent in Experimental Models: Single Treatment Versus Combinatorial Treatment Strategies. Neurotherapeutics, 2014, 11, 373-384.	4.4	74
159	Susceptibility of different cell layers of the anterior and posterior part of the piriform cortex to electrical stimulation and kindling: comparison with the basolateral amygdala and "area tempestasâ€. Neuroscience, 1995, 66, 265-276.	2.3	73
160	Synthesis and in vivo evaluation of $[11C]$ tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor. Bioorganic and Medicinal Chemistry, 2010, 18, 5489-5497.	3.0	73
161	In vivo exposure of rats to a weak alternating magnetic field increases ornithine decarboxylase activity in the mammary gland by a similar extent as the carcinogen DMBA. Cancer Letters, 1995, 90, 207-214.	7.2	72
162	Mechanisms of drug resistance in status epilepticus. Epilepsia, 2007, 48, 74-77.	5.1	72

#	Article	IF	CITATIONS
163	Kindling Increases the Sensitivity of Rats to Adverse Effects of Certain Antiepileptic Drugs. Epilepsia, 1995, 36, 763-771.	5.1	71
164	Anticonvulsant efficacy of gabapentin and levetiracetam in phenytoin-resistant kindled rats. Epilepsy Research, 2000, 40, 63-77.	1.6	71
165	Prophylactic treatment with levetiracetam after status epilepticus: Lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology, 2007, 53, 207-221.	4.1	71
166	Synthesis and Small-Animal Positron Emission Tomography Evaluation of [11C]-Elacridar As a Radiotracer to Assess the Distribution of P-Glycoprotein at the Bloodâ^Brain Barrier. Journal of Medicinal Chemistry, 2009, 52, 6073-6082.	6.4	71
167	The novel antiepileptic drug levetiracetam (ucb L059) induces alterations in GABA metabolism and turnover in discrete areas of rat brain and reduces neuronal activity in substantia nigra pars reticulata. Brain Research, 1996, 735, 208-216.	2.2	70
168	Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. Neuropharmacology, 2008, 54, 1006-1016.	4.1	70
169	Effects of pharmacological manipulation of GABAergic neurotransmission in a new mutant hamster model of paroxysmal dystonia. European Journal of Pharmacology, 1991, 192, 207-219.	3.5	69
170	Finding a better drug for epilepsy: Preclinical screening strategies and experimental trial design. Epilepsia, 2012, 53, 1860-1867.	5.1	69
171	Association of Piriform Cortex Resection With Surgical Outcomes in Patients With Temporal Lobe Epilepsy. JAMA Neurology, 2019, 76, 690.	9.0	69
172	Multidrug resistance-associated protein is involved in the regulation of extracellular levels of phenytoin in the brain. NeuroReport, 2001, 12, 2387-2389.	1.2	68
173	The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2). Neuropharmacology, 2015, 93, 7-14.	4.1	68
174	Significant effects of sex, strain, and anesthesia in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Epilepsy and Behavior, 2016, 55, 47-56.	1.7	68
175	Differential effects of vigabatrin, ?-acetylenic GABA, aminooxyacetic acid, and valproate on levels of various amino acids in rat brain regions and plasma. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 270-8.	3.0	67
176	Anticonvulsant and proconvulsant effects of tramadol, its enantiomers and its M1 metabolite in the rat kindling model of epilepsy. British Journal of Pharmacology, 2000, 131, 203-212.	5.4	67
177	Expression of the Multidrug Transporter P-glycoprotein in Brain Capillary Endothelial Cells and Brain Parenchyma of Amygdala-kindledâ€∫Rats. Epilepsia, 2002, 43, 675-684.	5.1	67
178	Kindling-induced overexpression of Homer $\hat{a} \in f$ 1 A and its functional implications for epileptogenesis. European Journal of Neuroscience, 2002, 16, 2157-2165.	2.6	67
179	Pharmacoresistance and expression of multidrug transporter P-glycoprotein in kindled rats. NeuroReport, 2004, 15, 1657-1661.	1.2	67
180	(R)-[11C]verapamil is selectively transported by murine and human P-glycoprotein at the blood–brain barrier, and not by MRP1 and BCRP. Nuclear Medicine and Biology, 2013, 40, 873-878.	0.6	67

#	Article	IF	CITATIONS
181	The enigma of the latent period in the development of symptomatic acquired epilepsy — Traditional view versus new concepts. Epilepsy and Behavior, 2015, 52, 78-92.	1.7	67
182	In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat. Biochemical Pharmacology, 1985, 34, 1747-1756.	4.4	66
183	Effective termination of status epilepticus by rational polypharmacy in the lithium–pilocarpine model in rats: Window of opportunity to prevent epilepsy and prediction of epilepsy by biomarkers. Neurobiology of Disease, 2015, 75, 78-90.	4.4	66
184	Brain Access and Anticonvulsant Efficacy of Carbamazepine, Lamotrigine, and Felbamate in ABCC2/MRP2-Deficient TR- Rats. Epilepsia, 2003, 44, 1479-1486.	5.1	65
185	Effects of the Novel Antiepileptic Drug Lacosamide on the Development of Amygdala Kindling in Rats. Epilepsia, 2006, 47, 1803-1809.	5.1	65
186	Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. Journal of Experimental Medicine, 2015, 212, 1529-1549.	8.5	65
187	Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology, 2017, 117, 182-194.	4.1	65
188	Anticonvulsant action of the beta-carboline abecarnil: studies in rodents and baboon, Papio papio. Journal of Pharmacology and Experimental Therapeutics, 1990, 253, 344-52.	2.5	65
189	Responses to NMDA receptor antagonists altered by epileptogenesis. Trends in Pharmacological Sciences, 1991, 12, 52.	8.7	64
190	The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120.	4.1	64
191	Aminooxyacetic acid: Correlation between biochemical effects, anticonvulsant action and toxicity in mice. Biochemical Pharmacology, 1978, 27, 103-108.	4.4	63
192	Anticonvulsant efficacy of clonazepam and the \hat{l}^2 -carboline ZK 93423 during chronic treatment in amygdala-kindled rats. European Journal of Pharmacology, 1987, 143, 403-414.	3.5	63
193	Discovery and Preclinical Characterization of 5-[4,6-Bis({3-oxa-8-azabicyclo[3.2.1]octan-8-yl})-1,3,5-triazin-2-yl]-4-(difluoromethyl)pyridin-2-amine (PQR620), a Highly Potent and Selective mTORC1/2 Inhibitor for Cancer and Neurological Disorders. Journal of Medicinal Chemistry, 2018, 61, 10084-10105.	6.4	62
194	Effect of microinjections of \hat{l}^3 -vinyl GABA or isoniazid into substantia nigra on the development of amygdala kindling in rats. Experimental Neurology, 1987, 95, 622-638.	4.1	61
195	Immunocytochemical localization of GABA immunoreactivity in dentate granule cells of normal and kindled rats. Neuroscience Letters, 1996, 212, 41-44.	2.1	61
196	The Pharmacology of Imepitoin: The First Partial Benzodiazepine Receptor Agonist Developed for the Treatment of Epilepsy. CNS Drugs, 2014, 28, 29-43.	5.9	61
197	International veterinary epilepsy task force consensus proposal: outcome of therapeutic interventions in canine and feline epilepsy. BMC Veterinary Research, 2015, 11, 177.	1.9	61
198	Improved Method for Isolating Synaptosomes from 11 Regions of One Rat Brain: Electron Microscopic and Biochemical Characterization and Use in the Study of Drug Effects on Nerve Terminal ?-Aminobutyric Acid in Vivo. Journal of Neurochemistry, 1985, 45, 879-889.	3.9	60

#	Article	IF	CITATIONS
199	Use of Inhibitors of ?-Aminobutyric Acid (GABA) Transaminase for the Estimation of GABA Turnover in Various Brain Regions of Rats: A Reevaluation of Aminooxyacetic Acid. Journal of Neurochemistry, 1989, 53, 1737-1750.	3.9	60
200	Enhanced susceptibility to the GABA antagonist pentylenetetrazole during the latent period following a pilocarpine-induced status epilepticus in rats. Neuropharmacology, 2011, 60, 505-512.	4.1	60
201	Anticonvulsant effects of the glycine/NMDA receptor ligands <scp>d</scp> â€cycloserine and <scp>d</scp> â€serine but not Râ€(+)â€HAâ€966 in amygdalaâ€kindled rats. British Journal of Pharmacology, 19 112, 97-106.	9 4, 4	59
202	Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy. Epilepsy and Behavior, 2010, 19, 105-113.	1.7	59
203	Epilepsy after head injury in dogs: A natural model of posttraumatic epilepsy. Epilepsia, 2013, 54, 580-588.	5.1	59
204	Cetyl GABA: Effect on convulsant thresholds in mice and acute toxicity. Neuropharmacology, 1980, 19, 217-220.	4.1	58
205	Does prolonged implantation of depth electrodes predispose the brain to kindling?. Brain Research, 1995, 697, 197-204.	2.2	58
206	Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and GABAA receptor ligand binding in a model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 21, 633-646.	4.4	58
207	A Novel Positron Emission Tomography Imaging Protocol Identifies Seizure-Induced Regional Overactivity of P-Glycoprotein at the Blood-Brain Barrier. Journal of Neuroscience, 2011, 31, 8803-8811.	3.6	58
208	Kinetics of Penetration of Common Antiepileptic Drugs into Cerebrospinal Fluid. Epilepsia, 1984, 25, 346-352.	5.1	57
209	Effects of the nonâ€NMDA antagonists NBQX and the 2,3â€benzodiazepine GYKI 52466 on different seizure types in mice: comparison with diazepam and interactions with flumazenil. British Journal of Pharmacology, 1994, 113, 1349-1357.	5.4	57
210	The AMPA receptor antagonist NBQX exerts anti-seizure but not antiepileptogenic effects in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Neuropharmacology, 2015, 95, 234-242.	4.1	57
211	Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Experimental Neurology, 2016, 279, 57-74.	4.1	57
212	Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?. Epilepsia, 2020, 61, 359-386.	5.1	57
213	Strong induction of c-fos in the piriform cortex during focal seizures evoked from different limbic brain sites. Brain Research, 1995, 671, 338-344.	2.2	56
214	Quantitative autoradiography reveals regionally selective changes in dopamine D1 and D2 receptor binding in the genetically dystonic hamster. Neuroscience, 1996, 71, 927-936.	2.3	56
215	Animal Models of Epilepsy and Epileptic Seizures. Handbook of Experimental Pharmacology, 1999, , 19-62.	1.8	56
216	Anticonvulsant Efficacy of the Low-affinity Partial Benzodiazepine Receptor Agonist ELB 138 in a Dog Seizure Model and in Epileptic Dogs with Spontaneously Recurrent Seizures. Epilepsia, 2004, 45, 1228-1239.	5.1	56

#	Article	IF	Citations
217	Isoflurane prevents acquired epilepsy in rat models of temporal lobe epilepsy. Annals of Neurology, 2016, 80, 896-908.	5.3	56
218	High efficacy of rituximab for myasthenia gravis: a comprehensive nationwide study in Austria. Journal of Neurology, 2019, 266, 699-706.	3.6	56
219	VALPROIC ACID INCREASES Î ³ -AMINOBUTYRIC ACID IN CSF OF EPILEPTIC CHILDREN. Lancet, The, 1984, 324, 225.	13.7	55
220	Expression of the multidrug transporter MRP2 in the blood–brain barrier after pilocarpine-induced seizures in rats. Epilepsy Research, 2006, 69, 1-14.	1.6	55
221	The novel competitive N-methyl-D-aspartate (NMDA) antagonist CGP 37849 preferentially induces phencyclidine-like behavioral effects in kindled rats: attenuation by manipulation of dopamine, alpha-1 and serotonin1A receptors. Journal of Pharmacology and Experimental Therapeutics, 1991, 257, 1146-53.	2.5	55
222	Development of tolerance to the anticonvulsant effect of diazepam in amygdala-kindled rats. Experimental Neurology, 1985, 90, 373-384.	4.1	54
223	Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method: correlation between clinical response to vigabatrin and increase in plasma GABA. Epilepsy Research, 1993, 14, 245-255.	1.6	54
224	Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields1This is the last in a series of four papers, the first of which was published in Mutation Res. 387 (1997) pp. $165\hat{a}\in 171.1$. Mutation Research - Reviews in Mutation Research, 1998, 410, 185-220.	5.5	54
225	Altered spontaneous discharge rate and pattern of basal ganglia output neurons in the circling (ci2) rat mutant. Neuroscience, 2003, 118, 867-878.	2.3	54
226	Significant Differences in the Effects of Magnetic Field Exposure on 7,12-Dimethylbenz($\langle b \rangle \langle i \rangle a \langle i \rangle \langle b \rangle$) anthracene-Induced Mammary Carcinogenesis in Two Substrains of Sprague-Dawley Rats. Cancer Research, 2004, 64, 243-251.	0.9	54
227	The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy and Behavior, 2017, 73, 214-235.	1.7	54
228	Relationship Between GABA Concentrations in Cerebrospinal Fluid and Seizure Excitability. Journal of Neurochemistry, 1982, 38, 293-295.	3.9	53
229	The central piriform cortex: anatomical connections and anticonvulsant effect of gaba elevation in the kindling model. Neuroscience, 2004, 126, 727-741.	2.3	53
230	How to Explain Multidrug Resistance in Epilepsy?. Epilepsy Currents, 2005, 5, 107-112.	0.8	53
231	Transmitter amino acid levels in rat brain regions after amygdala-kindling or chronic electrode implantation without kindling: Evidence for a pro-kindling effect of prolonged electrode implantation. Neurochemical Research, 1993, 18, 775-781.	3.3	52
232	Animal Models of Drug-Resistant Epilepsy. Novartis Foundation Symposium, 2008, , 149-166.	1.1	52
233	Marked strain and substrain differences in induction of status epilepticus and subsequent development of neurodegeneration, epilepsy, and behavioral alterations in rats. Epilepsy Research, 2011, 96, 207-224.	1.6	52
234	Sucrose consumption test reveals pharmacoresistant depression-associated behavior in two mouse models of temporal lobe epilepsy. Experimental Neurology, 2015, 263, 263-271.	4.1	52

#	Article	IF	CITATIONS
235	Facets of Theiler's Murine Encephalomyelitis Virus-Induced Diseases: An Update. International Journal of Molecular Sciences, 2019, 20, 448.	4.1	52
236	Pharmacokinetics of antiâ€epileptic drugs in the dog: a review. Journal of Veterinary Pharmacology and Therapeutics, 1985, 8, 219-233.	1.3	51
237	Evaluation of the 5-hydroxytryptamine receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin in different rodent models of epilepsy. Neuroscience Letters, 1985, 60, 201-206.	2.1	51
238	Alterations in spontaneous single unit activity of striatal subdivisions during ontogenesis in mutant dystonic hamsters. Brain Research, 1999, 821, 277-285.	2.2	51
239	Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats. Neuropharmacology, 2002, 42, 107-116.	4.1	51
240	High seizure frequency prior to antiepileptic treatment is a predictor of pharmacoresistant epilepsy in a rat model of temporal lobe epilepsy. Epilepsia, 2010, 51, 89-97.	5.1	51
241	Clinical efficacy and safety of imepitoin in comparison with phenobarbital for the control of idiopathic epilepsy in dogs. Journal of Veterinary Pharmacology and Therapeutics, 2015, 38, 160-168.	1.3	51
242	Differences in Kindling Development in Seven Outbred and Inbred Rat Strains. Experimental Neurology, 1998, 154, 551-559.	4.1	50
243	Auditory and vestibular defects in the circling (ci2) rat mutant. European Journal of Neuroscience, 2001, 14, 1129-1142.	2.6	50
244	GABA in Cerebrospinal Fluid of Children with Febrile Convulsions. Epilepsia, 1981, 22, 697-702.	5.1	50
245	Perampanelâ€"new promise for refractory epilepsy?. Nature Reviews Neurology, 2012, 8, 661-662.	10.1	50
246	Pilot PET Study to Assess the Functional Interplay Between ABCB1 and ABCG2 at the Human Blood–Brain Barrier. Clinical Pharmacology and Therapeutics, 2016, 100, 131-141.	4.7	50
247	The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy. Science Advances, 2020, 6, .	10.3	50
248	Valproic acid in amygdala-kindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. Journal of Pharmacology and Experimental Therapeutics, 1989, 250, 1067-78.	2.5	50
249	Amygdala-kindling as a model for chronic efficacy studies on antiepileptic drugs: Experiments with carbamazepine. Neuropharmacology, 1989, 28, 599-610.	4.1	49
250	Linear relationship between flux density and tumor co-promoting effect of prolonged magnetic field exposure in a breast cancer model. Cancer Letters, 1995, 96, 175-180.	7.2	49
251	Development of Tolerance During Chronic Treatment of Kindled Rats With the Novel Antiepileptic Drug Levetiracetam. Epilepsia, 2000, 41, 1499-1506.	5.1	49
252	Hydantoin-Substituted 4,6-Dichloroindole-2-carboxylic Acids as Ligands with High Affinity for the Glycine Binding Site of the NMDA Receptor§. Journal of Medicinal Chemistry, 2003, 46, 64-73.	6.4	49

#	Article	IF	CITATIONS
253	Consequences of inhibition of bumetanide metabolism in rodents on brain penetration and effects of bumetanide in chronic models of epilepsy. European Journal of Neuroscience, 2014, 39, 673-687.	2.6	49
254	Single versus combinatorial therapies in status epilepticus: Novel data from preclinical models. Epilepsy and Behavior, 2015, 49, 20-25.	1.7	49
255	Relationship between drug-induced increases of GABA levels in discrete brain areas and different pharmacological effects in rats. Biochemical Pharmacology, 1984, 33, 1907-1914.	4.4	48
256	Comparison of drugs with different selectivity for central $\hat{l}\pm 1$ - and $\hat{l}\pm 2$ -adrenoceptors in animal models of epilepsy. Epilepsy Research, 1987, 1, 165-172.	1.6	48
257	Immunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior. Neuroscience, 1999, 89, 461-471.	2.3	48
258	The antiepileptic drug levetiracetam selectively modifies kindling-induced alterations in gene expression in the temporal lobe of rats. European Journal of Neuroscience, 2004, 19, 334-345.	2.6	48
259	The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide. European Journal of Pharmacology, 2015, 746, 167-173.	3.5	48
260	Resistance to Phenobarbital Extends to Phenytoin in a Rat Model of Temporal Lobe Epilepsy. Epilepsia, 2007, 48, 816-826.	5.1	47
261	Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8929-E8938.	7.1	47
262	Identification of Metabolites of Valproic Acid in Serum of Humans, Dog, Rat, and Mouse. Epilepsia, 1978, 19, 591-602.	5.1	46
263	Anticonvulsant and biochemical effects of inhibitors of gaba aminotransferase and valproic acid during subchronic treatment in mice. Biochemical Pharmacology, 1982, 31, 837-842.	4.4	46
264	Kindling from stimulation of a highly sensitive locus in the posterior part of the piriform cortex. Comparison with amygdala kindling and effects of antiepileptic drugs. Brain Research, 1991, 538, 196-202.	2.2	46
265	A Novel PET Protocol for Visualization of Breast Cancer Resistance Protein Function at the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 2002-2011.	4.3	46
266	Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology, 2016, 109, 183-195.	4.1	46
267	Antidystonic effects of the NMDA receptor antagonists memantine, MK-801 and CGP 37849 in a mutant hamster model of paroxysmal dystonia. Neuroscience Letters, 1991, 133, 57-60.	2.1	45
268	Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Neuroscience, 2006, 141, 2177-2194.	2.3	45
269	Blood–Brain Barrier Leakage during Early Epileptogenesis Is Associated with Rapid Remodeling of the Neurovascular Unit. ENeuro, 2018, 5, ENEURO.0123-18.2018.	1.9	45
270	Abnormalities in Amino Acid Neurotransmitters in Discrete Brain Regions of Genetically Dystonic Hamsters. Journal of Neurochemistry, 1992, 59, 689-694.	3.9	44

#	Article	IF	CITATIONS
271	Epileptogenesis and rational therapeutic strategies. Acta Neurologica Scandinavica, 2006, 113, 139-155.	2.1	44
272	Increase in antiepileptic efficacy during prolonged treatment with valproic acid: Role of inhibition of histone deacetylases?. Epilepsy Research, 2008, 81, 107-113.	1.6	44
273	The Antiepileptic Drug Topiramate is a Substrate for Human P-glycoprotein but Not Multidrug Resistance Proteins. Pharmaceutical Research, 2009, 26, 2464-2470.	3.5	44
274	The Search for New Screening Models of Pharmacoresistant Epilepsy: Is Induction of Acute Seizures in Epileptic Rodents a Suitable Approach?. Neurochemical Research, 2017, 42, 1926-1938.	3.3	44
275	Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiology of Disease, 2018, 110, 192-205.	4.4	44
276	The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. I. The influence of administration vehicles. Epilepsy Research, 1990, 7, 173-181.	1.6	43
277	Intravenous valproate: onset and duration of anticonvulsant activity against a series of electroconvulsions in comparison with diazepam and phenytoin. Epilepsy Research, 1992, 13, 215-221.	1.6	43
278	Amygdala-kindling induces a lasting reduction of GABA-immunoreactive neurons in a discrete area of the ipsilateral piriform cortex., 1998, 29, 299-309.		43
279	Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer. Cancer Research, 1999, 59, 3627-33.	0.9	43
280	Development of a synaptosomal model to determine drug-induced in vivo changes in GABA-levels of nerve endings in 11 brain regions of the rat. Neurochemistry International, 1984, 6, 441-451.	3.8	42
281	(+)-WIN 55,212-2, a novel cannabinoid receptor agonist, exerts antidystonic effects in mutant dystonic hamsters. European Journal of Pharmacology, 1994, 264, 371-377.	3 . 5	42
282	Behavioural and neurochemical dysfunction in the circling (ci) rat: A novel genetic animal model of a movement disorder. Neuroscience, 1996, 74, 1135-1142.	2.3	42
283	Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of P-glycoprotein in various rat brain regions. European Journal of Pharmacology, 2002, 451, 149-155.	3 . 5	42
284	Single-Target Versus Multi-Target Drugs Versus Combinations of Drugs With Multiple Targets: Preclinical and Clinical Evidence for the Treatment or Prevention of Epilepsy. Frontiers in Pharmacology, 2021, 12, 730257.	3 . 5	42
285	In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neuroscience Letters, 1993, 160, 177-180.	2.1	41
286	Effect of the glycine/NMDA receptor partial agonist, D-cycloserine, on seizure threshold and some pharmacodynamic effects of MK-801 in mice. European Journal of Pharmacology, 1994, 257, 217-225.	3. 5	41
287	Over-additive anticonvulsant effect of memantine and NBQX in kindled rats. European Journal of Pharmacology, 1994, 259, R3-R5.	3 . 5	41
288	Phenytoin's effect on the spread of seizure activity in the amygdala kindling model. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 341-347.	3.0	41

#	Article	IF	Citations
289	How effective is surgery to cure seizures in drug-resistant temporal lobe epilepsy?. Epilepsy Research, 2003, 56, 85-91.	1.6	41
290	The bumetanide prodrug <scp>BUM</scp> 5, but not bumetanide, potentiates the antiseizure effect of phenobarbital in adult epileptic mice. Epilepsia, 2016, 57, 698-705.	5.1	41
291	Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti-seizure efficacy. Neuropharmacology, 2018, 143, 186-204.	4.1	41
292	Development and Pharmacological Suppression of Secondary Afterdischarges in the Hippocampus of Amygdala-kindled Rats. European Journal of Neuroscience, 1995, 7, 732-741.	2.6	40
293	The chance of cure following surgery for drug-resistant temporal lobe epilepsyWhat do we know and do we need to revise our expectations?. Epilepsy Research, 2004, 60, 187-201.	1.6	40
294	Imaging of P-glycoprotein Function and Expression to Elucidate Mechanisms of Pharmacoresistance in Epilepsy. Current Topics in Medicinal Chemistry, 2010, 10, 1785-1791.	2.1	40
295	The ups and downs of alkylâ€carbamates in epilepsy therapy: How does cenobamate differ?. Epilepsia, 2021, 62, 596-614.	5.1	40
296	Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil. Journal of Pharmacology and Experimental Therapeutics, 1995, 275, 693-702.	2.5	40
297	Comparison of the anticonvulsant efficacy of primidone and phenobarbital during chronic treatment of amygdala-kindled rats. European Journal of Pharmacology, 1989, 162, 309-322.	3.5	39
298	Neuropathological studies in a mutant hamster model of paroxysmal dystonia. Movement Disorders, 1990, 5, 286-293.	3.9	39
299	Characterization of phenytoin-resistant kindled rats, a new model of drug-resistant partial epilepsy: influence of genetic factors. Epilepsy Research, 1999, 33, 217-226.	1.6	39
300	Corneal kindling in mice: behavioral and pharmacological differences to conventional kindling. Epilepsy Research, 1999, 37, 109-120.	1.6	39
301	The Anticonvulsant Response to Valproate in Kindled Rats Is Correlated with Its Effect on Neuronal Firing in the Substantia Nigra Pars Reticulata: A New Mechanism of Pharmacoresistance. Journal of Neuroscience, 2011, 31, 16423-16434.	3.6	39
302	Pilocarpine-induced epilepsy in mice alters seizure thresholds and the efficacy of antiepileptic drugs in the 6-Hertz psychomotor seizure model. Epilepsy Research, 2013, 107, 205-216.	1.6	39
303	Antiepileptic efficacy of lamotrigine in phenobarbital-resistant and -responsive epileptic rats: A pilot study. Epilepsy Research, 2014, 108, 1145-1157.	1.6	39
304	Factors Governing P-Glycoprotein-Mediated Drug–Drug Interactions at the Blood–Brain Barrier Measured with Positron Emission Tomography. Molecular Pharmaceutics, 2015, 12, 3214-3225.	4.6	39
305	One to three day dose intervals during subchronic treatment of epileptic gerbils with \hat{l}^3 -vinyl GABA: anticonvulsant efficacy and alterations in regional brain GABA levels. European Journal of Pharmacology, 1987, 143, 335-342.	3.5	38
306	Generation and characterization of pilocarpine-sensitive C57BL/6 mice as a model of temporal lobe epilepsy. Behavioural Brain Research, 2012, 230, 182-191.	2.2	38

#	Article	IF	CITATIONS
307	The search for NKCC1-selective drugs for the treatment of epilepsy: Structure–function relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A. Epilepsy and Behavior, 2016, 59, 42-49.	1.7	38
308	Penetration of Valproate and its Active Metabolites into Cerebrospinal Fluid of Children with Epilepsy. Epilepsia, 1988, 29, 311-316.	5.1	37
309	Alterations in pharmacological sensitivity of GABAergic but not dopaminergic and glutamatergic systems during ontogenesis in dystonic mutant hamsters. European Journal of Pharmacology, 1993, 231, 111-119.	3.5	37
310	Differences in anticonvulsant potency and adverse effects between dextromethorphan and dextrorphan in amygdala-kindled and non-kindled rats. European Journal of Pharmacology, 1993, 238, 191-200.	3.5	37
311	Systemic administration of kainate induces marked increases of endogenous kynurenic acid in various brain regions and plasma of rats. European Journal of Pharmacology, 1995, 286, 167-175.	3.5	37
312	Subregional changes in discharge rate, pattern, and drug sensitivity of putative GABAergic nigral neurons in the kindling model of epilepsy. European Journal of Neuroscience, 2004, 20, 2377-2386.	2.6	37
313	Upregulation of Brain Expression of P-Glycoprotein in MRP2-deficient TR-Rats Resembles Seizure-induced Up-regulation of This Drug Efflux Transporter in Normal Rats. Epilepsia, 2007, 48, 631-645.	5.1	37
314	Complex timeâ€dependent alterations in the brain expression of different drug efflux transporter genes after status epilepticus. Epilepsia, 2009, 50, 887-897.	5.1	37
315	Are neuronal nicotinic receptors a target for antiepileptic drug development? Studies in different seizure models in mice and rats. European Journal of Pharmacology, 2003, 466, 99-111.	3.5	36
316	Drug resistance in epilepsy: Why is a simple explanation not enough?. Epilepsia, 2007, 48, 2370-2372.	5.1	36
317	Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology, 2011, 61, 1033-1047.	4.1	36
318	Inter-individual variation in the anticonvulsant effect of phenobarbital in the pilocarpine rat model of temporal lobe epilepsy. Experimental Neurology, 2012, 234, 70-84.	4.1	36
319	Anticonvulsant action in the epileptic gerbil of novel inhibitors of GABA uptake. European Journal of Pharmacology, 1985, 110, 103-108.	3.5	35
320	A microdialysis study of striatal dopamine release in the circling rat, a genetic animal model with spontaneous lateralized rotational behavior. Neuroscience, 2000, 97, 69-77.	2.3	35
321	Common data elements and data management: Remedy to cure underpowered preclinical studies. Epilepsy Research, 2017, 129, 87-90.	1.6	35
322	Mechanism of drug extrusion by brain endothelial cells via lysosomal drug trapping and disposal by neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9590-E9599.	7.1	35
323	[3H]-2-Deoxyglucose uptake study in mutant dystonic hamsters: Abnormalities in discrete brain regions of the motor system. Movement Disorders, 1998, 13, 718-725.	3.9	34
324	Strong olfactory stimulation reduces seizure susceptibility in amygdala-kindled rats. Neuroscience Letters, 2000, 287, 199-202.	2.1	34

#	Article	IF	CITATIONS
325	Lack of robust anticonvulsant effects of muscimol microinfusions in the anterior substantia nigra of kindled rats. European Journal of Pharmacology, 2001, 432, 35-41.	3.5	34
326	Assessment of Regional Differences in Tariquidar-Induced P-Glycoprotein Modulation at the Human Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 510-515.	4.3	34
327	Drug-Induced Trafficking of P-Glycoprotein in Human Brain Capillary Endothelial Cells as Demonstrated by Exposure to Mitomycin C. PLoS ONE, 2014, 9, e88154.	2.5	34
328	Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective. Epilepsia, 2021, 62, 920-934.	5.1	34
329	Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Methods and Findings in Experimental and Clinical Pharmacology, 1984, 6, 531-47.	0.8	34
330	The effects of lesions of the posterior piriform cortex on amygdala kindling in the rat. Brain Research, 1993, 615, 295-303.	2.2	33
331	The AMPA receptor antagonist NBQX exerts antidystonic effects in an animal model of idiopathic dystonia. European Journal of Pharmacology, 1993, 231, 287-291.	3.5	33
332	Intravenous Carbamazepine: Comparison of Different Parenteral Formulations in a Mouse Model of Convulsive Status Epilepticus. Epilepsia, 1997, 38, 106-113.	5.1	33
333	Predictors of pharmacoresistant epilepsy: Pharmacoresistant rats differ from pharmacoresponsive rats in behavioral and cognitive abnormalities associated with experimentally induced epilepsy. Epilepsia, 2008, 49, 1759-1776.	5.1	33
334	Exposure to antiepileptic drugs does not alter the functionality of P-glycoprotein in brain capillary endothelial and kidney cell lines. European Journal of Pharmacology, 2010, 628, 57-66.	3.5	33
335	Pharmacokinetics, anticonvulsant efficacy and adverse effects of the beta-carboline abecarnil, a novel ligand for benzodiazepine receptors, after acute and chronic administration in dogs. Journal of Pharmacology and Experimental Therapeutics, 1990, 255, 541-8.	2.5	33
336	High anticonvulsant potency of gamma-aminobutyric acid (GABA)mimetic drugs in gerbils with genetically determined epilepsy. Journal of Pharmacology and Experimental Therapeutics, 1983, 226, 839-44.	2.5	33
337	Anticonvulsant Potency of Unmetabolized Diazepam. Pharmacology, 1982, 25, 154-159.	2.2	32
338	Marked increase in anticonvulsant activity but decrease in wet-dog shake behaviour during short-term treatment of amygdala-kindled rats with valproic acid. European Journal of Pharmacology, 1988, 150, 221-232.	3.5	32
339	Development of tolerance to the anticonvulsant effect of vigabatrin in amygdala-kindled rats. European Journal of Pharmacology, 1992, 213, 351-366.	3.5	32
340	Regional and age specific effects of zolpidem microinfusions in the substantia nigra on seizures. Epilepsy Research, 1998, 30, 107-114.	1.6	32
341	Differences in the distribution of GABA- and GAD-immunoreactive neurons in the anterior and posterior piriform cortex of rats. Brain Research, 1998, 800, 21-31.	2.2	32
342	Bilateral lesions of the central but not anterior or posterior parts of the piriform cortex retard amygdala kindling in rats. Neuroscience, 2000, 101, 513-521.	2.3	32

#	Article	IF	CITATIONS
343	Regionally Selective and Ageâ€Dependent Alterations in Benzodiazepine Receptor Binding in the Genetically Dystonic Hamster. Journal of Neurochemistry, 1995, 64, 2153-2158.	3.9	32
344	Benefits and risks of intranigral transplantation of GABA-producing cells subsequent to the establishment of kindling-induced seizures. Neurobiology of Disease, 2008, 31, 342-354.	4.4	32
345	Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions. Neuroscience and Biobehavioral Reviews, 2010, 34, 31-49.	6.1	32
346	Do proconvulsants modify or halt epileptogenesis? Pentylenetetrazole is ineffective in two rat models of temporal lobe epilepsy. European Journal of Neuroscience, 2012, 36, 2505-2520.	2.6	32
347	Behavioral differences of male Wistar rats from different vendors in vulnerability and resilience to chronic mild stress are reflected in epigenetic regulation and expression of p11. Brain Research, 2016, 1642, 505-515.	2.2	32
348	The intrahippocampal kainate mouse model of mesial temporal lobe epilepsy: Lack of electrographic seizureâ€like events in sham controls. Epilepsia Open, 2017, 2, 180-187.	2.4	32
349	P11 promoter methylation predicts the antidepressant effect of electroconvulsive therapy. Translational Psychiatry, 2018, 8, 25.	4.8	32
350	Regional alterations in brain amino acids during the estrous cycle of the rat. Neurochemical Research, 1992, 17, 973-977.	3.3	31
351	Effects of the novel 5-HT1A receptor antagonist, (+)-way 100135, on stereotyped behaviour induced by the NMDA receptor antagonist dizocilpine in rats. European Journal of Pharmacology, 1993, 242, 99-104.	3. 5	31
352	Differences in mossy fibre sprouting during conventional and rapid amygdala kindling of the rat. Neuroscience Letters, 1995, 190, 199-202.	2.1	31
353	Molecular mechanisms of drug resistance in status epilepticus. Epilepsia, 2009, 50, 19-21.	5.1	31
354	Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Scientific Reports, 2018, 8, 9877.	3.3	31
355	CNS pharmacology of NKCC1 inhibitors. Neuropharmacology, 2022, 205, 108910.	4.1	31
356	Trans-2-en-valproate: reevaluation of its anticonvulsant efficacy in standardized seizure models in mice, rats and dogs. Epilepsy Research, 1991, 9, 195-210.	1.6	30
357	Comparison of Anticonvulsant Efficacy of Valproate During Prolonged Treatment with One and Three Daily Doses or Continuous ("Controlled Release") Administration in a Model of Generalized Seizures in Rats. Epilepsia, 1995, 36, 929-937.	5.1	30
358	Reduction in firing rate of substantia nigra pars reticulata neurons by valproate: influence of different types of anesthesia in rats. Brain Research, 1995, 702, 133-144.	2.2	30
359	Characterization of Phenytoin-Resistant Kindled Rats, a New Model of Drug-Resistant Partial Epilepsy: Comparison of Inbred Strains. Epilepsia, 1998, 39, 1046-1053.	5.1	30
360	A comparison of extracellular levels of phenytoin in amygdala and hippocampus of kindled and non-kindled rats. NeuroReport, 2002, 13, 167-171.	1,2	30

#	Article	IF	Citations
361	Critical re-evaluation of previous preclinical strategies for the discovery and the development of new antiepileptic drugs. Epilepsy Research, 2002, 50, 17-20.	1.6	30
362	Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein. Bioorganic and Medicinal Chemistry, 2011, 19, 2190-2198.	3.0	30
363	The effects of carbamazepine in the intrahippocampal kainate model of temporal lobe epilepsy depend on seizure definition and mouse strain. Epilepsia Open, 2016, 1, 45-60.	2.4	30
364	A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy. Scientific Reports, 2017, 7, 12191.	3.3	30
365	A companion to the preclinical common data elements for pharmacologic studies in animal models of seizures and epilepsy. A Report of the <scp>TASK</scp> 3 Pharmacology Working Group of the <scp>ILAE</scp> / <scp>AES</scp> Joint Translational Task Force. Epilepsia Open, 2018, 3, 53-68.	2.4	30
366	A faceâ€toâ€face comparison of the intraâ€amygdala and intrahippocampal kainate mouse models of mesial temporal lobe epilepsy and their utility for testing novel therapies. Epilepsia, 2020, 61, 157-170.	5.1	30
367	Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus. Neurobiology of Disease, 2020, 143, 105018.	4.4	30
368	Magnetic field exposure increases cell proliferation but does not affect melatonin levels in the mammary gland of female Sprague Dawley rats. Cancer Research, 2002, 62, 1356-63.	0.9	30
369	Evaluation of different GABA receptor agonists in the kindled amygdala seizure model in rats. Experimental Neurology, 1985, 89, 454-460.	4.1	29
370	Effects of aminophylline and enprofylline on the protective activity of phenobarbital against amygdala-kindled seizures in rats. Epilepsy Research, 1987, 1, 234-238.	1.6	29
371	Pharmacological, toxicological and neurochemical effects of Î"2(E)-valproate in animals. Pharmaceutisch Weekblad Scientific Edition, 1992, 14, 139-143.	0.9	29
372	Complex effects of long-term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-Dawley rats depend on duration of exposure. Bioelectromagnetics, 1998, 19, 259-270.	1.6	29
373	The role of technical, biological, and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VII. Seasonal influences on anticonvulsant drug actions in mouse models of generalized seizures. Epilepsy Research, 2000, 38, 231-248.	1.6	29
374	Network pharmacology for antiepileptogenesis: Tolerability of multitargeted drug combinations in nonepileptic vs. post-status epilepticus mice. Epilepsy Research, 2015, 118, 34-48.	1.6	29
375	Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. I. Comparison of diazepam, clonazepam, clobazam and abecarnil. Journal of Pharmacology and Experimental Therapeutics, 1996, 279, 561-72.	2.5	29
376	Diazepam Increases ?-Aminobutyric Acid in Human Cerebrospinal Fluid. Journal of Neurochemistry, 1987, 49, 152-157.	3.9	28
377	Gonadal sex hormones and dystonia: Experimental studies in genetically dystonic hamsters. Movement Disorders, 1995, 10, 92-102.	3.9	28
378	The new antiepileptic drugs lamotrigine and felbamate are effective in phenytoin-resistant kindled rats. Neuropharmacology, 2000, 39, 1893-1903.	4.1	28

#	Article	IF	CITATIONS
379	Drug-induced changes in GABA content of nerve endings in 11 rat brain regions. Correlation to pharmacological effects. Neuroscience Letters, 1984, 47, 325-331.	2.1	27
380	Low Levels of ?-Aminobutyric Acid in Cerebrospinal Fluid of Dogs with Epilepsy. Journal of Neurochemistry, 1986, 46, 1322-1325.	3.9	27
381	Development of tolerance to the anticonvulsant effect of GABAmimetic drugs in genetically epilepsy-prone gerbils. Pharmacology Biochemistry and Behavior, 1986, 24, 1007-1013.	2.9	27
382	New Injectable Aqueous Carbamazepine Solution Through Complexing with 2-Hydroxypropyl-beta-Cyclodextrin: Tolerability and Pharmacokinetics After Intravenous Injection in Comparison to a Glycofurol-Based Formulation. Epilepsia, 1995, 36, 255-261.	5.1	27
383	mGlu1 and mGlu5 receptor antagonists lack anticonvulsant efficacy in rodent models of difficult-to-treat partial epilepsy. Neuropharmacology, 2006, 50, 1006-1015.	4.1	27
384	The novel antiepileptic drug imepitoin compares favourably to other GABA-mimetic drugs in a seizure threshold model in mice and dogs. Pharmacological Research, 2013, 77, 39-46.	7.1	27
385	Efficacy, safety, and tolerability of imepitoin in dogs with newly diagnosed epilepsy in a randomized controlled clinical study with long-term follow up. BMC Veterinary Research, 2015, 11, 228.	1.9	27
386	Effects of valproate and E-2-en-valproate on functional and morphological parameters of rat liver. II. Influence of phenobarbital comedication. Epilepsy Research, 1993, 15, 113-131.	1.6	26
387	Quantitative EEG analysis of depth electrode recordings from several brain regions of mutant hamsters with paroxysmal dystonia discloses frequency changes in the basal ganglia. Movement Disorders, 1998, 13, 509-521.	3.9	26
388	Auditory and vestibular defects and behavioral alterations after neonatal administration of streptomycin to Lewis rats: Similarities and differences to the circling (ci2/ci2) Lewis rat mutant. Brain Research, 2007, 1155, 179-195.	2.2	26
389	Striking differences in proconvulsant-induced alterations of seizure threshold in two rat models. NeuroToxicology, 2012, 33, 127-137.	3.0	26
390	What New Modeling Approaches Will Help Us Identify Promising Drug Treatments?. Advances in Experimental Medicine and Biology, 2014, 813, 283-294.	1.6	26
391	Pharmacokinetics of primidone and its active metabolites in the dog. Archives Internationales De Pharmacodynamie Et De Thérapie, 1979, 242, 14-30.	0.2	26
392	Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Federation Proceedings, 1984, 43, 276-84.	1.3	26
393	Anticonvulsant efficacy and adverse effects of phenytoin during chronic treatment in amygdala-kindled rats. Journal of Pharmacology and Experimental Therapeutics, 1993, 266, 216-23.	2.5	26
394	Anticonvulsant drug effects in the direct cortical ramp-stimulation model in rats: comparison with conventional seizure models. Journal of Pharmacology and Experimental Therapeutics, 1998, 285, 1137-49.	2. 5	26
395	Relationship between drug-induced changes in seizure thresholds and the GABA content of brain and brain nerve endings. Naunyn-Schmiedeberg's Archives of Pharmacology, 1981, 317, 131-134.	3.0	25
396	Effects of valproate and E-2-en-valproate on functional and morphological parameters of rat liver. I. Biochemical, histopathological and pharmacokinetic studies. Epilepsy Research, 1992, 13, 187-198.	1.6	25

#	Article	IF	Citations
397	Frontal versus transcorneal stimulation to induce maximal electroshock seizures or kindling in mice and rats. Epilepsy Research, 1998, 30, 219-229.	1.6	25
398	Novel combinations of phenotypic biomarkers predict development of epilepsy in the lithiumâ€"pilocarpine model of temporal lobe epilepsy in rats. Epilepsy and Behavior, 2015, 53, 98-107.	1.7	25
399	Correlation between alterations in brain GABA metabolism and seizure excitability following administration of GABA aminotransferase inhibitors and valproic acid—a re-evaluation. Neurochemistry International, 1981, 3, 397-404.	3.8	24
400	Alterations in the Renal Excretion of Valproate and Its Metabolites After Chronic Treatment. Epilepsia, 1991, 32, 146-150.	5.1	24
401	Sex differences in the anticonvulsant efficacy of phenytoin in amygdala-kindled rats. Brain Research, 1994, 638, 45-52.	2.2	24
402	Comparison of Effects of Valproate and Trans-2-en-Valproate on Different Forms of Epileptiform Activity in Rat Hippocampal and Temporal Cortex Slices. Epilepsia, 1998, 39, 251-258.	5.1	24
403	Anticonvulsant effect of fosphenytoin in amygdala-kindled rats: Comparison with phenytoin. Epilepsy Research, 1998, 30, 69-76.	1.6	24
404	In vivo extracellular electrophysiology of pallidal neurons in dystonic and nondystonic hamsters. Journal of Neuroscience Research, 1999, 57, 894-905.	2.9	24
405	Kindling alters the anticonvulsant efficacy of phenytoin in Wistar rats. Epilepsy Research, 2000, 39, 211-220.	1.6	24
406	Anticonvulsant Efficacy of Topiramate in Phenytoin-Resistant Kindled Rats. Epilepsia, 2000, 41, 372-379.	5.1	24
407	A novel black-hooded mutant rat (ci3) with spontaneous circling behavior but normal auditory and vestibular functions. Neuroscience, 2001, 107, 615-628.	2.3	24
408	Excessive weight gain in rats over extended kindling of the basolateral amygdala. NeuroReport, 2003, 14, 1829-1832.	1.2	24
409	The chance of cure following surgery for drug-resistant temporal lobe epilepsy. Epilepsy Research, 2004, 60, 187-201.	1.6	24
410	Profile of the new pyrrolidone derivative seletracetam (ucb 44212) in animal models of epilepsy. European Journal of Pharmacology, 2009, 614, 30-37.	3 . 5	24
411	Viral mouse models of multiple sclerosis and epilepsy: Marked differences in neuropathogenesis following infection with two naturally occurring variants of Theiler's virus BeAn strain. Neurobiology of Disease, 2017, 99, 121-132.	4.4	24
412	Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood. Nature Microbiology, 2018, 3, 1161-1174.	13.3	24
413	Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiology of Disease, 2020, 134, 104664.	4.4	24
414	Antiepileptogenesis and disease modification: Progress, challenges, and the path forwardâ€"Report of the Preclinical Working Group of the 2018 NINDSâ€sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open, 2021, 6, 276-296.	2.4	24

#	Article	IF	Citations
415	Evaluation of epileptic dogs as an animal model of human epilepsy. Arzneimittelforschung, 1985, 35, 82-7.	0.4	24
416	Effects of pharmacological manipulation of dopaminergic and cholinergic neurotransmission in genetically dystonic hamsters. European Journal of Pharmacology, 1992, 213, 31-39.	3.5	23
417	Marked regional disturbances in brain metabolism of monoaminergic neurotransmitters in the genetically dystonic hamster. Brain Research, 1994, 658, 199-208.	2.2	23
418	The novel antiepileptic drug, lamotrigine, exerts prodystonic effects in a mutant hamster model of generalised dystomia. European Journal of Pharmacology, 1994, 264, 345-351.	3.5	23
419	Anticonvulsant effects by combined treatment with a glycineB receptor antagonist and a polyamine site antagonist in amygdala-kindled rats. European Journal of Pharmacology, 1997, 322, 179-184.	3.5	23
420	Selection of Phenytoin Responders and Nonresponders in Male and Female Amygdala-Kindled Sprague-Dawley Rats. Epilepsia, 1998, 39, 1138-1147.	5.1	23
421	Kindling causes persistent in vivo changes in firing rates and glutamate sensitivity of central piriform cortex neurons in rats. Neuroscience, 2000, 99, 217-227.	2.3	23
422	A comparative small-animal PET evaluation of [11C]tariquidar, [11C]elacridar and (R)-[11C]verapamil for detection of P-glycoprotein-expressing murine breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 149-159.	6.4	23
423	The pilocarpine model of temporal lobe epilepsy: Marked intrastrain differences in female Sprague–Dawley rats and the effect of estrous cycle. Epilepsy and Behavior, 2016, 61, 141-152.	1.7	23
424	Novel brain permeant mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of acquired partial epilepsy and tuberous sclerosis complex. Neuropharmacology, 2020, 180, 108297.	4.1	23
425	L-deprenyl (selegiline) exerts anticonvulsant effects against different seizure types in mice. Journal of Pharmacology and Experimental Therapeutics, 1996, 277, 1410-7.	2.5	23
426	Rapid Gas Chromatographic Assay of Underivatized Clonazepam in Plasma. Therapeutic Drug Monitoring, 1983, 5, 229-234.	2.0	22
427	Low Doses of the Glycine/NMDA Receptor AntagonistR-(+)-HA-966 but not d-Cycloserine Induce Paroxysmal Activity in Limbic Brain Regions of Kindled Rats. European Journal of Neuroscience, 1994, 6, 1710-1719.	2.6	22
428	LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy. British Journal of Pharmacology, 1998, 125, 1258-1266.	5.4	22
429	Effect of depth electrode implantation with or without subsequent kindling on GABA turnover in various rat brain regions. Epilepsy Research, 1999, 37, 95-108.	1.6	22
430	Effects of pharmacological manipulations of cannabinoid receptors on severity of dystonia in a genetic model of paroxysmal dyskinesia. European Journal of Pharmacology, 2002, 454, 145-151.	3.5	22
431	<i>MDR1/ABCB1</i> polymorphisms and multidrug resistance in epilepsy: in and out of fashion. Pharmacogenomics, 2009, 10, 711-713.	1.3	22
432	Retarded kindling progression in mice deficient in the extracellular matrix glycoprotein tenascinâ€R. Epilepsia, 2009, 50, 859-869.	5.1	22

#	Article	IF	CITATIONS
433	Brivaracetam does not alter spatial learning and memory in both normal and amygdala-kindled rats. Epilepsy Research, 2010, 91, 74-83.	1.6	22
434	Kindled rats are more sensitive than non-kindled rats to the behavioural effects of combined treatment with MK-801 and valproate. European Journal of Pharmacology, 1992, 222, 273-278.	3.5	21
435	Effects of the competitive NMDA receptor antagonist, CGP 37849, on anticonvulsant activity and adverse effects of valproate in amygdala-kindled rats. European Journal of Pharmacology, 1993, 234, 237-245.	3.5	21
436	The anticonvulsant gabapentin decreases firing rates of substantia nigra pars reticulata neurons. European Journal of Pharmacology, 1996, 316, 211-218.	3.5	21
437	Spontaneous Paroxysmal Circling Behavior in the ci2 Rat Mutant: Epilepsy with Rotational Seizures or Hyperkinetic Movement Disorder?. Experimental Neurology, 2001, 172, 437-445.	4.1	21
438	Vigabatrin for focal drug delivery in epilepsy: Bilateral microinfusion into the subthalamic nucleus is more effective than intranigral or systemic administration in a rat seizure model. Neurobiology of Disease, 2012, 46, 362-376.	4.4	21
439	Marked Differences in the Effect of Antiepileptic and Cytostatic Drugs on the Functionality of P-Glycoprotein in Human and Rat Brain Capillary Endothelial Cell Lines. Pharmaceutical Research, 2014, 31, 1588-1604.	3.5	21
440	Basic mechanisms of seizure propagation: targets for rational drug design and rational polypharmacy. Epilepsy Research Supplement, 1996, 11, 17-43.	0.0	21
441	Consecutive Gas Chromatographic Determination of Phenytoin, Phenobarbital, Primidone, Phenylethylmalondiamide, Carbamazepine, Trimethadione, Dimethadione, Ethosuximide, and Valproate from the Same Serum Specimen. Epilepsia, 1978, 19, 463-473.	5.1	20
442	Monitoring of \hat{I}^3 -Aminobutyric Acid in Human Cerebrospinal Fluid. Therapeutic Drug Monitoring, 1984, 6, 227-231.	2.0	20
443	Alterations in plasma and brain amino acids after administration of the glycine/NMDA receptor partial agonist, d-cycloserine, to mice and rats. European Journal of Pharmacology, 1995, 273, 197-201.	3.5	20
444	Focal ischemia enhances the adverse effect potential of N-methyl-d-aspartate receptor antagonists in rats. Neuroscience Letters, 1998, 240, 33-36.	2.1	20
445	Bilateral microinjections of vigabatrin in the central piriform cortex retard AMYGDALA kindling in rats. Neuroscience, 2004, 129, 425-429.	2.3	20
446	Gene therapy decreases seizures in a model of <i>lncontinentia pigmenti</i> . Annals of Neurology, 2017, 82, 93-104.	5.3	20
447	Automated quantification of EEG spikes and spike clusters as a new read out in Theiler's virus mouse model of encephalitis-induced epilepsy. Epilepsy and Behavior, 2018, 88, 189-204.	1.7	20
448	Valproic acid: metabolite concentrations in plasma and brain, anticonvulsant activity, and effects on GABA metabolism during subacute treatment in mice. Archives Internationales De Pharmacodynamie Et De Thérapie, 1982, 257, 20-31.	0.2	20
449	Basic aspects of epilepsy. Current Opinion in Neurology and Neurosurgery, 1993, 6, 223-32.	0.4	20
450	Chronic treatment with diazepam or the inverse benzodiazepine receptor agonist FG 7142 causes differential changes in the effects of GABA receptor stimulation. Epilepsy Research, 1988, 2, 253-259.	1.6	19

#	Article	IF	Citations
451	Physical dependence on diazepam in the dog: precipitation of different abstinence syndromes by the benzodiazepine receptor antagonists Ro 15a€"1788 and ZK 93426. British Journal of Pharmacology, 1989, 97, 843-852.	5.4	19
452	The effect of interstimulation interval on the assessment of anticonvulsant drug potency in fully kindled rats. Epilepsy Research, 1990, 7, 182-196.	1.6	19
453	Tolerance to anticonvulsant effects of the partial benzodiazepine receptor agonist abecarnil in kindled rats involves learning. European Journal of Pharmacology, 1991, 202, 303-310.	3.5	19
454	Valproate and its major metabolite E-2-en-valproate induce different effects on behaviour and brain monoamine metabolism in rats. European Journal of Pharmacology, 1996, 299, 61-67.	3.5	19
455	Gabapentin decreases the severity of dystonia at low doses in a genetic animal model of paroxysmal dystonic choreoathetosis. European Journal of Pharmacology, 1999, 369, 335-338.	3.5	19
456	Single dose efficacy evaluation of two partial benzodiazepine receptor agonists in photosensitive epilepsy patients: A placebo-controlled pilot study. Epilepsy Research, 2016, 122, 30-36.	1.6	19
457	A face-to-face comparison of claudin-5 transduced human brain endothelial (hCMEC/D3) cells with porcine brain endothelial cells as blood–brain barrier models for drug transport studies. Fluids and Barriers of the CNS, 2020, 17, 53.	5.0	19
458	Reply to the commentary by Benâ€Ari and Delpire: Bumetanide and neonatal seizures: Fiction versus reality. Epilepsia, 2021, 62, 941-946.	5.1	19
459	New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal?., 2022, 229, 107934.		19
460	Selective bilateral destruction of substantia nigra has no effect on kindled seizures induced from stimulation of amygdala or piriform cortex in rats. Neuroscience Letters, 1990, 113, 205-210.	2.1	18
461	Kindling induces a lasting, regionally selective increase of kynurenic acid in the nucleus accumbens. Brain Research, 1996, 725, 252-256.	2.2	18
462	Effect of low-intensity 50-Hz magnetic fields on kindling acquisition and fully kindled seizures in rats. Brain Research, 1998, 809, 269-276.	2.2	18
463	Changes in plasma GABA concentration during vigabatrin treatment of epilepsy: a prospective study. Epilepsy Research, 1999, 34, 145-150.	1.6	18
464	Marked differences in response to dopamine receptor antagonism in two rat mutants, ci2 and ci3, with lateralized rotational behavior. Behavioural Brain Research, 2007, 180, 218-225.	2.2	18
465	Animal models of drug-resistant epilepsy. Novartis Foundation Symposium, 2002, 243, 149-59; discussion 159-66, 180-5.	1.1	18
466	Dogs as a Natural Animal Model of Epilepsy. Frontiers in Veterinary Science, 0, 9, .	2.2	18
467	Alterations in CSF GABA levels and seizure susceptibility developing during repeated administration of pentetrazole in dogs. Effects of \hat{I}^3 -acetylenic GABA, valproic acid and phenobarbital. Neurochemistry International, 1983, 5, 405-412.	3.8	17
468	Development of tolerance to clobazam in fully kindled rats: Effects of intermittent flumazenil administration. European Journal of Pharmacology, 1990, 180, 255-271.	3.5	17

#	Article	IF	CITATIONS
469	Regional alterations in brain amino acids after administration of the receptor antagonists MK-801 and CGP 39551 in rats. Neuroscience Letters, 1991, 124, 115-118.	2.1	17
470	Increase of serotonin in plasma during onset of halothane-induced malignant hyperthermia in pigs. European Journal of Pharmacology, 1992, 220, 91-94.	3.5	17
471	The atypical neuroleptic, clozapine, exerts antidystonic activity in a mutant hamster model. Comparison with haloperidol. European Journal of Pharmacology, 1993, 242, 309-312.	3.5	17
472	Characterization of phenytoin-resistant kindled rats, a new model of drug-resistant partial epilepsy: influence of experimental and environmental factors. Epilepsy Research, 1999, 33, 199-215.	1.6	17
473	Intercellular transfer of P-glycoprotein in human blood-brain barrier endothelial cells is increased by histone deacetylase inhibitors. Scientific Reports, 2016, 6, 29253.	3.3	17
474	Continuous bilateral infusion of vigabatrin into the subthalamic nucleus: Effects on seizure threshold and GABA metabolism in two rat models. Neurobiology of Disease, 2016, 91, 194-208.	4.4	17
475	4-(Difluoromethyl)-5-(4-((3 <i>R</i> ,5 <i>S</i>)-3,5-dimethylmorpholino)-6-((<i>R</i>)-3-methylmorpholino)-1,3,5-(PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. Journal of Medicinal Chemistry, 2020, 63, 13595-13617.	triazin-2-y 6.4	rl)pyridin-2-ar 17
476	The feast and famine: Epilepsy treatment and treatment gaps in early 21st century. Neuropharmacology, 2020, 170, 108055.	4.1	17
477	The search for brain-permeant NKCC1 inhibitors for the treatment of seizures: Pharmacokinetic-pharmacodynamic modelling of NKCC1 inhibition by azosemide, torasemide, and bumetanide in mouse brain. Epilepsy and Behavior, 2021, 114, 107616.	1.7	17
478	Rapid Gas Chromatographic Measurement of Diazepam and Its Metabolites Desmethyldiazepam, Oxazepam, and 3-Hydroxydiazepam (Temazepam) in Small Samples of Plasma. Therapeutic Drug Monitoring, 1982, 4, 315-318.	2.0	16
479	Evaluation of different \hat{l}^2 -carbolines in Mongolian gerbils with reflex epilepsy. European Journal of Pharmacology, 1985, 114, 261-266.	3.5	16
480	Effect of selective bilateral destruction of the substantia nigra on antiepileptic drug actions in kindled rats. European Journal of Pharmacology, 1990, 186, 157-167.	3. 5	16
481	Withdrawal precipitation by benzodiazepine receptor antagonists in dogs chronically treated with diazepam or the novel anxiolytic and anticonvulsant ?-carboline abecarnil. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 345, 452-60.	3.0	16
482	Alterations in ornithine decarboxylase activity in the rat mammary gland after different periods of 50 Hz magnetic field exposure. Bioelectromagnetics, 1999, 20, 338-346.	1.6	16
483	Anticonvulsant Effects by Bilateral and Unilateral Transplantation of GABA-Producing Cells into the Subthalamic Nucleus in an Acute Seizure Model. Cell Transplantation, 2014, 23, 111-132.	2.5	16
484	Evaluation of the pentylenetetrazole seizure threshold test in epileptic mice as surrogate model for drug testing against pharmacoresistant seizures. Epilepsy and Behavior, 2016, 57, 95-104.	1.7	16
485	Various modifications of the intrahippocampal kainate model of mesial temporal lobe epilepsy in rats fail to resolve the marked rat-to-mouse differences in type and frequency of spontaneous seizures in this model. Epilepsy and Behavior, 2017, 68, 129-140.	1.7	16
486	Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy. Brain Research, 2019, 1712, 109-123.	2.2	16

#	Article	IF	CITATIONS
487	Network pharmacology for antiepileptogenesis: Tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus mice. Epilepsy Research, 2019, 151, 48-66.	1.6	16
488	Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology, 2020, 162, 107817.	4.1	16
489	Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain?. Pharmaceutics, 2020, 12, 966.	4.5	16
490	A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia, 2021, 62, 1460-1471.	5.1	16
491	A comparison of the effects of valproate and its major active metabolite E-2-en-valproate on single unit activity of substantia nigra pars reticulata neurons in rats. Journal of Pharmacology and Experimental Therapeutics, 1996, 277, 1305-14.	2.5	16
492	Behavioural response to pharmacologic manipulation of serotonin receptors in the genetically dystonic hamster. Pharmacology Biochemistry and Behavior, 1995, 52, 655-665.	2.9	15
493	Alterations in N-methyl-d-aspartate receptor binding in dystonic hamster brains. Brain Research, 1997, 744, 161-165.	2.2	15
494	Animal Models of Drug-Refractory Epilepsy. , 2006, , 551-567.		15
495	Comparative analysis of anxiety-like behaviors and sensorimotor functions in two rat mutants, ci2 and ci3, with lateralized rotational behavior. Physiology and Behavior, 2008, 93, 417-426.	2.1	15
496	Assessment of cerebral P-glycoprotein expression and function with PET by combined [11C]inhibitor and [11C]substrate scans in rats. Nuclear Medicine and Biology, 2013, 40, 755-763.	0.6	15
497	Bumetanide is not capable of terminating status epilepticus but enhances phenobarbital efficacy in different rat models. European Journal of Pharmacology, 2015, 746, 78-88.	3.5	15
498	INTERMITTENT FLUMAZENIL AND BENZODIAZEPINE TOLERANCE: DISCOURAGING FINDINGS IN RATS. Lancet, The, 1989, 333, 1386-1387.	13.7	14
499	The role of technical, biological, and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. V. Lack of seasonal influences on amygdala kindling in rats. Epilepsy Research, 1993, 16, 131-136.	1.6	14
500	The glycine/NMDA receptor ligand (+)-HA-966 but not D-cycloserine has potent antidystonic efficacy in a genetic animal model of dystonia. European Journal of Pharmacology, 1993, 239, 245-247.	3. 5	14
501	Increased levels of kynurenic acid in brains of genetically dystonic hamsters. Developmental Brain Research, 1996, 92, 111-116.	1.7	14
502	Limbic epileptogenesis alters the anticonvulsant efficacy of phenytoin in Sprague–Dawley rats. Epilepsy Research, 1998, 31, 175-186.	1.6	14
503	Amygdala-kindling does not induce a persistent loss of GABA neurons in the substantia nigra pars reticulata of rats. Brain Research, 2004, 1025, 203-209.	2.2	14
504	Power Frequency Magnetic Fields Increase Cell Proliferation in the Mammary Gland of Female Fischer 344 Rats but Not Various Other Rat Strains or Substrains. Oncology, 2005, 69, 486-498.	1.9	14

Impact of seizure activity on free extracellular phenytoin concentrations in amygdala-kindled rats. Neuropharmacology, 2011, 61, 909-917. Structure–activity relationships of bumetanide derivatives: correlation between diuretic activity in dogs and inhibition of the human scp NKCC (scp>2 scp A (scp> A (scp> transporter. British Journal of Pharmacology, 2015, 172, 4469-4480. 507 Treatment of canine epilepsy with primidone. Journal of the American Veterinary Medical Association, 1982, 181, 592-5. 508 Pharmacokinetics of non-steroidal anti-inflammatory drugs in male rabbits after acute and chronic administration and effect of chronic treatment on seminal prostaglandins, sperm quality and fertility. Reproduction, 1988, 82, 353-364. 509 Weak anticonvulsant effects of two novel glycineB receptor antagonists in the amygdala-kindling model in rats. European Journal of Pharmacology, 1998, 342, 39-46. 509 Anticonvulsant effects of eliprodil alone or combined with the glycineB receptor antagonist L-701,324 or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats. 510 Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: An immunohistochemical and in situ hybridization study. Brain Research, 2006, 1083, 50-60. 512 Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 23, 206-218.	14
dogs and inhibition of the human <scp>NKCC</scp> 2 <scp>A</scp> transporter. British Journal of Pharmacology, 2015, 172, 4469-4480. Treatment of canine epilepsy with primidone. Journal of the American Veterinary Medical Association, 1982, 181, 592-5. Pharmacokinetics of non-steroidal anti-inflammatory drugs in male rabbits after acute and chronic administration and effect of chronic treatment on seminal prostaglandins, sperm quality and fertility. Reproduction, 1988, 82, 353-364. Weak anticonvulsant effects of two novel glycineB receptor antagonists in the amygdala-kindling model in rats. European Journal of Pharmacology, 1998, 342, 39-46. Anticonvulsant effects of eliprodil alone or combined with the glycineB receptor antagonist L-701,324 or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats. Neuropharmacology, 1999, 38, 243-251. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: An immunohistochemical and in situ hybridization study. Brain Research, 2006, 1083, 50-60. Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 23, 206-218.	
Pharmacokinetics of non-steroidal anti-inflammatory drugs in male rabbits after acute and chronic administration and effect of chronic treatment on seminal prostaglandins, sperm quality and fertility. Reproduction, 1988, 82, 353-364. Weak anticonvulsant effects of two novel glycineB receptor antagonists in the amygdala-kindling model in rats. European Journal of Pharmacology, 1998, 342, 39-46. Anticonvulsant effects of eliprodil alone or combined with the glycineB receptor antagonist L-701,324 or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats. Neuropharmacology, 1999, 38, 243-251. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: An immunohistochemical and in situ hybridization study. Brain Research, 2006, 1083, 50-60. Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 23, 206-218. 4.4	14
administration and effect of chronic treatment on seminal prostaglandins, sperm quality and fertility. Reproduction, 1988, 82, 353-364. Weak anticonvulsant effects of two novel glycineB receptor antagonists in the amygdala-kindling model in rats. European Journal of Pharmacology, 1998, 342, 39-46. Anticonvulsant effects of eliprodil alone or combined with the glycineB receptor antagonist L-701,324 or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats. Neuropharmacology, 1999, 38, 243-251. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: An immunohistochemical and in situ hybridization study. Brain Research, 2006, 1083, 50-60. Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 23, 206-218. 4.4	14
model in rats. European Journal of Pharmacology, 1998, 342, 39-46. Anticonvulsant effects of eliprodil alone or combined with the glycineB receptor antagonist L-701,324 or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats. Neuropharmacology, 1999, 38, 243-251. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: An immunohistochemical and in situ hybridization study. Brain Research, 2006, 1083, 50-60. Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 23, 206-218. 4.1	13
or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats. Neuropharmacology, 1999, 38, 243-251. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: An immunohistochemical and in situ hybridization study. Brain Research, 2006, 1083, 50-60. Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 23, 206-218. 4.1 An immunohistochemical experimental e	13
and in situ hybridization study. Brain Research, 2006, 1083, 50-60. Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy. Neurobiology of Disease, 2006, 23, 206-218. 4.4	13
epilepsy. Neurobiology of Disease, 2006, 23, 206-218.	13
Dilacontrol Indianal Consults of Antifer to District discount for the Tonor of the District	13
Pilocarpine-Induced Convulsive Activity Is Limited by Multidrug Transporters at the Rodent Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 351-359.	13
Clinical evaluation of a combination therapy of imepitoin with phenobarbital in dogs with refractory idiopathic epilepsy. BMC Veterinary Research, 2016, 13, 33.	13
Anticonvulsant effects after grafting of rat, porcine, and human mesencephalic neural progenitor cells into the rat subthalamic nucleus. Experimental Neurology, 2018, 310, 70-83.	13
Longâ€term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia, 2021, 62, 2826-2844. 5.1	13
Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. 517 Frontiers in Molecular Neuroscience, 2022, 15, .	13
Electrical but not chemical kindling increases sensitivity to some phencyclidine-like behavioral effects induced by the competitive NMDA receptor antagonist d-CPPene in rats. European Journal of Pharmacology, 1998, 353, 177-189.	12
Subconvulsive dose of pentylenetetrazole increases the firing rate of substantia nigra pars reticulata neurons in dystonic but not in nondystonic hamsters. , 1999, 33, 259-267.	12
Extracellular single-unit recordings of piriform cortex neurons in rats: Influence of different types of anesthesia and characterization of neurons by pharmacological manipulation of serotonin receptors., 1999, 55, 608-619.	12
Effects of 50- or 60-hertz, 100 microT magnetic field exposure in the DMBA mammary cancer model in 521 Sprague-Dawley rats: possible explanations for different results from two laboratories 6.0 Environmental Health Perspectives, 2000, 108, 797-802.	12

Synthesis and in vivo evaluation of the putative breast cancer resistance protein inhibitor [11C]methyl 4-((4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl)phenyl)amino-carbonyl)-2-(quinoline-2-carbonylaminoc)benzoate. Nuclear Medicine and Biology, 2010, 37, 637-644.

#	Article	IF	Citations
523	The antiepileptic drug mephobarbital is not transported by P-glycoprotein or multidrug resistance protein 1 at the blood–brain barrier: A positron emission tomography study. Epilepsy Research, 2012, 100, 93-103.	1.6	12
524	Low doses of ethanol markedly potentiate the anti-seizure effect of diazepam in a mouse model of difficult-to-treat focal seizures. Epilepsy Research, 2014, 108, 1719-1727.	1.6	12
525	Bumetanide for neonatal seizures: No light in the pharmacokinetic/dynamic tunnel. Epilepsia, 2022, 63, 1868-1873.	5.1	12
526	Effect of 2-aminoethanol on the synthesis, binding, uptake and metabolism of GABA. Neuroscience Letters, 1983, 42, 293-297.	2.1	11
527	Valproic acid and active unsaturated metabolite (2-EN): Transfer to mouse liver following human therapeutic doses. Biopharmaceutics and Drug Disposition, 1985, 6, 1-8.	1.9	11
528	AE Mice: An Inbred Mouse Strain with Interesting Features for Epilepsy Research. Epilepsia, 1986, 27, 657-664.	5.1	11
529	Marked Increases of Plasma Gamma-Aminobutyric Acid Concentrations in Cirrhotic Patients with Portacaval Shunts Are Not Associated with Alterations of Cerebral Functions. Digestion, 1991, 49, 212-220.	2.3	11
530	Plasma GABA and seizure control with vigabatrin. Lancet, The, 1993, 341, 117.	13.7	11
531	Repeated Acute Testing of Anticonvulsant Drugs in Amygdala Kindled Rats: Increase in Anticonvulsant But Decrease in Adverse Effect Potential. Epilepsia, 2000, 41, 516-528.	5.1	11
532	Deletion of the Na-K-2Cl cotransporter NKCC1 results in a more severe epileptic phenotype in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Neurobiology of Disease, 2021, 152, 105297.	4.4	11
533	Abnormal c-fos expression in the lateral habenula during dystonic attacks in a hamster model of idiopathic dystonia. Brain Research, 1996, 728, 125-129.	2.2	10
534	The electrical activity is impaired in the red nucleus of dtsz mutant hamsters with paroxysmal dystonia: an EEG power spectrum analysis of depth electrode recordings. Brain Research, 1997, 760, 102-108.	2.2	10
535	MK-801 potentiates antidystonic effects of clozapine but not of haloperidol in mutant dystonic hamsters. Brain Research, 1997, 769, 296-302.	2.2	10
536	Evidence for microvesicular storage and release of glycine in rodent pinealocytes. Neuroscience Letters, 2001, 299, 93-96.	2.1	10
537	Exposure of Fischer 344 rats to a weak power frequency magnetic field facilitates mammary tumorigenesis in the DMBA model of breast cancer. Carcinogenesis, 2007, 29, 186-193.	2.8	10
538	Comparative analysis of anxiety-like behaviors and sensorimotor functions in two rat mutants, ci2 and ci3, with lateralized rotational behavior. Physiology and Behavior, 2007, 91, 551-560.	2.1	10
539	Prolonged depth electrode implantation in the limbic system increases the severity of status epilepticus in rats. Epilepsy Research, 2014, 108, 802-805.	1.6	10
540	Antiepileptic Drug Withdrawal in Dogs with Epilepsy. Frontiers in Veterinary Science, 2015, 2, 23.	2.2	10

#	Article	IF	CITATIONS
541	Animal Models of Drug-Refractory Epilepsy. , 2017, , 743-760.		10
542	Cerebral influx of Na+ and Clâ $^{\circ}$ as the osmotherapy-mediated rebound response in rats. Fluids and Barriers of the CNS, 2018, 15, 27.	5.0	10
543	Changes of dimension of EEG/ECoG nonlinear dynamics predict epileptogenesis and therapy outcomes. Neurobiology of Disease, 2019, 124, 373-378.	4.4	10
544	Epilepsy and Alterations of the Bloodâ \in "Brain Barrier: Cause or Consequence of Epileptic Seizures or Both?. Handbook of Experimental Pharmacology, 2020, , 1.	1.8	10
545	Systematic evaluation of rationally chosen multitargeted drug combinations: a combination of low doses of levetiracetam, atorvastatin and ceftriaxone exerts antiepileptogenic effects in a mouse model of acquired epilepsy. Neurobiology of Disease, 2021, 149, 105227.	4.4	10
546	The discovery of valproate., 1999,, 1-3.		10
547	\hat{I}^3 -Acetylenic GABA antagonizes the decrease in synaptosomal GABA concentrations but not the Scizures induced by 3-mercaptopropionic acid in rats. Biochemical Pharmacology, 1986, 35, 3176-3180.	4.4	9
548	Hippocampal glutamate decarboxylase activity is not altered in gerbils with high seizure susceptibility. Biochemical Pharmacology, 1987, 36, 979-982.	4.4	9
549	Prodystonic effects of riluzole in an animal model of idiopathic dystonia related to decreased total power in the red nucleus?. European Journal of Pharmacology, 1997, 332, 133-141.	3.5	9
550	Anticonvulsant Activity of Felbamate in Amygdala Kindling Model of Temporal Lobe Epilepsy in Rats. Epilepsia, 1997, 38, 1167-1172.	5.1	9
551	Receptor fingerprinting the circling ci2 rat mutant: Insights into brain asymmetry and motor control. Experimental Neurology, 2008, 210, 624-637.	4.1	9
552	EDTA Inhibits In Vitro Increases in the GABA Content of Human CSF. Journal of Neurochemistry, 1982, 39, 251-254.	3.9	8
553	Lesions of the deep prepiriform cortex (â€~area tempestas') in rats do not affect the convulsant action of systemically administered bicuculline. Neuroscience Letters, 1990, 108, 161-166.	2.1	8
554	The \hat{I}^2 -opioid receptor agonist, U50,488H, exerts antidystonic activity in a mutant hamster model of generalized dystonia. European Journal of Pharmacology, 1993, 236, 289-294.	3.5	8
555	Antidystonic effects of L-type Ca2+ channel antagonists in a hamster model of idiopathic dystonia. European Journal of Pharmacology, 1996, 300, 197-202.	3.5	8
556	Effects of lesions of the perirhinal cortex on amygdala kindling in rats. Epilepsy Research, 2000, 42, 33-41.	1.6	8
557	Antidystonic efficacy of nitric oxide synthase inhibitors in a rodent model of primary paroxysmal dystonia. British Journal of Pharmacology, 2000, 131, 921-926.	5.4	8
558	High susceptibility of the anterior and posterior piriform cortex to induction of convulsions by bicuculline. European Journal of Neuroscience, 2000, 12, 4195-4205.	2.6	8

#	Article	IF	CITATIONS
559	Effects of 50- or 60-Hertz, 100 mT Magnetic Field Exposure in the DMBA Mammary Cancer Model in Sprague-Dawley Rats: Possible Explanations for Different Results from Two Laboratories. Environmental Health Perspectives, 2000, 108, 797.	6.0	8
560	Alterations in dopamine D3 receptors in the circling (ci3) rat mutant. Neuroscience, 2007, 144, 1462-1469.	2.3	8
561	Is switching from brand name to generic formulations of phenobarbital associated with loss of antiepileptic efficacy?: a pharmacokinetic study with two oral formulations (Luminal® vet,) Tj ETQq1 1 0.784314	łng®T/C	Overstock 10 Tf
562	A new method to model electroconvulsive therapy in rats with increased construct validity and enhanced translational value. Journal of Psychiatric Research, 2014, 53, 94-98.	3.1	8
563	Refinement of a model of acquired epilepsy for identification and validation of biomarkers of epileptogenesis in rats. Epilepsy and Behavior, 2016, 61, 120-131.	1.7	8
564	Effects of the NKCC1 inhibitors bumetanide, azosemide, and torasemide alone or in combination with phenobarbital on seizure threshold in epileptic and nonepileptic mice. Neuropharmacology, 2021, 185, 108449.	4.1	8
565	Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Il. The novel imidazoquinazolines NNC 14-0185 and NNC 14-0189. Journal of Pharmacology and Experimental Therapeutics, 1996, 279, 573-81.	2.5	8
566	Mechanisms of drug resistance. Epileptic Disorders, 2005, 7 Suppl 1, S3-9.	1.3	8
567	Effects of valproate and E-2-en-valproate on functional and morphological parameters of rat liver. III. Influence of fasting. Epilepsy Research, 1993, 16, 183-194.	1.6	7
568	Paradoxical aggravation of paroxysmal dystonia during chronic treatment with phenobarbital in a genetic rodent model. European Journal of Pharmacology, 2000, 397, 343-350.	3.5	7
569	Polymorphic variants of the multidrug resistance gene Mdr1a and response to antiepileptic drug treatment in the kindling model of epilepsy. European Journal of Pharmacology, 2006, 550, 54-61.	3.5	7
570	Commentary: Physical Approaches for the Treatment of Epilepsy: Electrical and Magnetic Stimulation and Cooling. Neurotherapeutics, 2009, 6, 258-262.	4.4	7
571	Strategies for antiepileptogenesis: Antiepileptic drugs versus target-specific approaches. Epilepsia, 2010, 51, 88-88.	5.1	7
572	Grey matter volume in healthy and epileptic beagles using voxel-based morphometry – a pilot study. BMC Veterinary Research, 2018, 14, 50.	1.9	7
573	The novel dual-mechanism Kv7 potassium channel/TSPO receptor activator GRT-X is more effective than the Kv7 channel opener retigabine in the 6-Hz refractory seizure mouse model. Neuropharmacology, 2022, 203, 108884.	4.1	7
574	Major targets and mechanisms of antiepileptic drugs and major reasons for failure. Advances in Neurology, 2006, 97, 417-27.	0.8	7
575	The novel selective and silent 5-HT1A receptor antagonist (+)-WAY-100135 aggravates dystonic movements in a mutant hamster model. European Journal of Pharmacology, 1994, 255, 235-238.	3.5	6
576	Dextrorphan, but not dextromethorphan, exerts weak antidystonic effects in mutant dystonic hamsters. Brain Research, 1997, 745, 336-338.	2.2	6

#	Article	IF	CITATIONS
577	Anticonvulsant efficacy of l-deprenyl (selegiline) during chronic treatment in mice: continuous versus discontinuous administration. Neuropharmacology, 1998, 37, 1587-1593.	4.1	6
578	Exposure of rats to a 50-Hz, 100 ?Tesla magnetic field does not affect the ex vivo production of interleukins by activated T or B lymphocytes. Bioelectromagnetics, 1999, 20, 295-305.	1.6	6
579	The circling ci2 rat mutant revisited: receptor architecture of the motor cortex. Neuroscience, 2010, 170, 542-550.	2.3	6
580	Salivary \hat{l}_{\pm} -amylase exhibits antiproliferative effects in primary cell cultures of rat mammary epithelial cells and human breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2011, 30, 102.	8.6	6
581	Lack of antidepressant effects of burst-suppressing isoflurane anesthesia in adult male Wistar outbred rats subjected to chronic mild stress. PLoS ONE, 2020, 15, e0235046.	2.5	6
582	Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiology of Disease, 2021, 158, 105446.	4.4	6
583	Abecarnil Shows Reduced Tolerance Development and Dependence Potential in Comparison to Diazepam: Animal Studies., 1993, 11, 96-112.		6
584	Trans-2-en-valproic acid limits action potential firing frequency in mouse central neurons in cell culture. Journal of Pharmacology and Experimental Therapeutics, 1997, 280, 1349-56.	2.5	6
585	Postictal refractoriness associated with reduction of glutamic acid decarboxylase in discrete brain regions in epilepsy-prone gerbils. Biochemical Pharmacology, 1987, 36, 2695-2699.	4.4	5
586	Pharmacological effects and mechanisms of action. , 1999, , 7-45.		5
587	Development of kindling and spontaneous seizures after massed stimulation of different loci in the rat piriform cortex. Brain Research, 2000, 855, 252-259.	2.2	5
588	Gene expression in the mammary gland tissue of female Fischer 344 and Lewis rats after magnetic field exposure (50 Hz, $100 \hat{l}\frac{1}{4}$ T) for 2 weeks. International Journal of Radiation Biology, 2012, 88, 425-429.	1.8	5
589	Hydrolytic biotransformation of the bumetanide ester prodrug DIMAEB to bumetanide by esterases in neonatal human and rat serum and neonatal rat brainâ€"A new treatment strategy for neonatal seizures?. Epilepsia, 2021, 62, 269-278.	5.1	5
590	Similarities and differences in the localization, trafficking, and function of P-glycoprotein in MDR1-EGFP-transduced rat versus human brain capillary endothelial cell lines. Fluids and Barriers of the CNS, 2021, 18, 36.	5.0	5
591	Genetic Animal Models of Epilepsy. , 1992, , 111-135.		5
592	High susceptibility of the anterior and posterior piriform cortex to induction of convulsions by bicuculline. European Journal of Neuroscience, 2000, 12, 4195-4205.	2.6	5
593	Effects of the NMDA receptor antagonist d-CPPene on extracellular levels of dopamine and dopamine and serotonin metabolites in striatum of kindled and non-kindled rats. European Journal of Pharmacology, 1999, 374, 175-187.	3 . 5	4
594	Re-emergence of neuroinfectiology. Acta Neuropathologica, 2016, 131, 155-158.	7.7	4

#	Article	IF	CITATIONS
595	Breast Cancer and Use of Electric Power: Experimental Studies on the Melatonin Hypothesis., 2001,, 518-533.		4
596	Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. Neurotherapeutics, 2005, 2, 86-98.	4.4	4
597	Is P-Glycoprotein Functionally Expressed in the Limiting Membrane of Endolysosomes? A Biochemical and Ultrastructural Study in the Rat Liver. Cells, 2022, 11, 1556.	4.1	4
598	Kindling does not induce persistent changes in fluorographic labeling patterns of benzodiazepine binding proteins in various rat brain regions. Epilepsy Research, 1991, 9, 105-112.	1.6	3
599	Evaluation of $[11C]$ elacridar and $[11C]$ tariquidar in transporter knockout mice using small-animal PET. Neurolmage, 2010, 52, S25.	4.2	3
600	Seizing the moment for the future: The U.S. Anticonvulsant Screening Project. Epilepsia, 2012, 53, 1841-1842.	5.1	3
601	Strain Effects on Expression of Seizures and Epilepsy. , 2017, , 21-38.		3
602	The dog as a model in epilepsy research: Comparative pharmacokinetics. Veterinary Research Communications, 1983, 7, 307-309.	1.6	2
603	Effects of 50 Hz magnetic field exposure on the stress marker α-amylase in the rat mammary gland. International Journal of Radiation Biology, 2012, 88, 556-564.	1.8	2
604	Humanization of the blood–brain barrier transporter ABCB1 in mice disrupts genomic locus — lessons from three unsuccessful approaches. European Journal of Microbiology and Immunology, 2018, 8, 78-86.	2.8	2
605	Commentary on "The impact of nonadherence to antiseizure drugs on seizure outcomes in an animal model of epilepsy― Epilepsia, 2018, 59, 1093-1093.	5.1	2
606	Evaluation of Associated Behavioral and Cognitive Deficits in Anticonvulsant Drug Testing., 1998,,.		2
607	Pharmacology of Glutamate Receptor Antagonists in the Kindling Model. Advances in Behavioral Biology, 1998, , 435-449.	0.2	1
608	Mechanisms of Pharmacoresistance in the Phenytoin-Resistant Kindled Wistar Rat., 2005,, 315-323.		1
609	PHARMACORESISTANCE Animal Models of Drug-Resistant Epilepsy. , 2009, , 1123-1128.		1
610	Consequences of housing conditions and interindividual diversity in rodent models of acquired epilepsy. Epilepsia, 2019, 60, 2016-2019.	5.1	1
611	In memoriam Dieter Schmidt. Epilepsy and Behavior, 2020, 103, 106583.	1.7	1
612	Effect of Selective Lesions within the Substantia Nigra on the Anticonvulsant Effect of Antiepileptic Drugs in Fully-Kindled Rats. Advances in Behavioral Biology, 1990, , 253-266.	0.2	1

#	Article	IF	Citations
613	Evaluation of Associated Behavioral and Cognitive Deficits in Anticonvulsant Drug Testing. , 2019, , 171-192.		1
614	AWD 140-190: A Potent Anticonvulsant in the Amygdala-Kindling Model of Partial Epilepsy. Epilepsia, 2001, 42, 590-599.	5.1	0
615	Ist Epilepsie eine progrediente Erkrankung?. Zeitschrift Fur Epileptologie, 2003, 16, 207-213.	0.7	O
616	Das Zentrum Fýr Systemische Neurowissenschaften (Zsn) In Hannover. E-Neuroforum, 2004, 10, 278-279.	0.1	0
617	Neurodegeneration und -regeneration bei ZNS-Erkrankungen des Hundes. E-Neuroforum, 2009, 15, 96-98.	0.1	O
618	Assessing cerebral P-glycoprotein expression and function with PET by combined [11C]inhibitor [11C]substrate scans. NeuroImage, 2010, 52, S116.	4.2	0
619	P.4.017 Epigenetic alterations of the glia cell-derived neurotrophic factor and response to electroconvulsive stimulation. European Neuropsychopharmacology, 2016, 26, S99-S100.	0.7	O
620	Anticonvulsant Agents: Pharmacology and Biochemistry., 2021,, 1-27.		0
621	Anticonvulsant Agents: Pharmacology and Biochemistry. , 2021, , 1-27.		O
622	Efflux Transporters in the Brain., 2007,, 461-483.		0
623	PHARMACORESISTANCE Brain Imaging of P-glycoprotein Function in Drug-Resistant Epilepsy. , 2009, , 1129-1133.		O
624	Rat Mutants with Lateralized Rotational Behavior for Studying Disturbances in Cerebral Asymmetries and Their Involvement in Brain Disorders. Neuromethods, 2010, , 33-64.	0.3	0
625	Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. Journal of Cell Biology, 2015, 210, 21060IA179.	5.2	0
626	Rolle von Makrophagen von Mikroglia in der Entstehung von akuten AnfÄ#en bei der murinen Theilervirusinfektion. Tierarztliche Praxis Ausgabe K: Kleintiere - Heimtiere, 2019, 47, .	0.5	0
627	Antiepileptika. , 2006, , 103-176.		O