
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010674/publications.pdf Version: 2024-02-01

DAMID JANICRO

#	Article	IF	CITATIONS
1	Engaging neuroscience to advance translational research in brain barrier biology. Nature Reviews Neuroscience, 2011, 12, 169-182.	10.2	508
2	Seizure-Promoting Effect of Blood?Brain Barrier Disruption. Epilepsia, 2007, 48, 732-742.	5.1	442
3	The role of brain barriers in fluid movement in the CNS: is there a †̃glymphatic' system?. Acta Neuropathologica, 2018, 135, 387-407.	7.7	429
4	Overexpression of Multiple Drug Resistance Genes in Endothelial Cells from Patients with Refractory Epilepsy. Epilepsia, 2001, 42, 1501-1506.	5.1	409
5	The Blood?Brain Barrier and Epilepsy. Epilepsia, 2006, 47, 1761-1774.	5.1	352
6	The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neuroscience, 2011, 12, 40.	1.9	325
7	Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiology of Disease, 2009, 33, 171-181.	4.4	270
8	Serum S100β. Cancer, 2003, 97, 2806-2813.	4.1	249
9	Consequences of Repeated Blood-Brain Barrier Disruption in Football Players. PLoS ONE, 2013, 8, e56805.	2.5	246
10	Regional variation in brain capillary density and vascular response to ischemia. Brain Research, 2001, 910, 81-93.	2.2	230
11	Immortalized Human Brain Endothelial Cells and Flow-Based Vascular Modeling: A Marriage of Convenience for Rational Neurovascular Studies. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 312-328.	4.3	230
12	Persistent, Long-term Cerebral White Matter Changes after Sports-Related Repetitive Head Impacts. PLoS ONE, 2014, 9, e94734.	2.5	230
13	Functional Specialization and Topographic Segregation of Hippocampal Astrocytes. Journal of Neuroscience, 1998, 18, 4425-4438.	3.6	212
14	Impaired K ⁺ Homeostasis and Altered Electrophysiological Properties of Post-Traumatic Hippocampal Glia. Journal of Neuroscience, 1999, 19, 8152-8162.	3.6	212
15	Peripheral markers of blood–brain barrier damage. Clinica Chimica Acta, 2004, 342, 1-12.	1.1	207
16	Blood–brain barrier dysfunction and epilepsy: Pathophysiologic role and therapeutic approaches. Epilepsia, 2012, 53, 1877-1886.	5.1	199
17	Inflammatory pathways of seizure disorders. Trends in Neurosciences, 2014, 37, 55-65.	8.6	196
18	Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: A permeability study. Brain Research, 2006, 1109, 1-13.	2.2	177

#	Article	IF	CITATIONS
19	Peripheral markers of brain damage and blood-brain barrier dysfunction. Restorative Neurology and Neuroscience, 2003, 21, 109-21.	0.7	163
20	Morphological and functional characterization of an in vitro blood–brain barrier model. Brain Research, 1997, 771, 329-342.	2.2	158
21	Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids and Barriers of the CNS, 2019, 16, 9.	5.0	156
22	Reduction of K ⁺ Uptake in Glia Prevents Long-Term Depression Maintenance and Causes Epileptiform Activity. Journal of Neuroscience, 1997, 17, 2813-2824.	3.6	155
23	A new dynamic in vitro model for the multidimensional study of astrocyte–endothelial cell interactions at the blood–brain barrier. Brain Research, 2002, 951, 243-254.	2.2	155
24	In Vivo and In Vitro Effects of Pilocarpine: Relevance to Ictogenesis. Epilepsia, 2007, 48, 1934-1946.	5.1	151
25	Development of a Humanized In Vitro Blood?Brain Barrier Model to Screen for Brain Penetration of Antiepileptic Drugs. Epilepsia, 2007, 48, 505-516.	5.1	147
26	Mechanisms of glucose transport at the blood–brain barrier: an in vitro study. Brain Research, 2001, 904, 20-30.	2.2	140
27	Pathophysiological Impact of Cigarette Smoke Exposure on the Cerebrovascular System with a Focus on the Blood-brain Barrier: Expanding the Awareness of Smoking Toxicity in an Underappreciated Area. International Journal of Environmental Research and Public Health, 2010, 7, 4111-4126.	2.6	139
28	Heterogeneity of Astrocyte Resting Membrane Potentials and Intercellular Coupling Revealed by Whole-Cell and Gramicidin-Perforated Patch Recordings from Cultured Neocortical and Hippocampal Slice Astrocytes. Journal of Neuroscience, 1997, 17, 6850-6863.	3.6	135
29	Efficacy of Anti-Inflammatory Therapy in a Model of Acute Seizures and in a Population of Pediatric Drug Resistant Epileptics. PLoS ONE, 2011, 6, e18200.	2.5	130
30	Significance of MDR1 and multiple drug resistance in refractory human epileptic brain. BMC Medicine, 2004, 2, 37.	5.5	128
31	Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatric Disease and Treatment, 2018, Volume 14, 2989-3000.	2.2	125
32	Selective loss of hippocampal long-term potentiation, but not depression, following fluid percussion injury. Brain Research, 1998, 786, 64-79.	2.2	123
33	Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Research, 2016, 1630, 225-240.	2.2	120
34	A Dynamic <i>in vitro</i> BBB Model for the Study of Immune Cell Trafficking into the Central Nervous System. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 767-777.	4.3	119
35	Blood–brain barrier, ion homeostasis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms. Epilepsy Research, 1999, 37, 223-232.	1.6	111
36	Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood–brain barrier. Epilepsia, 2012, 53, 26-34.	5.1	111

#	Article	IF	CITATIONS
37	IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochemical and Biophysical Research Communications, 2018, 507, 274-279.	2.1	107
38	Blood–brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity. Brain Research, 2010, 1353, 176-186.	2.2	98
39	Inflammatory events at blood–brain barrier in neuroinflammatory and neurodegenerative disorders: Implications for clinical disease. Epilepsia, 2012, 53, 45-52.	5.1	97
40	Pattern of P450 expression at the human blood–brain barrier: Roles of epileptic condition and laminar flow. Epilepsia, 2010, 51, 1408-1417.	5.1	96
41	Extracranial Sources of S100B Do Not Affect Serum Levels. PLoS ONE, 2010, 5, e12691.	2.5	95
42	A new dynamic in vitro modular capillaries-venules modular system: Cerebrovascular physiology in a box. BMC Neuroscience, 2013, 14, 18.	1.9	89
43	Serum Transthyretin Monomer as a Possible Marker of Blood-to-CSF Barrier Disruption. Journal of Neuroscience, 2003, 23, 1949-1955.	3.6	87
44	Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents. Advanced Drug Delivery Reviews, 2012, 64, 605-613.	13.7	87
45	A Pilot Study on Brain-to-Plasma Partition of 10,11-Dyhydro-10-hydroxy-5H-dibenzo(b,f)azepine-5-carboxamide and MDR1 Brain Expression in Epilepsy Patients Not Responding to Oxcarbazepine. Epilepsia, 2005, 46, 1613-1619.	5.1	86
46	The NMDA receptor NR2B subunit contributes to epileptogenesis in human cortical dysplasia. Brain Research, 2005, 1046, 10-23.	2.2	84
47	SEMA4D compromises blood–brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease. Neurobiology of Disease, 2015, 73, 254-268.	4.4	84
48	Blood–brain barrier damage and brain penetration of antiepileptic drugs: Role of serum proteins and brain edema. Epilepsia, 2009, 50, 664-677.	5.1	81
49	<scp>WONOEP</scp> appraisal: Molecular and cellular biomarkers for epilepsy. Epilepsia, 2016, 57, 1354-1362.	5.1	81
50	A new model of the blood–brain barrier. NeuroReport, 1999, 10, 3725-3731.	1.2	75
51	Vascular and Parenchymal Mechanisms in Multiple Drug Resistance: a Lesson from Human Epilepsy. Current Drug Targets, 2003, 4, 297-304.	2.1	75
52	Mechanisms of Endothelial Survival Under Shear Stress. Endothelium: Journal of Endothelial Cell Research, 2002, 9, 89-102.	1.7	74
53	RLIP76, a non-ABC transporter, and drug resistance in epilepsy. BMC Neuroscience, 2005, 6, 61.	1.9	74
54	Management of the patient with medically refractory epilepsy. Expert Review of Neurotherapeutics, 2009, 9, 1791-1802.	2.8	72

#	Article	IF	CITATIONS
55	Significance of Ubiquitin Carboxy-Terminal Hydrolase L1 Elevations in Athletes after Sub-Concussive Head Hits. PLoS ONE, 2014, 9, e96296.	2.5	72
56	Cellular localization and functional significance of CYP3A4 in the human epileptic brain. Epilepsia, 2011, 52, 562-571.	5.1	70
57	Drug Resistance in Epilepsy: The Role of the Blood-Brain Barrier. Novartis Foundation Symposium, 2008, , 38-53.	1.1	67
58	Serum S100B: A Potential Biomarker for Suicidality in Adolescents?. PLoS ONE, 2010, 5, e11089.	2.5	67
59	Peripheral detection of S100β during cardiothoracic surgery: what are we really measuring?. Annals of Thoracic Surgery, 2004, 78, 46-52.	1.3	65
60	Blood-Brain Barrier P450 Enzymes and Multidrug Transporters in Drug Resistance: A Synergistic Role in Neurological Diseases. Current Drug Metabolism, 2011, 12, 742-749.	1.2	65
61	Loss of shear stress induces leukocyte-mediated cytokine release and blood-brain barrier failure in dynamic in vitro blood-brain barrier model. Journal of Cellular Physiology, 2006, 206, 68-77.	4.1	61
62	Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia, 2011, 52, 1627-1634.	5.1	61
63	S100Î ² as a predictor of brain metastases. Cancer, 2005, 104, 817-824.	4.1	59
64	Bone marrow-derived cells are the major source of MMP-9 contributing to blood–brain barrier dysfunction and infarct formation after ischemic stroke in mice. Brain Research, 2009, 1294, 183-192.	2.2	59
65	The Etiological Role of Blood-Brain Barrier Dysfunction in Seizure Disorders. Cardiovascular Psychiatry and Neurology, 2011, 2011, 1-9.	0.8	58
66	Blood–brain barrier, bulk flow, and interstitial clearance in epilepsy. Journal of Neuroscience Methods, 2016, 260, 118-124.	2.5	58
67	Brain dysfunction in COVIDâ€19 and CARâ€T therapy: cytokine stormâ€associated encephalopathy. Annals of Clinical and Translational Neurology, 2021, 8, 968-979.	3.7	52
68	A role for inflammation in status epilepticus is revealed by a review of current therapeutic approaches. Epilepsia, 2013, 54, 30-32.	5.1	51
69	Breakdown of blood brain barrier as a mechanism of post-traumatic epilepsy. Neurobiology of Disease, 2019, 123, 20-26.	4.4	50
70	Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis. BMC Neuroscience, 2009, 10, 17.	1.9	49
71	Dynamic in vitro modeling of the blood–brain barrier: a novel tool for studies of drug delivery to the brain. Pharmaceutical Science & Technology Today, 1999, 2, 7-12.	0.7	47
72	Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discovery Today, 2016, 21, 1609-1619.	6.4	46

#	Article	IF	CITATIONS
73	Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells. Epilepsia, 2017, 58, 576-585.	5.1	45
74	In vitro Models of the Blood–Brain Barrier: Tools in Translational Medicine. Frontiers in Medical Technology, 2020, 2, 623950.	2.5	43
75	Use of a three-dimensional in vitro model of the rat blood–brain barrier to assay nucleoside efflux from brain. Brain Research, 2003, 980, 233-241.	2.2	42
76	Glycerophosphoinositol and dexamethasone improve transendothelial electrical resistance in an in vitro study of the blood–brain barrier. Brain Research, 2004, 997, 147-151.	2.2	42
77	Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells. BMC Cancer, 2006, 6, 72.	2.6	42
78	Understanding the Physiology of the Blood-Brain Barrier: In Vitro Models. Physiology, 1998, 13, 287-293.	3.1	40
79	Improving the clinical management of traumatic brain injury through the pharmacokinetic modeling of peripheral blood biomarkers. Fluids and Barriers of the CNS, 2016, 13, 21.	5.0	40
80	Transbuccal Delivery of CNS Therapeutic Nanoparticles: Synthesis, Characterization, and In Vitro Permeation Studies. ACS Chemical Neuroscience, 2011, 2, 676-683.	3.5	38
81	ls Peripheral Immunity Regulated by Blood-Brain Barrier Permeability Changes?. PLoS ONE, 2014, 9, e101477.	2.5	38
82	Expression and functional relevance of <scp>UGT</scp> 1 <scp>A</scp> 4 in a cohort of human drugâ€resistant epileptic brains. Epilepsia, 2013, 54, 1562-1570.	5.1	37
83	Peripheral Blood and Salivary Biomarkers of Blood–Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Frontiers in Neurology, 2020, 11, 577312.	2.4	36
84	Does Systemic Inflammation Play a Role in Pediatric Psychosis?. Clinical Schizophrenia and Related Psychoses, 2015, 9, 65-78B.	1.4	36
85	Transporters in Drug-Refractory Epilepsy: Clinical Significance. Clinical Pharmacology and Therapeutics, 2010, 87, 13-15.	4.7	35
86	Blood-brain barrier preservation in the in vitro isolated guinea pig brain preparation. Journal of Neuroscience Research, 2001, 66, 289-297.	2.9	33
87	S100B blood levels and childhood trauma in adolescent inpatients. Journal of Psychiatric Research, 2015, 62, 14-22.	3.1	31
88	Methodological standards for inÂvitro models of epilepsy and epileptic seizures. A <scp>TASK</scp> 1â€ <scp>WG</scp> 4 report of the <scp>AES</scp> / <scp>ILAE</scp> Translational Task Force of the ILAE. Epilepsia, 2017, 58, 40-52.	5.1	31
89	Use of Blood Biomarkers in the Assessment of Sports-Related Concussion—A Systematic Review in the Context of Their Biological Significance. Clinical Journal of Sport Medicine, 2018, 28, 561-571.	1.8	31
90	Drug resistance in epilepsy: the role of the blood-brain barrier. Novartis Foundation Symposium, 2002, 243, 38-47; discussion 47-53, 180-5.	1.1	29

#	Article	IF	CITATIONS
91	Cerebrovascular heterogeneity and neuronal excitability. Neuroscience Letters, 2018, 667, 75-83.	2.1	28
92	Dissociation between <i>in vitro</i> and <i>in vivo</i> epileptogenicity in a rat model of cortical dysplasia. Epileptic Disorders, 2007, 9, 11-19.	1.3	27
93	Drug delivery and in vitro models of the blood-brain barrier. Current Opinion in Drug Discovery & Development, 2005, 8, 89-99.	1.9	27
94	The role and diagnostic significance of cellular barriers after concussive head trauma. Concussion, 2018, 3, CNC53.	1.0	25
95	GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Frontiers in Neurology, 2022, 13, 835597.	2.4	25
96	Suicidal Behavior in Adolescents with First-Episode Psychosis. Clinical Schizophrenia and Related Psychoses, 2010, 4, 34-40.	1.4	24
97	Sertralineâ€induced potentiation of the CYP3A4â€dependent neurotoxicity of carbamazepine: An in vitro study. Epilepsia, 2015, 56, 439-449.	5.1	23
98	S100B and S100B autoantibody as biomarkers for early detection of brain metastases in lung cancer. Translational Lung Cancer Research, 2016, 5, 413-419.	2.8	23
99	The blood-brain barrier hypothesis in drug resistant epilepsy. Brain, 2012, 135, e211-e211.	7.6	22
100	Effect of status epilepticus and antiepileptic drugs on CYP2E1 brain expression. Neuroscience, 2014, 281, 124-134.	2.3	22
101	Is Salivary S100B a Biomarker of Traumatic Brain Injury? A Pilot Study. Frontiers in Neurology, 2020, 11, 528.	2.4	22
102	Multimodal investigations of trans-endothelial cell trafficking under condition of disrupted blood-brain barrier integrity. BMC Neuroscience, 2010, 11, 34.	1.9	21
103	Insulin permeability across an in vitro dynamic model of endothelium. Pharmaceutical Research, 2002, 19, 445-450.	3.5	20
104	In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance. Brain Research, 2006, 1086, 201-213.	2.2	20
105	A pro-convulsive carbamazepine metabolite: Quinolinic acid in drug resistant epileptic human brain. Neurobiology of Disease, 2012, 46, 692-700.	4.4	20
106	Intracellular and circulating neuronal antinuclear antibodies in human epilepsy. Neurobiology of Disease, 2013, 59, 206-219.	4.4	18
107	Hypoxemia increases blood-brain barrier permeability during extreme apnea in humans. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1120-1135.	4.3	18
108	Small Vessel Ischemic Disease of the Brain and Brain Metastases in Lung Cancer Patients. PLoS ONE, 2009, 4, e7242.	2.5	17

#	Article	IF	CITATIONS
109	Anti-NR2 antibodies, blood-brain barrier, and cognitive dysfunction. Clinical Rheumatology, 2016, 35, 2989-2997.	2.2	17
110	How do we use inÂvitro models to understand epileptiform and ictal activity? A report of the <scp>TASK</scp> 1â€ <scp>WG</scp> 4 group of the <scp>ILAE</scp> / <scp>AES</scp> Joint Translational Task Force. Epilepsia Open, 2018, 3, 460-473.	2.4	17
111	Cerebral Waste Accumulation and Glymphatic Clearance as Mechanisms of Human Neurological Diseases. Journal of Neurology and Neuromedicine, 2016, 1, 15-19.	0.9	17
112	Patients with generalised epilepsy have a higher white blood cell count than patients with focal epilepsy. Epileptic Disorders, 2012, 14, 57-63.	1.3	16
113	Modulation of glucocorticoid receptor in human epileptic endothelial cells impacts drug biotransformation in an inÂvitro blood–brain barrier model. Epilepsia, 2018, 59, 2049-2060.	5.1	16
114	What Non-neuronal Mechanisms Should Be Studied to Understand Epileptic Seizures?. Advances in Experimental Medicine and Biology, 2014, 813, 253-264.	1.6	15
115	Lack of CAR impacts neuronal function and cerebrovascular integrity in vivo. Experimental Neurology, 2016, 283, 39-48.	4.1	14
116	Persistent SIV infection of a blood-brain barrier model. Journal of NeuroVirology, 2002, 8, 270-280.	2.1	12
117	Reading and Writing the Blood-Brain Barrier: Relevance to Therapeutics. Recent Patents on CNS Drug Discovery, 2006, 1, 157-173.	0.9	10
118	Mechanisms of Cerebral Edema Leading to Early Seizures After Traumatic Brain Injury. , 2014, , 29-45.		10
119	RLIP76 in AED drug resistance. Epilepsia, 2007, 48, 1218-1219.	5.1	8
120	Diagnostic biomarker kinetics: how brain-derived biomarkers distribute through the human body, and how this affects their diagnostic significance: the case of S100B. Fluids and Barriers of the CNS, 2022, 19, 32.	5.0	7
121	Detection of brain-directed autoantibodies in the serum of non-small cell lung cancer patients. PLoS ONE, 2017, 12, e0181409.	2.5	6
122	Inflammation in pediatric epilepsies: Update on clinical features and treatment options. Epilepsy and Behavior, 2022, 131, 107959.	1.7	6
123	ILâ€lβ associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia, 2014, 55, 1313-1313.	5.1	5
124	Levels of S100B in brain and blood of rats with diabetic ketoacidosis. Brain Research, 2015, 1624, 536-544.	2.2	5
125	Not Again! the Role of Blood–Brain Barrier Failure in Epileptogenesis: Amolecular Update. Epilepsy Currents, 2010, 10, 67-69.	0.8	3
126	Tau in Chronic Traumatic Encephalopathy. JAMA Neurology, 2018, 75, 381.	9.0	3

#	Article	IF	CITATIONS
127	Editorial: Biomarkers of Brain Damage – A Complex Challenge With Great Potential. Frontiers in Neurology, 2021, 12, 664445.	2.4	3
128	Akinetic mutism in COVID-19-related encephalopathy: A cytokine-mediated maladaptive sickness behavioral response?. Brain, Behavior, & Immunity - Health, 2021, 15, 100272.	2.5	3
129	Fundamentals of Brain–Barrier Anatomy and Global Functions. , 2019, , 3-20.		2
130	New immunological approaches in treating and diagnosing CNS diseases. Pharmaceutical Patent Analyst, 2013, 2, 361-371.	1.1	1
131	S100B as a Serum Marker for Early Detection of Brain Metastasis in Lung Cancer. Chest, 2013, 144, 644A.	0.8	1
132	Blood–Brain Barrier in Disease States. , 2019, , 21-37.		1
133	156. The Impact of Childhood Trauma on the Blood-Brain Barrier and the Risk of Suicide. Biological Psychiatry, 2019, 85, S65.	1.3	1
134	Peripheral markers of TBI and bloodâ^'brain barrier disruption. , 2020, , 43-54.		1
135	Factors Modulating Seizure Susceptibility. , 2010, , 193-201.		Ο
136	Serum S100B in patients with and without delirium. Neurology Psychiatry and Brain Research, 2012, 18, 53.	2.0	0
137	Pro- and Anti-inflammatory Neurovascular Processes in Epilepsy: A Fragile and Dynamic Equilibrium. Agents and Actions Supplements, 2021, , 1-20.	0.2	Ο

138 Blood–Brain Barrier, Blood Flow, Neoplasms and Epilespy. , 2010, , 21-34.