Paolo F Fabene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010418/publications.pdf Version: 2024-02-01

PAOLO E EARENE

#	Article	IF	CITATIONS
1	A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nature Medicine, 2008, 14, 1377-1383.	30.7	453
2	A revised Racine's scale for PTZ-induced seizures in rats. Physiology and Behavior, 2009, 98, 579-586.	2.1	305
3	The emerging role for chemokines in epilepsy. Journal of Neuroimmunology, 2010, 224, 22-27.	2.3	137
4	Localized delivery of fibroblast growth factor–2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7191-7196.	7.1	134
5	Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage. Neurolmage, 2003, 18, 375-389.	4.2	123
6	Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. Journal of Neuroinflammation, 2010, 7, 81.	7.2	105
7	Classic hippocampal sclerosis and hippocampalâ€onset epilepsy produced by a single "cryptic―episode of focal hippocampal excitation in awake rats. Journal of Comparative Neurology, 2010, 518, 3381-3407.	1.6	68
8	Late-onset Parkinsonism in NFÂB/c-Rel-deficient mice. Brain, 2012, 135, 2750-2765.	7.6	66
9	Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4â€∫weeks after pilocarpine-induced status epilepticus. Epilepsia, 2011, 52, 572-578.	5.1	63
10	Pilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms. PLoS ONE, 2007, 2, e1105.	2.5	62
11	Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI. Magnetic Resonance Imaging, 2013, 31, 1001-1005.	1.8	62
12	Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia, 2011, 52, 1627-1634.	5.1	61
13	Leukocyte trafficking mechanisms in epilepsy. Molecular Immunology, 2013, 55, 100-104.	2.2	56
14	Does Pilocarpine-Induced Epilepsy in Adult Rats Require Status epilepticus?. PLoS ONE, 2009, 4, e5759.	2.5	51
15	Enhancement of GABA _A -current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3180-3185.	7.1	49
16	Finding a better drug for epilepsy: Antiinflammatory targets. Epilepsia, 2012, 53, 1113-1118.	5.1	44
17	A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15977-15988.	7.1	41
18	In Vivo Phenotyping of the <i>ob/ob</i> Mouse by Magnetic Resonance Imaging and ¹ Hâ€Magnetic Resonance Spectroscopy. Obesity, 2006, 14, 405-414.	3.0	40

Paolo F Fabene

#	Article	lF	CITATIONS
19	All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Scientific Reports, 2017, 7, 5083.	3.3	40
20	Drug resistance and hippocampal damage after delayed treatment of pilocarpine-induced epilepsy in the rat. Brain Research Bulletin, 2006, 71, 127-138.	3.0	37
21	Nonsteroidal anti-inflammatory drugs in clinical and experimental epilepsy. Epilepsy Research, 2017, 131, 15-27.	1.6	37
22	Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiology of Disease, 2020, 144, 105048.	4.4	35
23	Fos induction and persistence, neurodegeneration, and interneuron activation in the hippocampus of epilepsy-resistant versus epilepsy-prone rats after pilocarpine-induced seizures. Hippocampus, 2004, 14, 895-907.	1.9	28
24	Neurovascular Unit in Chronic Pain. Mediators of Inflammation, 2013, 2013, 1-18.	3.0	27
25	The Anti-Inflammatory Properties of Mesenchymal Stem Cells in Epilepsy: Possible Treatments and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 9683.	4.1	26
26	Assessment of cerebral blood volume in schizophrenia: A magnetic resonance imaging study. Journal of Psychiatric Research, 2007, 41, 502-510.	3.1	25
27	Pulsed-arterial-spin-labeling perfusion 3T MRI following single seizure: A first case report study. Epilepsy Research, 2008, 81, 225-227.	1.6	22
28	New players in the neurovascular unit: Insights from experimental and clinical epilepsy. Neurochemistry International, 2013, 63, 652-659.	3.8	22
29	Effects of pharmacological agents, sleep deprivation, hypoxia and transcranial magnetic stimulation on electroencephalographic rhythms in rodents: Towards translational challenge models for drug discovery in Alzheimer's disease. Clinical Neurophysiology, 2013, 124, 437-451.	1.5	21
30	Therapeutic targeting of Lyn kinase to treat chorea-acanthocytosis. Acta Neuropathologica Communications, 2021, 9, 81.	5.2	19
31	Neural correlates of sensory gating in the rat: decreased Fos induction in the lateral septum. Brain Research Bulletin, 2001, 54, 145-151.	3.0	17
32	Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging. Journal of Anatomy, 2004, 204, 465-474.	1.5	15
33	Gut microbiota modulates seizure susceptibility. Epilepsia, 2021, 62, e153-e157.	5.1	15
34	Fos induction in cortical interneurons during spontaneous wakefulness of rats in a familiar or enriched environment. Brain Research Bulletin, 2002, 57, 631-638.	3.0	14
35	Sub-chronic nicotine-induced changes in regional cerebral blood volume and transversal relaxation time patterns in the rat: a magnetic resonance study. Neuroscience Letters, 2005, 377, 195-199.	2.1	12
36	Detection of spontaneous seizures in EEGs in multiple experimental mouse models of epilepsy. Journal of Neural Engineering, 2021, 18, 056060.	3.5	12

Paolo F Fabene

#	Article	IF	CITATIONS
37	On-going electroencephalographic rhythms related to cortical arousal in wild-type mice: the effect of aging. Neurobiology of Aging, 2017, 49, 20-30.	3.1	11
38	Different patterns of neuronal activation and neurodegeneration in the thalamus and cortex of epilepsyâ€resistant <i>Proechimys</i> rats versus Wistar rats after pilocarpineâ€induced protracted seizures. Epilepsia, 2009, 50, 832-848.	5.1	10
39	Biopsychosocial model of resilience in young adults with multiple sclerosis (BPS-ARMS): an observational study protocol exploring psychological reactions early after diagnosis. BMJ Open, 2019, 9, e030469.	1.9	10
40	The hydrolipidic ratio inÂage-related maturation ofÂadipose tissues. Biomedicine and Pharmacotherapy, 2006, 60, 139-143.	5.6	9
41	Dynamic MRI reveals that the magnitude of the ischemia-related enhancement in skeletal muscle is age-dependent. Magnetic Resonance in Medicine, 2003, 49, 386-390.	3.0	4
42	Early onset of age-related changes on neural processing in rats. Physiology and Behavior, 2011, 103, 134-143.	2.1	4
43	Three-dimensional MRI perfusion maps: a step beyond volumetric analysis in mental disorders. Journal of Anatomy, 2007, 210, 122-128.	1.5	3
44	Are they in or out? The elusive interaction between Qtracker [®] 800 vascular labels and brain endothelial cells. Nanomedicine, 2015, 10, 3329-3342.	3.3	3
45	The thalamus of the Amazon spiny rat Proechimys guyannensis, an animal model of resistance to epilepsy, and pilocarpine-induced long-term changes of protein expression. Thalamus & Related Systems, 2001, 1, 117-133.	0.5	2
46	Regional cerebral blood volume (rCBV) and trasversal relaxation time (T2) mapping of the rat limbic system during pre-puberal and adult age. Neuroscience Letters, 2004, 364, 141-144.	2.1	2
47	Axon-like processes in type III cells of taste organs. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 276-279.	2.0	2
48	Nonâ€neuronal cells, inflammation and epilepsy (Commentary on Aronica <i>etÂal.</i>). European Journal of Neuroscience, 2010, 31, 1098-1099.	2.6	2
49	Age-Dependent Neuropsychiatric Symptoms in the NF-κB/c-Rel Knockout Mouse Model of Parkinson's Disease. Frontiers in Behavioral Neuroscience, 2022, 16, 831664.	2.0	2
50	The thalamus of the Amazon spiny rat Proechimys guyannensis , an animal model of resistance to epilepsy, and pilocarpine-induced long-term changes of protein expression. Thalamus & Related Systems, 2001, 1, 117.	0.5	1
51	Electrographic seizures induced by activation of ETA and ETB receptors following intrahippocampal infusion of endothelin-1 in immature rats occur by different mechanisms. Experimental Neurology, 2020, 328, 113255.	4.1	1