Dmitri V Mavrodi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7010300/publications.pdf Version: 2024-02-01

ΝΜΙΤΡΙ V ΜΑΥΡΟΝΙ

#	Article	IF	CITATIONS
1	Detoxification of Copper and Chromium via Dark Hydrogen Fermentation of Potato Waste by Clostridium butyricum Strain 92. Processes, 2022, 10, 170.	2.8	0
2	Systematic overexpression of genes encoded by mycobacteriophage Waterfoul reveals novel inhibitors of mycobacterial growth. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	7
3	Effect of rock dust-amended compost on the soil properties, soil microbial activity, and fruit production in an apple orchard from the Jiangsu province of China. Archives of Agronomy and Soil Science, 2021, 67, 1313-1326.	2.6	9
4	Rhizosphere plant-microbe interactions under water stress. Advances in Applied Microbiology, 2021, 115, 65-113.	2.4	27
5	Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas. Frontiers in Microbiology, 2021, 12, 651282.	3.5	58
6	Functional Analysis of Phenazine Biosynthesis Genes in <i>Burkholderia</i> spp Applied and Environmental Microbiology, 2021, 87, .	3.1	10
7	Exploring the Pathogenicity of Pseudomonas brassicacearum Q8r1-96 and Other Strains of the Pseudomonas fluorescens Complex on Tomato. Plant Disease, 2020, 104, 1026-1031.	1.4	10
8	Antimicrobial Activity of, and Cellular Pathways Targeted by, <i>p</i> -Anisaldehyde and Epigallocatechin Gallate in the Opportunistic Human Pathogen Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2020, 86, .	3.1	17
9	Draft Genome Sequences of Six Strains Isolated from the Rhizosphere of Wheat Grown in Cadmium-Contaminated Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	0
10	<i>Pseudomonas synxantha</i> 2-79 Transformed with Pyrrolnitrin Biosynthesis Genes Has Improved Biocontrol Activity Against Soilborne Pathogens of Wheat and Canola. Phytopathology, 2020, 110, 1010-1017.	2.2	13
11	Comparative Analysis of Rhizosphere Microbiomes of Southern Highbush Blueberry (Vaccinium) Tj ETQq1 1 0.7 Frontiers in Microbiology, 2020, 11, 370.	'84314 rgBT 3.5	/Overlock 10 22
12	Draft Genome Sequences of Xylella fastidiosa subsp. <i>fastidiosa</i> Strains OK3, VB11, and NOB1, Isolated from Bunch and Muscadine Grapes Grown in Southern Mississippi. Microbiology Resource Announcements, 2020, 9, .	0.6	1
13	Discovery and Characterization of Bacteriophage LuckyBarnes. Microbiology Resource Announcements, 2019, 8, .	0.6	2
14	Control of <i>Pseudomonas amygdali</i> pv. <i>loropetali</i> on Metal, Wood, and <i>Loropetalum chinense</i> Stem Surfaces. Plant Health Progress, 2019, 20, 270-277.	1.4	4
15	Phenazineâ€1â€carboxylic acid and soil moisture influence biofilm development and turnover of rhizobacterial biomass on wheat root surfaces. Environmental Microbiology, 2018, 20, 2178-2194.	3.8	35
16	A bio-based pro-antimicrobial polymer network via degradable acetal linkages. Acta Biomaterialia, 2018, 67, 196-205.	8.3	13
17	Using Aldehyde Synergism To Direct the Design of Degradable Pro-Antimicrobial Networks. ACS Applied Bio Materials, 2018, 1, 1983-1991.	4.6	7
18	Rhizosphere Microbial Communities of Spartina alterniflora and Juncus roemerianus From Restored and Natural Tidal Marshes on Deer Island, Mississippi. Frontiers in Microbiology, 2018, 9, 3049.	3.5	20

DMITRI V MAVRODI

#	Article	IF	CITATIONS
19	Long-Term Irrigation Affects the Dynamics and Activity of the Wheat Rhizosphere Microbiome. Frontiers in Plant Science, 2018, 9, 345.	3.6	73
20	Differential Response of Wheat Cultivars to <i>Pseudomonas brassicacearum</i> and Take-All Decline Soil. Phytopathology, 2018, 108, 1363-1372.	2.2	23
21	Pro-Antimicrobial Networks via Degradable Acetals (PANDAs) Using Thiol–Ene Photopolymerization. ACS Macro Letters, 2017, 6, 171-175.	4.8	21
22	Construction of a recombinant strain of Pseudomonas fluorescens producing both phenazine-1-carboxylic acid and cyclic lipopeptide for the biocontrol of take-all disease of wheat. European Journal of Plant Pathology, 2017, 149, 683-694.	1.7	21
23	An inclusive Research Education Community (iREC): Impact of the SEA-PHAGES program on research outcomes and student learning. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13531-13536.	7.1	155
24	Genome Sequences of Mycobacteriophages Amgine, Amohnition, Bella96, Cain, DarthP, Hammy, Krueger, LastHope, Peanam, PhelpsODU, Phrank, SirPhilip, Slimphazie, and Unicorn. Genome Announcements, 2017, 5, .	0.8	1
25	Relationships between Root Pathogen Resistance, Abundance and Expression of Pseudomonas Antimicrobial Genes, and Soil Properties in Representative Swiss Agricultural Soils. Frontiers in Plant Science, 2017, 8, 427.	3.6	37
26	Draft genome sequences of strains Salinicola socius SMB35T, Salinicola sp. MH3R3–1 and Chromohalobacter sp. SMB17 from the Verkhnekamsk potash mining region of Russia. Standards in Genomic Sciences, 2017, 12, 39.	1.5	9
27	Genome Sequence of Mycobacterium Phage Waterfoul. Genome Announcements, 2016, 4, .	0.8	1
28	Destruction of Opportunistic Pathogens via Polymer Nanoparticleâ€Mediated Release of Plantâ€Based Antimicrobial Payloads. Advanced Healthcare Materials, 2016, 5, 1094-1103.	7.6	22
29	Draft Genome Sequence of the Phenazine-Producing Pseudomonas fluorescens Strain 2-79. Genome Announcements, 2015, 3, .	0.8	5
30	Biocontrol and plant growthâ€promoting activity of rhizobacteria from <scp>C</scp> hinese fields with contaminated soils. Microbial Biotechnology, 2015, 8, 404-418.	4.2	83
31	<i>Pseudomonas protegens</i> Pf-5 Causes Discoloration and Pitting of Mushroom Caps Due to the Production of Antifungal Metabolites. Molecular Plant-Microbe Interactions, 2014, 27, 733-746.	2.6	26
32	Biological Control of Wheat Root Diseases by the CLP-Producing Strain <i>Pseudomonas fluorescens</i> HC1-07. Phytopathology, 2014, 104, 248-256.	2.2	52
33	Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1403-1413.	2.5	24
34	Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.). Applied and Environmental Microbiology, 2013, 79, 7428-7438.	3.1	224
35	Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent <i>Pseudomonas</i> spp Environmental Microbiology, 2013, 15, 675-686.	3.8	119
36	pA506, a Conjugative Plasmid of the Plant Epiphyte Pseudomonas fluorescens A506. Applied and Environmental Microbiology, 2013, 79, 5272-5282.	3.1	12

#	Article	IF	CITATIONS
37	Taxonomy and Distribution of Phenazine-Producing Pseudomonas spp. in the Dryland Agroecosystem of the Inland Pacific Northwest, United States. Applied and Environmental Microbiology, 2013, 79, 3887-3891.	3.1	27
38	Phenazines and Bacterial Biofilms. , 2013, , 71-87.		2
39	Irrigation Differentially Impacts Populations of Indigenous Antibiotic-Producing Pseudomonas spp. in the Rhizosphere of Wheat. Applied and Environmental Microbiology, 2012, 78, 3214-3220.	3.1	70
40	Accumulation of the Antibiotic Phenazine-1-Carboxylic Acid in the Rhizosphere of Dryland Cereals. Applied and Environmental Microbiology, 2012, 78, 804-812.	3.1	128
41	Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genetics, 2012, 8, e1002784.	3.5	578
42	Induced Systemic Resistance in <i>Arabidopsis thaliana</i> Against <i>Pseudomonas syringae</i> pv. <i>tomato</i> by 2,4-Diacetylphloroglucinol-Producing <i>Pseudomonas fluorescens</i> . Phytopathology, 2012, 102, 403-412.	2.2	190
43	Population Structure and Diversity of Phenazine-1-Carboxylic Acid Producing Fluorescent Pseudomonas spp. from Dryland Cereal Fields of Central Washington State (USA). Microbial Ecology, 2012, 64, 226-241.	2.8	38
44	Structural and Functional Analysis of the Type III Secretion System from <i>Pseudomonas fluorescens</i> Q8r1-96. Journal of Bacteriology, 2011, 193, 177-189.	2.2	61
45	The Role of 2,4-Diacetylphloroglucinol- and Phenazine-1-Carboxylic Acid-Producing Pseudomonas spp. in Natural Protection of Wheat from Soilborne Pathogens. , 2011, , 267-283.		5
46	Biological Control of Take-All by Fluorescent <i>Pseudomonas</i> spp. from Chinese Wheat Fields. Phytopathology, 2011, 101, 1481-1491.	2.2	61
47	Biological Control of Rhizoctonia Root Rot on Bean by Phenazine- and Cyclic Lipopeptide-Producing <i>Pseudomonas</i> CMR12a. Phytopathology, 2011, 101, 996-1004.	2.2	88
48	Ligand Binding Induces an Ammonia Channel in 2-Amino-2-desoxyisochorismate (ADIC) Synthase PhzE. Journal of Biological Chemistry, 2011, 286, 18213-18221.	3.4	49
49	Diversity and Evolution of the Phenazine Biosynthesis Pathway. Applied and Environmental Microbiology, 2010, 76, 866-879.	3.1	241
50	Structural characterization of the aromatic monooxygenases PhzO and TcpA. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s147-s147.	0.3	0
51	Structural and functional studies of phenazine biosynthesis protein PhzE, a 2-amino-2-desoxyisochorismate synthase. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s147-s148.	0.3	0
52	Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiology, 2009, 9, 8.	3.3	91
53	Of Two Make One: The Biosynthesis of Phenazines. ChemBioChem, 2009, 10, 2295-2304.	2.6	125
54	Pseudomonas aeruginosa Exotoxin Pyocyanin Causes Cystic Fibrosis Airway Pathogenesis. American Journal of Pathology, 2009, 175, 2473-2488.	3.8	152

Dmitri V Mavrodi

#	Article	IF	CITATIONS
55	PhzA/B Catalyzes the Formation of the Tricycle in Phenazine Biosynthesis. Journal of the American Chemical Society, 2008, 130, 17053-17061.	13.7	71
56	SELECTING, MONITORING, AND ENHANCING THE PERFORMANCE OF BACTERIAL BIOCONTROL AGENTS: PRINCIPLES, PITFALLS, AND PROGRESS. , 2007, , 87-105.		3
57	Quantification of 2,4-Diacetylphloroglucinol-Producing <i>Pseudomonas fluorescens</i> Strains in the Plant Rhizosphere by Real-Time PCR. Applied and Environmental Microbiology, 2007, 73, 5531-5538.	3.1	45
58	Utilization of trehalose, benzoate, valerate, and seed and root exudates by genotypes of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens. Soil Biology and Biochemistry, 2007, 39, 2712-2722.	8.8	21
59	Role of 2,4-Diacetylphloroglucinol-Producing FluorescentPseudomonasspp. in the Defense of Plant Roots. Plant Biology, 2007, 9, 4-20.	3.8	259
60	Genomics of Pseudomonas fluorescens Pf-5. , 2007, , 3-30.		5
61	Role of ptsP, orfT, and sss Recombinase Genes in Root Colonization by Pseudomonas fluorescens Q8r1-96. Applied and Environmental Microbiology, 2006, 72, 7111-7122.	3.1	44
62	The purification, crystallization and preliminary structural characterization of PhzM, a phenazine-modifying methyltransferase fromPseudomonas aeruginosa. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 887-890.	0.7	8
63	The purification, crystallization and preliminary structural characterization of FAD-dependent monooxygenase PhzS, a phenazine-modifying enzyme fromPseudomonas aeruginosa. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 989-992.	0.7	9
64	phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Microbiology Ecology, 2006, 56, 64-78.	2.7	54
65	Phenazine Compounds in FluorescentPseudomonasSpp. Biosynthesis and Regulation. Annual Review of Phytopathology, 2006, 44, 417-445.	7.8	527
66	Molecular classification of IncP-9 naphthalene degradation plasmids. Plasmid, 2006, 56, 1-10.	1.4	31
67	The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8r1-96. Microbiology (United Kingdom), 2006, 152, 863-872.	1.8	27
68	Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescentPseudomonasspp FEMS Microbiology Letters, 2005, 242, 249-256.	1.8	64
69	Activation of the phz Operon of Pseudomonas fluorescens 2-79 Requires the LuxR Homolog PhzR, N -(3-OH-Hexanoyl)- I -Homoserine Lactone Produced by the LuxI Homolog PhzI, and a cis -Acting phz Box. Journal of Bacteriology, 2005, 187, 6517-6527.	2.2	89
70	Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 2005, 23, 873-878.	17.5	615
71	Pseudomonas aeruginosa Pyocyanin Is Critical for Lung Infection in Mice. Infection and Immunity, 2004, 72, 4275-4278.	2.2	312
72	Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16431-16436.	7.1	92

#	Article	IF	CITATIONS
73	The purification, crystallization and preliminary structural characterization of PhzF, a key enzyme in the phenazine-biosynthesis pathway fromPseudomonas fluorescens2-79. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 184-186.	2.5	12
74	Overexpression, purification and crystallization of PhzA, the first enzyme of the phenazine biosynthesis pathway ofPseudomonas fluorescens2-79. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1129-1131.	2.5	6
75	Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production. FEMS Microbiology Ecology, 2004, 49, 243-251.	2.7	73
76	Identification of the Key Genes of Naphthalene Catabolism in Soil DNA. Microbiology, 2003, 72, 597-604.	1.2	6
77	Interactions Between Strains of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens in the Rhizosphere of Wheat. Phytopathology, 2003, 93, 982-994.	2.2	98
78	Identification of Differences in Genome Content among phlD-Positive Pseudomonas fluorescens Strains by Using PCR-Based Subtractive Hybridization. Applied and Environmental Microbiology, 2002, 68, 5170-5176.	3.1	39
79	Genetic Diversity of phlD from 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp Phytopathology, 2001, 91, 35-43.	2.2	154
80	Phenazine Biosynthesis inPseudomonasfluorescens:Â Branchpoint from the Primary Shikimate Biosynthetic Pathway and Role of Phenazine-1,6-dicarboxylic Acid. Journal of the American Chemical Society, 2001, 123, 9459-9460.	13.7	115
81	phzO , a Gene for Biosynthesis of 2-Hydroxylated Phenazine Compounds in Pseudomonas aureofaciens 30-84. Journal of Bacteriology, 2001, 183, 318-327.	2.2	151
82	Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2001, 183, 6454-6465.	2.2	665
83	A Rapid Polymerase Chain Reaction-Based Assay Characterizing Rhizosphere Populations of 2,4-Diacetylphloroglucinol-Producing Bacteria. Phytopathology, 2001, 91, 44-54.	2.2	152
84	Chromosomal Insertion of Phenazine-1-Carboxylic Acid Biosynthetic Pathway Enhances Efficacy of Damping-off Disease Control by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions, 2000, 13, 1293-1300.	2.6	88
85	A Seven-Gene Locus for Synthesis of Phenazine-1-Carboxylic Acid by <i>Pseudomonas fluorescens</i> 2-79. Journal of Bacteriology, 1998, 180, 2541-2548.	2.2	241