
Eric U Selker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/700881/publications.pdf Version: 2024-02-01

FDIC 11 SELVED

#	Article	IF	CITATIONS
1	The ACF chromatin-remodeling complex is essential for Polycomb repression. ELife, 2022, 11, .	6.0	10
2	Rapid and inexpensive preparation of genome-wide nucleosome footprints from model and non-model organisms. STAR Protocols, 2021, 2, 100486.	1.2	7
3	Marked <i>Neurospora crassa</i> Strains for Competition Experiments and Bayesian Methods for Fitness Estimates. G3: Genes, Genomes, Genetics, 2020, 10, 1261-1270.	1.8	11
4	LSD1 prevents aberrant heterochromatin formation in Neurospora crassa. Nucleic Acids Research, 2020, 48, 10199-10210.	14.5	4
5	Selection and Characterization of Mutants Defective in DNA Methylation in <i>Neurospora crassa</i> . Genetics, 2020, 216, 671-688.	2.9	7
6	Evolutionarily ancient BAH–PHD protein mediates Polycomb silencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11614-11623.	7.1	30
7	A Light-Inducible Strain for Genome-Wide Histone Turnover Profiling in <i>Neurospora crassa</i> . Genetics, 2020, 215, 569-578.	2.9	6
8	Identification of a PRC2 Accessory Subunit Required for Subtelomeric H3K27 Methylation in <i>Neurospora crassa</i> . Molecular and Cellular Biology, 2020, 40, .	2.3	12
9	Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of <i>Neurospora crassa</i> . Genetics, 2019, 212, 691-710.	2.9	28
10	Nucleosome Positioning by an Evolutionarily Conserved Chromatin Remodeler Prevents Aberrant DNA Methylation in <i>Neurospora</i> . Genetics, 2019, 211, 563-578.	2.9	13
11	Telomere repeats induce domains of H3K27 methylation in Neurospora. ELife, 2018, 7, .	6.0	30
12	ASH1-catalyzed H3K36 methylation drives gene repression and marks H3K27me2/3-competent chromatin. ELife, 2018, 7, .	6.0	50
13	Recurrent rewiring and emergence of RNA regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2816-E2825.	7.1	32
14	H3K27 methylation: a promiscuous repressive chromatin mark. Current Opinion in Genetics and Development, 2017, 43, 31-37.	3.3	207
15	Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in <i>Neurospora crassa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9598-E9607.	7.1	26
16	Reply to Hogan: Direct evidence of RNA–protein interactions and rewiring. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10854-E10855.	7.1	0
17	Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in <i>Neurospora crassa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6135-E6144.	7.1	28
18	Normal chromosome conformation depends on subtelomeric facultative heterochromatin in <i>Neurospora crassa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15048-15053.	7.1	55

ERIC U SELKER

#	Article	IF	CITATIONS
19	<i>Neurospora</i> chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Research, 2016, 26, 1069-1080.	5.5	64
20	Loss of HP1 causes depletion of H3K27me3 from facultative heterochromatin and gain of H3K27me2 at constitutive heterochromatin. Genome Research, 2016, 26, 97-107.	5.5	96
21	Neurospora Importin Î \pm Is Required for Normal Heterochromatic Formation and DNA Methylation. PLoS Genetics, 2015, 11, e1005083.	3.5	25
22	The Cullin-4 Complex DCDC Does Not Require E3 Ubiquitin Ligase Elements To Control Heterochromatin in Neurospora crassa. Eukaryotic Cell, 2015, 14, 25-28.	3.4	11
23	Chromatin Structure and Modification. , 2014, , 113-123.		0
24	Neurospora crassa, a Model System for Epigenetics Research. Cold Spring Harbor Perspectives in Biology, 2013, 5, a017921-a017921.	5.5	131
25	The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Research, 2013, 41, 450-462.	14.5	70
26	Regional control of histone H3 lysine 27 methylation in <i>Neurospora</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6027-6032.	7.1	147
27	Heterochromatin protein 1 forms distinct complexes to direct histone deacetylation and DNA methylation. Nature Structural and Molecular Biology, 2012, 19, 471-477.	8.2	63
28	Neurospora. Current Biology, 2011, 21, R139-R140.	3.9	15
29	Substitutions in the Amino-Terminal Tail of Neurospora Histone H3 Have Varied Effects on DNA Methylation. PLoS Genetics, 2011, 7, e1002423.	3.5	22
30	Identification of DIM-7, a protein required to target the DIM-5 H3 methyltransferase to chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8310-8315.	7.1	41
31	H2B- and H3-Specific Histone Deacetylases Are Required for DNA Methylation in <i>Neurospora crassa</i> . Genetics, 2010, 186, 1207-1216.	2.9	38
32	DNA Methylation and Normal Chromosome Behavior in Neurospora Depend on Five Components of a Histone Methyltransferase Complex, DCDC. PLoS Genetics, 2010, 6, e1001196.	3.5	93
33	The DMM complex prevents spreading of DNA methylation from transposons to nearby genes in <i>Neurospora crassa</i> . Genes and Development, 2010, 24, 443-454.	5.9	49
34	Extensive and Varied Modifications in Histone H2B of Wild-Type and Histone Deacetylase 1 Mutant Neurospora crassa. Biochemistry, 2010, 49, 5244-5257.	2.5	12
35	Diverse Pathways Generate MicroRNA-like RNAs and Dicer-Independent Small Interfering RNAs in Fungi. Molecular Cell, 2010, 38, 803-814.	9.7	361
36	Relics of repeat-induced point mutation direct heterochromatin formation in <i>Neurospora crassa</i> . Genome Research, 2009, 19, 427-437.	5.5	137

ERIC U SELKER

#	Article	IF	CITATIONS
37	Characterization of Chromosome Ends in the Filamentous Fungus <i>Neurospora crassa</i> . Genetics, 2009, 181, 1129-1145.	2.9	52
38	Tools for Fungal Proteomics: Multifunctional Neurospora Vectors for Gene Replacement, Protein Expression and Protein Purification. Genetics, 2009, 182, 11-23.	2.9	114
39	The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenetics and Chromatin, 2008, 1, 5.	3.9	72
40	Protein phosphatase PP1 is required for normal DNA methylation in <i>Neurospora</i> . Genes and Development, 2008, 22, 3391-3396.	5.9	32
41	Direct Interaction between DNA Methyltransferase DIM-2 and HP1 Is Required for DNA Methylation in <i>Neurospora crassa</i> . Molecular and Cellular Biology, 2008, 28, 6044-6055.	2.3	116
42	Robert L. Metzenberg, June 11, 1930–July 15, 2007: Geneticist Extraordinaire and "Model Human― Genetics, 2008, 178, 611-619.	2.9	3
43	Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438, 1105-1115.	27.8	1,250
44	Methylation of Histone H3 Lysine 36 Is Required for Normal Development in Neurospora crassa. Eukaryotic Cell, 2005, 4, 1455-1464.	3.4	88
45	In Vitro and in Vivo Analyses of a Phe/Tyr Switch Controlling Product Specificity of Histone Lysine Methyltransferases. Journal of Biological Chemistry, 2005, 280, 5563-5570.	3.4	166
46	The 2005 Thomas Hunt Morgan Medal. Genetics, 2005, 169, 503-505.	2.9	2
47	DNA Methylation Is Independent of RNA Interference in Neurospora. Science, 2004, 304, 1939-1939.	12.6	116
48	Lessons from the Genome Sequence of <i>Neurospora crassa</i> : Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	6.6	572
49	GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genetics and Biology, 2004, 41, 897-910.	2.1	306
50	HP1 Is Essential for DNA Methylation in Neurospora. Molecular Cell, 2004, 13, 427-434.	9.7	207
51	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	27.8	1,528
52	The methylated component of the Neurospora crassa genome. Nature, 2003, 422, 893-897.	27.8	214
53	Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nature Genetics, 2003, 34, 75-79.	21.4	351
54	Structural Basis for the Product Specificity of Histone Lysine Methyltransferases. Molecular Cell, 2003, 12, 177-185.	9.7	307

ERIC U SELKER

#	Article	IF	CITATIONS
55	Synthesis of Signals for De Novo DNA Methylation in Neurospora crassa. Molecular and Cellular Biology, 2003, 23, 2379-2394.	2.3	63
56	Induction and maintenance of nonsymmetrical DNA methylation in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16485-16490.	7.1	46
57	15 Repeat-induced gene silencing in fungi. Advances in Genetics, 2002, 46, 439-450.	1.8	127
58	Structure of the Neurospora SET Domain Protein DIM-5, a Histone H3 Lysine Methyltransferase. Cell, 2002, 111, 117-127.	28.9	247
59	A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature, 2001, 414, 277-283.	27.8	946
60	Short TpA-rich segments of the ζ-η region induce DNA methylation in Neurospora crassa 1 1Edited by K. Yamamoto. Journal of Molecular Biology, 2000, 300, 249-273.	4.2	72
61	Trichostatin A causes selective loss of DNA methylation inNeurospora. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9430-9435.	7.1	192
62	A Methylated Neurospora 5S rRNA Pseudogene Contains a Transposable Element Inactivated by Repeat-Induced Point Mutation. Genetics, 1998, 149, 1787-1797.	2.9	99
63	Cytosine Methylation Associated With Repeat-Induced Point Mutation Causes Epigenetic Gene Silencing in <i>Neurospora crassa</i> . Genetics, 1997, 146, 509-523.	2.9	67
64	Occurrence of Repeat Induced Point Mutation in Long Segmental Duplications of Neurospora. Genetics, 1997, 147, 125-136.	2.9	40
65	Gene silencing in filamentous fungi: RIP, MIP and quelling. Journal of Genetics, 1996, 75, 313-324.	0.7	25
66	Epigenetic Control of a Transposon-Inactivated Gene in Neurospora is Dependent on DNA Methylation. Genetics, 1996, 143, 137-146.	2.9	29
67	Mutations affecting the biosynthesis of S-adenosylmethionine cause reduction of DNA methylation inNeurospora crassa. Nucleic Acids Research, 1995, 23, 4818-4826.	14.5	38
68	Premeiotic Instability of Repeated Sequences in Neurospora crassa. Annual Review of Genetics, 1990, 24, 579-613.	7.6	694
69	Organization of ribosomal RNA genes in the fungus Cochliobolus heterostrophus. Current Genetics, 1988, 14, 573-582.	1.7	93
70	REVERSAL OF A NEUROSPORA TRANSLOCATION BY CROSSING OVER INVOLVING DISPLACED rDNA, AND METHYLATION OF THE rDNA SEGMENTS THAT RESULT FROM RECOMBINATION. Genetics, 1986, 114, 791-817.	2.9	44
71	Dispersed 5S RNA genes in N. crassa: Structure, expression and evolution. Cell, 1981, 24, 819-828.	28.9	150

72 Transposable Elements and Repeat-Induced Point Mutation. , 0, , 124-131.