List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7007296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Hybrid Bulk Algorithm to Predict Turbulent Fluxes over Dry and Wet Bare Soils. Journal of Applied Meteorology and Climatology, 2022, 61, 393-414.	0.6	2
2	Acknowledgement of reviewers 2021. Environmental Fluid Mechanics, 2022, 22, 1-3.	0.7	1
3	Intraseasonal Variability of Upper-Ocean Heat Fluxes in the Central Bay of Bengal. Journal of Physical Oceanography, 2022, 52, 261-288.	0.7	1
4	Water Mass Exchanges between the Bay of Bengal and Arabian Sea from Multiyear Sampling with Autonomous Gliders. Journal of Physical Oceanography, 2022, 52, 2377-2396.	0.7	2
5	Ocean Turbulence and Mixing Near the Shelf Break South-East of Nova Scotia. Boundary-Layer Meteorology, 2021, 181, 425-441.	1.2	4
6	C-FOG: Life of Coastal Fog. Bulletin of the American Meteorological Society, 2021, 102, E244-E272.	1.7	37
7	Observations of Eddy-Modulated Turbulent Mixing in the Southern Bay of Bengal. Journal of Physical Oceanography, 2021, , .	0.7	4
8	Coastal-Fog Microphysics Using In-Situ Observations and GOES-R Retrievals. Boundary-Layer Meteorology, 2021, 181, 203-226.	1.2	5
9	The sea surface temperature: COAMPS/NCOM modeling and in situ measurements. Meteorology and Atmospheric Physics, 2021, 133, 1269-1274.	0.9	0
10	Large-Scale Synoptic Systems and Fog During the C-FOG Field Experiment. Boundary-Layer Meteorology, 2021, 181, 171-202.	1.2	6
11	Fog Formation Related to Gravity Currents Interacting with Coastal Topography. Boundary-Layer Meteorology, 2021, 181, 499.	1.2	5
12	Atmospheric Turbulence Measurements at a Coastal Zone with and without Fog. Boundary-Layer Meteorology, 2021, 181, 395-422.	1.2	10
13	Structure functions in nocturnal atmospheric boundary layer turbulence. Physical Review Fluids, 2021, 6, .	1.0	3
14	Green roofs and green walls layouts for improved urban air quality by mitigating particulate matter. Building and Environment, 2021, 204, 108120.	3.0	52
15	Characterizing Atmospheric Aerosols off the Atlantic Canadian Coast During C-FOG. Boundary-Layer Meteorology, 2021, 181, 345-364.	1.2	1
16	Study of Stratus-Lowering Marine-Fog Events Observed During C-FOG. Boundary-Layer Meteorology, 2021, 181, 317-344.	1.2	9
17	A Review of Coastal Fog Microphysics During C-FOG. Boundary-Layer Meteorology, 2021, 181, 227-265.	1.2	22
18	Analysis of Coastal Fog from a Ship During the C-FOG Campaign. Boundary-Layer Meteorology, 2021, 181, 365.	1.2	6

#	Article	IF	CITATIONS
19	A Case Study: Evaluation of PAFOG Oneâ€D Model With Advection in Simulations of Fog/Stratus From Câ€FOG Experiment. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034812.	1.2	1
20	Toward Improving Coastal-Fog Prediction (C-FOG). Boundary-Layer Meteorology, 2021, 181, 167.	1.2	2
21	Simulations of Coastal Fog in the Canadian Atlantic with the Weather Research and Forecasting Model. Boundary-Layer Meteorology, 2021, 181, 443-472.	1.2	4
22	Measurements of mixing parameters in atmospheric stably stratified parallel shear flow. Environmental Fluid Mechanics, 2020, 20, 1177-1197.	0.7	7
23	Simulation of stably stratified flow in complex terrain: flow structures and dividing streamline. Environmental Fluid Mechanics, 2020, 20, 1281-1311.	0.7	3
24	Simulation of stratified flows over a ridge using a lattice Boltzmann model. Environmental Fluid Mechanics, 2020, 20, 1333-1355.	0.7	9
25	Characterizing NWP Model Errors Using Doppler-Lidar Measurements of Recurrent Regional Diurnal Flows: Marine-Air Intrusions into the Columbia River Basin. Monthly Weather Review, 2020, 148, 929-953.	0.5	11
26	Power-Law Scaling of Turbulence Cospectra for the Stably Stratified Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2020, 177, 1-18.	1.2	3
27	Phase aligned ensemble averaging for environmental flow studies. Environmental Fluid Mechanics, 2020, 20, 1357-1377.	0.7	2
28	Evaluating the WFIP2 updates to the HRRR model using scanning Doppler lidar measurements in the complex terrain of the Columbia River Basin. Journal of Renewable and Sustainable Energy, 2020, 12, .	0.8	8
29	Analysis of Random Forest Modeling Strategies for Multi-Step Wind Speed Forecasting. Energies, 2020, 13, 5488.	1.6	29
30	Marine Boundary Layers above Heterogeneous SST: Across-Front Winds. Journals of the Atmospheric Sciences, 2020, 77, 4251-4275.	0.6	14
31	Probability Distribution of Turbulent Kinetic Energy Dissipation Rate in Stratified Turbulence: Microstructure Measurements in the Southern California Bight. Journal of Geophysical Research: Oceans, 2019, 124, 4591-4604.	1.0	7
32	Identification and Characterization of Persistent Cold Pool Events from Temperature and Wind Profilers in the Columbia River Basin. Journal of Applied Meteorology and Climatology, 2019, 58, 2533-2551.	0.6	23
33	Spatial Variability of Winds and HRRR–NCEP Model Error Statistics at Three Doppler-Lidar Sites in the Wind-Energy Generation Region of the Columbia River Basin. Journal of Applied Meteorology and Climatology, 2019, 58, 1633-1656.	0.6	25
34	Range and Height Measurement of X-Band EM Propagation in the Marine Atmospheric Boundary Layer. IEEE Transactions on Antennas and Propagation, 2019, 67, 2063-2073.	3.1	26
35	Lessons from Inter-Comparison of Decadal Climate Simulations and Observations for the Midwest U.S. and Great Lakes Region. Atmosphere, 2019, 10, 266.	1.0	4
36	The Second Wind Forecast Improvement Project (WFIP2): Observational Field Campaign. Bulletin of the American Meteorological Society, 2019, 100, 1701-1723.	1.7	55

#	Article	IF	CITATIONS
37	Impact of model improvements on 80 m wind speeds during the second Wind Forecast Improvement Project (WFIP2). Geoscientific Model Development, 2019, 12, 4803-4821.	1.3	18
38	Measurement-Based Numerical Study of the Effects of Realistic Land Topography and Stratification on the Coastal Marine Atmospheric Surface Layer. Boundary-Layer Meteorology, 2019, 171, 289-314.	1.2	9
39	Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream. Geophysical Research Letters, 2018, 45, 236-244.	1.5	16
40	Air–Sea/Land Interaction in the Coastal Zone. Boundary-Layer Meteorology, 2018, 167, 181-210.	1.2	49
41	Separation of Upslope Flow over a Plateau. Atmosphere, 2018, 9, 165.	1.0	5
42	Role of green roofs in reducing heat stress in vulnerable urban communities—a multidisciplinary approach. Environmental Research Letters, 2018, 13, 094011.	2.2	39
43	The Need for an Integrated Landâ€Lakeâ€Atmosphere Modeling System, Exemplified by North America's Great Lakes Region. Earth's Future, 2018, 6, 1366-1379.	2.4	34
44	Quantification of turbulent mixing in colliding gravity currents. Journal of Fluid Mechanics, 2018, 851, 125-147.	1.4	16
45	Inertial range skewness of the longitudinal velocity derivative in locally isotropic turbulence. Physical Review Fluids, 2018, 3, .	1.0	7
46	Finding optimal geometries for noise barrier tops using scaled experiments. Journal of the Acoustical Society of America, 2017, 141, 722-736.	0.5	10
47	Probability Distribution of Turbulent Kinetic Energy Dissipation Rate in Ocean: Observations and Approximations. Journal of Geophysical Research: Oceans, 2017, 122, 8293-8308.	1.0	17
48	A methodology for computing spatially and temporally varying surface sensible heat flux from thermal imagery. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2616-2624.	1.0	14
49	Fine-scale turbulent bursts in stableÂatmospheric boundary layer in complex terrain. Journal of Fluid Mechanics, 2017, 833, 745-772.	1.4	18
50	Penetrative convection in slender containers. Environmental Fluid Mechanics, 2017, 17, 799-814.	0.7	2
51	Urban meteorological modeling using <scp>WRF</scp> : a sensitivity study. International Journal of Climatology, 2017, 37, 1885-1900.	1.5	97
52	A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal. Journal of Geophysical Research: Oceans, 2016, 121, 5898-5915.	1.0	10
53	Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environmental Research Letters, 2016, 11, 064004.	2.2	180
54	Triple Doppler wind lidar observations during the mountain terrain atmospheric modeling and observations field campaign. Journal of Applied Remote Sensing, 2016, 10, 026015.	0.6	12

#	Article	IF	CITATIONS
55	Simulating the thermal behavior in Lake Ontario using EFDC. Journal of Great Lakes Research, 2016, 42, 511-523.	0.8	39
56	An Overview of the MATERHORN Fog Project: Observations and Predictability. Pure and Applied Geophysics, 2016, 173, 2983-3010.	0.8	50
57	Evaporation duct refractivity inversion from EM propagation measurements and NAVSLaM predictions. , 2016, , .		4
58	A Case Study of the Mechanisms Modulating the Evolution of Valley Fog. Pure and Applied Geophysics, 2016, 173, 3011-3030.	0.8	21
59	ASIRI: An Ocean–Atmosphere Initiative for Bay of Bengal. Bulletin of the American Meteorological Society, 2016, 97, 1859-1884.	1.7	69
60	Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum. Boundary-Layer Meteorology, 2016, 159, 469-494.	1.2	58
61	Stratified Flow Past a Hill: Dividing Streamline Concept Revisited. Boundary-Layer Meteorology, 2016, 159, 611-634.	1.2	16
62	Assessment of Planetary Boundary-Layer Schemes in the Weather Research and Forecasting Mesoscale Model Using MATERHORN Field Data. Boundary-Layer Meteorology, 2016, 159, 589-609.	1.2	22
63	Separation of upslope flow over a uniform slope. Journal of Fluid Mechanics, 2015, 775, 266-287.	1.4	22
64	Southern B ay of B engal currents and salinity intrusions during the northeast monsoon. Journal of Geophysical Research: Oceans, 2015, 120, 6897-6913.	1.0	37
65	Turbulence in the <scp>E</scp> ast <scp>C</scp> hina <scp>S</scp> ea: <scp>T</scp> he summertime stratification. Journal of Geophysical Research: Oceans, 2015, 120, 1856-1871.	1.0	10
66	The wall-layer dynamics in a weakly stratified tidal bottom boundary layer. Journal of Marine Research, 2015, 73, 207-232.	0.3	2
67	Chicago's Heat Island and Climate Change: Bridging the Scales via Dynamical Downscaling. Journal of Applied Meteorology and Climatology, 2015, 54, 1430-1448.	0.6	66
68	A Case Study of the Nocturnal Boundary Layer Evolution on a Slope at the Foot of a Desert Mountain. Journal of Applied Meteorology and Climatology, 2015, 54, 732-751.	0.6	34
69	The MATERHORN: Unraveling the Intricacies of Mountain Weather. Bulletin of the American Meteorological Society, 2015, 96, 1945-1967.	1.7	145
70	Near-surface flow in complex terrain with coastal and urban influence. Environmental Fluid Mechanics, 2015, 15, 349-372.	0.7	8
71	On flows in simulated urban canopies. Environmental Fluid Mechanics, 2015, 15, 275-303.	0.7	14
72	Offset Turbulent Jets in Low-Aspect Ratio Cavities. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	0.8	3

#	Article	IF	CITATIONS
73	On thermally forced flows in urban street canyons. Environmental Fluid Mechanics, 2014, 14, 1427-1441.	0.7	28
74	Sensitivity of WRF Model to Urban Parameterizations, With Applications to Chicago Metropolitan Urban Heat Island. , 2014, , .		9
75	Multi-Scale Simulations of Climate-Change Influence on Chicago Heat Island. , 2014, , .		8
76	Simulation of flow and turbulence in the Phoenix area using a modified urbanized mesoscale model. Meteorological Applications, 2014, 21, 948-962.	0.9	4
77	Surface signatures of submerged heated jet. Environmental Fluid Mechanics, 2014, 14, 1105-1121.	0.7	8
78	Waves and turbulence in katabatic winds. Environmental Fluid Mechanics, 2014, 14, 431-450.	0.7	5
79	Pressure Distribution in Confined Jet Flow. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	0.8	3
80	Field Studies Delve Into the Intricacies of Mountain Weather. Eos, 2013, 94, 313-315.	0.1	21
81	The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Boundary-Layer Meteorology, 2013, 147, 443-468.	1.2	32
82	Flow and turbulence in an industrial/suburban roughness canopy. Environmental Fluid Mechanics, 2013, 13, 279-307.	0.7	16
83	Small-scale and lateral intermittency of oceanic microstructure in the pycnocline. Physica Scripta, 2013, T155, 014035.	1.2	5
84	Relationship between particulate matter and childhood asthma – basis of a future warning system for central Phoenix. Atmospheric Chemistry and Physics, 2012, 12, 2479-2490.	1.9	24
85	Thermal surface signatures of ship propeller wakes in stratified waters. Physics of Fluids, 2012, 24, .	1.6	20
86	Mixing by turbulent buoyant jets in slender containers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3213-3218.	0.9	3
87	Forecasting PM10 in metropolitan areas: Efficacy of neural networks. Environmental Pollution, 2012, 163, 62-67.	3.7	115
88	Numerical modeling of the generation of internal waves by uniform stratified flow over a thin vertical barrier. International Journal for Numerical Methods in Fluids, 2012, 68, 451-466.	0.9	11
89	Prefacing the second decade. Environmental Fluid Mechanics, 2012, 12, 1-2.	0.7	1
90	Shallow water tidal currents in close proximity to the seafloor and boundary-induced turbulence. Ocean Dynamics, 2012, 62, 177-191.	0.9	29

HARINDRA FERNANDO

8

1.6

#	Article	IF	CITATIONS
91	Numerical Modeling of Flow in the Condensate Polisher Vessel of a Nuclear Reactor, with Applications to PVNGS. Nuclear Technology, 2011, 174, 18-28.	0.7	0
92	The use of lidarâ€detected smoke puff evolution for dispersion calculations. Meteorological Applications, 2011, 18, 188-197.	0.9	1
93	Flow and Turbulence in an Urban Canyon. Journal of Applied Meteorology and Climatology, 2011, 50, 203-223.	0.6	66
94	Evolution of a confined turbulent jet in a long cylindrical cavity: Homogeneous fluids. Physics of Fluids, 2011, 23, .	1.6	13
95	The efficacy of satellite information in improving CMAQ/Models-3 prediction of ozone episodes in the US–Mexico border. Air Quality, Atmosphere and Health, 2010, 3, 159-169.	1.5	4
96	Large-Eddy Simulation-Based Retrieval of Dissipation from Coherent Doppler Lidar Data. Boundary-Layer Meteorology, 2010, 136, 45-57.	1.2	8
97	Flow and pollution transport during Wagerup 2006: a case study. Meteorological Applications, 2010, 17, 269-278.	0.9	4
98	In Situ Calibration of Hot-Film Probes Using a Collocated Sonic Anemometer: Implementation of a Neural Network. Journal of Atmospheric and Oceanic Technology, 2010, 27, 23-41.	0.5	24
99	Flow, turbulence, and pollutant dispersion in urban atmospheres. Physics of Fluids, 2010, 22, .	1.6	133
100	Coplanar Doppler Lidar Retrieval of Rotors from T-REX. Journals of the Atmospheric Sciences, 2010, 67, 713-729.	0.6	48
101	Whither the Stable Boundary Layer?. Bulletin of the American Meteorological Society, 2010, 91, 1475-1484.	1.7	106
102	Intermittency of nearâ€bottom turbulence in tidal flow on a shallow shelf. Journal of Geophysical Research, 2010, 115, .	3.3	14
103	Fluid Dynamics of Urban Atmospheres in Complex Terrain. Annual Review of Fluid Mechanics, 2010, 42, 365-389.	10.8	178
104	Wakes of Maneuvering Body in Stratified Fluids. Mathematics in Industry, 2010, , 261-266.	0.1	7
105	A case study of the development of nocturnal slope flows in a wide open valley and associated air quality implications. Meteorologische Zeitschrift, 2009, 18, 85-100.	0.5	42
106	Polimetrics: the quantitative study of urban systems (and its applications to atmospheric and hydro) Tj ETQq0 0	0 rgBT /Ov 0.7	erlock 10 Tf
107	Quasi-Steady Katabatic Winds on Slopes in Wide Valleys: Hydraulic Theory and Observations. Journals of the Atmospheric Sciences, 2008, 65, 627-643.	0.6	50

Dipolar eddies in a decaying stratified turbulent flow. Physics of Fluids, 2008, 20, 026602.

#	Article	IF	CITATIONS
109	Morning breakup of cold pools in complex terrain. Journal of Fluid Mechanics, 2008, 616, 99-109.	1.4	31
110	Evolution of a forced stratified mixing layer. Physics of Fluids, 2007, 19, 065107.	1.6	15
111	A criterion for the generation of turbulent anabatic flows. Physics of Fluids, 2007, 19, .	1.6	24
112	Mine Burial in the Shoaling Zone: Scaling of Laboratory Results to Oceanic Situations. IEEE Journal of Oceanic Engineering, 2007, 32, 204-213.	2.1	17
113	On surface signatures generated by submerged momentum sources. Physics of Fluids, 2007, 19, .	1.6	29
114	Development of a Framework for Quantifying the Environmental Impacts of Urban Development and Construction Practices. Environmental Science & amp; Technology, 2007, 41, 5130-5136.	4.6	28
115	Numerical simulation of scour around pipelines using an Euler–Euler coupled two-phase model. Environmental Fluid Mechanics, 2007, 7, 121-142.	0.7	61
116	A special issue on â€~optical turbulence' in the atmosphere. Environmental Fluid Mechanics, 2007, 7, 349-350.	0.7	0
117	MM5-SMOKE-CMAQ as a modeling tool for 8-h ozone regulatory enforcement: application to the state of Arizona. Environmental Modeling and Assessment, 2007, 12, 63-74.	1.2	30
118	Episodes of nonlinear internal waves in the northern East China Sea. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	40
119	Sri Lanka Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 155-172.	1.6	71
120	The influence of large convective eddies on the surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1423-1456.	1.0	70
121	Implementation of a Stable PBL Turbulence Parameterization for the Mesoscale Model MM5: Nocturnal Flow in Complex Terrain. Boundary-Layer Meteorology, 2006, 119, 109-134.	1.2	35
122	Self-similarity of asymmetric sand-ripple profiles formed under nonlinear shoaling waves. Physics of Fluids, 2006, 18, 108101.	1.6	12
123	Evening Transition Observations in Phoenix, Arizona. Journal of Applied Meteorology and Climatology, 2005, 44, 99-112.	1.7	61
124	Adjustment of sand ripples under changing water waves. Physics of Fluids, 2005, 17, 072104.	1.6	32
125	Turbulent patches in a stratified shear flow. Physics of Fluids, 2005, 17, 078102.	1.6	2
126	Effects of rotation and sloping terrain on the fronts of density currents. Journal of Fluid Mechanics, 2005, 537, 285.	1.4	16

#	Article	IF	CITATIONS
127	Turbulent entrainment into natural gravity-driven flows. Journal of Fluid Mechanics, 2005, 533, .	1.4	58
128	Observations and scaling of the upper mixed layer in the North Atlantic. Journal of Geophysical Research, 2005, 110, .	3.3	44
129	Coral poaching worsens tsunami destruction in Sri Lanka. Eos, 2005, 86, 301.	0.1	75
130	Flow around a short horizontal bottom cylinder under steady and oscillatory flows. Physics of Fluids, 2005, 17, 047103.	1.6	36
131	Shear-induced mixing and transport from a rectangular cavity. Journal of Fluid Mechanics, 2004, 520, 23-49.	1.4	13
132	Title is missing!. Environmental Fluid Mechanics, 2003, 3, 331-362.	0.7	55
133	Experimental study of indoor and outdoor airborne bacterial concentrations in Tempe, Arizona, USA. Aerobiologia, 2003, 19, 201-211.	0.7	49
134	Quasi-equilibrium dynamics of shear-stratified turbulence in a model tropospheric jet. Journal of Fluid Mechanics, 2003, 496, 73-103.	1.4	33
135	The influence of the thermal diffusivity of the lower boundary on eddy motion in convection. Journal of Fluid Mechanics, 2003, 491, 183-205.	1.4	38
136	Spatial decay of energy density of tidal internal waves. Journal of Geophysical Research, 2003, 108, .	3.3	52
137	Unsteady Thermally Driven Flows on Gentle Slopes. Journals of the Atmospheric Sciences, 2003, 60, 2169-2182.	0.6	63
138	A CFD Model for Simulating Urban Flow and Dispersion. Journal of Applied Meteorology and Climatology, 2003, 42, 1636-1648.	1.7	81
139	Turbulent patches in a stratified shear flow. Physics of Fluids, 2003, 15, 3164.	1.6	28
140	Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope. Journals of the Atmospheric Sciences, 2002, 59, 2513-2534.	0.6	190
141	Turbulent thermal convection in a rotating stratified fluid. Journal of Fluid Mechanics, 2002, 467, 19-40.	1.4	17
142	Flux Richardson number measurements in stable atmospheric shear flows. Journal of Fluid Mechanics, 2002, 459, 307-316.	1.4	75
143	Arctic Ocean mixed-layer eddy generation under leads in sea ice. Journal of Geophysical Research, 2002, 107, 17-1.	3.3	17
144	Entrainment and mixing in stratified shear flows. Journal of Fluid Mechanics, 2001, 428, 349-386.	1.4	237

#	Article	IF	CITATIONS
145	Vertical Mixing and Transports through a Stratified Shear Layer. Journal of Physical Oceanography, 2001, 31, 2026-2048.	0.7	98
146	Determination Of The Surface Drag Coefficient. Boundary-Layer Meteorology, 2001, 99, 249-276.	1.2	60
147	Effects of rotation on fronts of density currents. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 270, 149-156.	0.9	11
148	Fluidization of sediments in a conical basin by subterranean springs: relevance to Lake Banyoles. Aquatic Sciences, 2000, 62, 79.	0.6	1
149	EVIDENCE OF LOWER-ATMOSPHERIC OZONE "SLOSHING―IN AN URBANIZED VALLEY. Physical Geography, 1999, 20, 520-536.	0.6	26
150	Experiment on the Self-Propagating Quasi-Monopolar Vortex. Journal of Physical Oceanography, 1999, 29, 2741-2751.	0.7	8
151	Evolution of two-layer thermohaline systems under surface cooling. Journal of Fluid Mechanics, 1999, 380, 117-140.	1.4	4
152	Gravitational settling of particles through density interfaces. Journal of Fluid Mechanics, 1999, 381, 175-198.	1.4	79
153	Large vortex structures behind a maneuvering body in stratified fluids. Physics of Fluids, 1999, 11, 1682-1684.	1.6	29
154	Comment on "Localized convection in rotating stratified fluid―by J. A. Whitehead et al Journal of Geophysical Research, 1998, 103, 12891-12894.	3.3	12
155	Development of a point plume in the presence of background rotation. Physics of Fluids, 1998, 10, 2369-2383.	1.6	32
156	Experiments on collapsing turbulent regions in stratified fluids. Journal of Fluid Mechanics, 1998, 358, 29-60.	1.4	41
157	The transition from density-driven to wave-dominated isolated flows. Journal of Fluid Mechanics, 1998, 361, 253-274.	1.4	18
158	Horizontal jets in a rotating stratified fluid. Physics of Fluids, 1997, 9, 115-126.	1.6	21
159	Measurement of turbulence near shear-free density interfaces. Journal of Fluid Mechanics, 1997, 334, 293-314.	1.4	49
160	Turbulence, waves and mixing at shear-free density interfaces. Part 1. A theoretical model. Journal of Fluid Mechanics, 1997, 347, 197-234.	1.4	44
161	Turbulence, waves and mixing at shear-free density interfaces. Part 2. Laboratory experiments. Journal of Fluid Mechanics, 1997, 347, 235-261.	1.4	38
162	Turbulence-induced rectified flows in rotating fluids. Journal of Fluid Mechanics, 1997, 350, 97-118.	1.4	8

#	Article	IF	CITATIONS
163	Reflections on Fifty Years. Applied Mechanics Reviews, 1997, 50, T1-T2.	4.5	1
164	Resuspension and Sedimentation of Particles from a Sediment Bed by Turbulent Jets. Flow, Turbulence and Combustion, 1997, 59, 229-242.	0.2	2
165	Starting and steady quadrupolar flow. Physics of Fluids, 1996, 8, 384-396.	1.6	9
166	Physical Model of Diurnal Heating in the Vicinity of a Two-Dimensional Ridge. Journals of the Atmospheric Sciences, 1996, 53, 62-85.	0.6	19
167	Generation of nearly isotropic turbulence using two oscillating grids. Experiments in Fluids, 1996, 20, 395-397.	1.1	39
168	Propagation of grid turbulence in homogeneous fluids. Physics of Fluids, 1996, 8, 2435-2440.	1.6	16
169	Synoptic Classification and Physical Model Experiments to Guide Field Studies in Complex Terrain. Journal of Applied Meteorology and Climatology, 1995, 34, 719-730.	1.7	26
170	Experimental examination of Eulerian frequency spectra in zeroâ€meanâ€shear turbulence. Physics of Fluids, 1995, 7, 1168-1170.	1.6	15
171	Turbulent wakes of stratified flow past a cylinder. Physics of Fluids, 1995, 7, 2243-2255.	1.6	24
172	Breakdown of line plumes in turbulent environments. Journal of Geophysical Research, 1995, 100, 4707.	3.3	21
173	Onset of stratification in a mixed layer subjected to a stabilizing buoyancy flux. Journal of Fluid Mechanics, 1995, 304, 27-46.	1.4	7
174	Mixing induced by oscillatory stratified flow past a right-circular cylinder. Journal of Fluid Mechanics, 1995, 284, 1-21.	1.4	4
175	Migration of density interfaces subjected to differential turbulent forcing. Geophysical and Astrophysical Fluid Dynamics, 1994, 78, 1-20.	0.4	3
176	Oscillating grids as a source of nearly isotropic turbulence. Physics of Fluids, 1994, 6, 2455-2464.	1.6	162
177	The vortex shedding of a streamwiseâ€oscillating sphere translating through a linearly stratified fluid. Physics of Fluids, 1994, 6, 239-252.	1.6	10
178	Chapman Conference delves into double-diffusive convection. Eos, 1994, 75, 524.	0.1	1
179	Turbulent mixing at an inversion layer. Journal of Fluid Mechanics, 1994, 267, 275-298.	1.4	22
180	Flows generated by the periodic horizontal oscillations of a sphere in a linearly stratified fluid. Journal of Fluid Mechanics, 1994, 263, 245-270.	1.4	6

#	Article	IF	CITATIONS
181	Turbulent Plumes, Thermals and Convection in Oceans. , 1994, , 357-373.		2
182	The transition in the sedimentation pattern of a particle cloud. Physics of Fluids A, Fluid Dynamics, 1993, 5, 3049-3055.	1.6	47
183	Note on secondary flows in oscillatingâ€grid, mixingâ€box experiments. Physics of Fluids A, Fluid Dynamics, 1993, 5, 1849-1851.	1.6	53
184	A Numerical Model of the Fluid Motion at a Density Front in the Presence of Background Turbulence. Journal of Physical Oceanography, 1993, 23, 1142-1153.	0.7	11
185	Flows Induced by the Impingement of a Two-Dimensional Thermal on a Density Interface. Journal of Physical Oceanography, 1992, 22, 1207-1220.	0.7	26
186	Turbulent wakes of linearly stratified flow past a sphere. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1687-1696.	1.6	36
187	Stratified flow past a sphere. Journal of Fluid Mechanics, 1992, 240, 315.	1.4	107
188	Some aspects of mixing in a stratified turbulent patch. Journal of Fluid Mechanics, 1992, 240, 601.	1.4	80
189	The motion of a buoyant cloud along an incline in the presence of boundary mixing. Journal of Fluid Mechanics, 1992, 235, 557.	1.4	13
190	Effects of rotation on convective turbulence. Journal of Fluid Mechanics Digital Archive, 1991, 228, 513.	0.6	55
191	Turbulent Mixing in Stratified Fluids. Annual Review of Fluid Mechanics, 1991, 23, 455-493.	10.8	402
192	Laboratory experiments on turbulent mixing across sheared density interfaces. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1461-1461.	1.6	0
193	A numerical study on the formation of a thermocline in shearâ€free turbulence. Physics of Fluids A, Fluid Dynamics, 1991, 3, 422-426.	1.6	15
194	Dispersion of suspended particles in turbulent flow. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1730-1740.	1.6	24
195	Turbulence and mixing in a stratified shear flow. Geophysical and Astrophysical Fluid Dynamics, 1991, 59, 147-164.	0.4	15
196	A Predictive Model for the Migration of Double-Diffusive Interfaces. Journal of Solar Energy Engineering, Transactions of the ASME, 1991, 113, 59-65.	1.1	11
197	Molecularâ€diffusive effects in penetrative convection. Physics of Fluids A, Fluid Dynamics, 1990, 2, 1592-1596.	1.6	9
198	Buoyancy transfer across a diffusive interface. Journal of Fluid Mechanics, 1989, 209, 1-34.	1.4	51

#	Article	IF	CITATIONS
199	NOTE ON â€INTERFACIAL MIXING IN STRATIFIED FLOWSâ€: Journal of Hydraulic Research/De Recherches Hydrauliques, 1989, 27, 463-467.	0.7	ο
200	The growth of a turbulent patch in a stratified fluid. Journal of Fluid Mechanics, 1988, 190, 55-70.	1.4	40
201	Turbulence structure near a sharp density interface. Journal of Fluid Mechanics, 1988, 189, 189-209.	1.4	128
202	The formation of a layered structure when a stable salinity gradient is heated from below. Journal of Fluid Mechanics, 1987, 182, 525.	1.4	71
203	On the sheared density interface of an entraining stratified fluid. Journal of Fluid Mechanics, 1987, 174, 1-22.	1.4	41
204	Eddy diffusivity in stratified ocean: a case study in Bay of Bengal. Environmental Fluid Mechanics, 0, , .	0.7	2