Elisa E Konofagou List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7006663/publications.pdf Version: 2024-02-01 290 papers 11,061 citations 58 h-index 92 g-index 324 all docs 324 docs citations times ranked 324 6798 citing authors | # | Article | IF | Citations | |----|--|--------------|-----------| | 1 | Adaptive Wall Shear Stress Imaging in Phantoms, Simulations and In Vivo. IEEE Transactions on Biomedical Engineering, 2023, 70, 154-165. | 2.5 | 6 | | 2 | Acoustic Holograms for Bilateral Blood-Brain Barrier Opening in a Mouse Model. IEEE Transactions on Biomedical Engineering, 2022, 69, 1359-1368. | 2.5 | 23 | | 3 | Transcranial Theranostic Ultrasound for Pre-Planning and Blood-Brain Barrier Opening: A Feasibility
Study Using an Imaging Phased Array In Vitro and In Vivo. IEEE Transactions on Biomedical Engineering,
2022, 69, 1481-1490. | 2.5 | 10 | | 4 | FUS-Net: U-Net-Based FUS Interference Filtering. IEEE Transactions on Medical Imaging, 2022, 41, 915-924. | 5.4 | 5 | | 5 | Neuronal responses to focused ultrasound are gated by pre-stimulation brain rhythms. Brain Stimulation, 2022, 15, 233-243. | 0.7 | 2 | | 6 | Myocardial Strain Imaging With Electrocardiogram-Gated and Coherent Compounding for Early Diagnosis of Coronary Artery Disease. Ultrasound in Medicine and Biology, 2022, 48, 626-637. | 0.7 | 4 | | 7 | Elasticity Quantification Using an Empirical Relationship Between Single Transducer –Harmonic
Motion Imaging-Derived Displacement Versus Oscillation Frequency. , 2022, , . | | O | | 8 | Focused ultrasound excites action potentials in mammalian peripheral neurons in part through the mechanically gated ion channel PIEZO2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115821119. | 3.3 | 28 | | 9 | Imaging of Single Transducer-Harmonic Motion Imaging-Derived Displacements at Several Oscillation Frequencies Simultaneously. IEEE Transactions on Medical Imaging, 2022, 41, 3099-3115. | 5 . 4 | 5 | | 10 | MODL-24. Focused ultrasound-mediated blood-brain barrier opening and panobinostat in a thalamic syngeneic murine DMG model is feasible and safe Neuro-Oncology, 2022, 24, i174-i174. | 0.6 | 0 | | 11 | MODL-25. Radiation and focused ultrasound–mediated blood–brain barrier opening for DMG: safety and feasibility of combinatorial therapy. Neuro-Oncology, 2022, 24, i174-i174. | 0.6 | O | | 12 | Non-invasive optogenetics with ultrasound-mediated gene delivery and red-light excitation. Brain Stimulation, 2022, 15, 927-941. | 0.7 | 15 | | 13 | Real-Time Passive Acoustic Mapping Using Sparse Matrix Multiplication. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 164-177. | 1.7 | 14 | | 14 | Displacement Imaging During Focused Ultrasound Median Nerve Modulation: A Preliminary Study in Human Pain Sensation Mitigation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 526-537. | 1.7 | 13 | | 15 | Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 6-20. | 1.7 | 46 | | 16 | Pulse Wave Imaging Coupled With Vector Flow Mapping: A Phantom, Simulation, and <i>In Vivo</i> Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2516-2531. | 1.7 | 20 | | 17 | Pulse wave imaging for the mechanical assessment of atherosclerotic plaques., 2021,, 529-542. | | O | | 18 | Synchronous Temperature Variation Monitoring During Ultrasound Imaging and/or Treatment Pulse Application: A Phantom Study. IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 1, 1-10. | 0.9 | 3 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 19 | Real-Time Positron Emission Tomography Evaluation of Topotecan Brain Kinetics after Ultrasound-Mediated Blood–Brain Barrier Permeability. Pharmaceutics, 2021, 13, 405. | 2.0 | 7 | | 20 | Focused ultrasound mediated blood–brain barrier opening is safe and feasible in a murine pontine glioma model. Scientific Reports, 2021, 11, 6521. | 1.6 | 41 | | 21 | High-Resolution Focused Ultrasound Neuromodulation Induces Limb-Specific Motor Responses in Mice in Vivo. Ultrasound in Medicine and Biology, 2021, 47, 998-1013. | 0.7 | 16 | | 22 | An analytical model of full-field displacement and strain induced by amplitude-modulated focused ultrasound in harmonic motion imaging. Physics in Medicine and Biology, 2021, 66, 075017. | 1.6 | 0 | | 23 | Application of a sub–0.1-mm ³ implantable mote for in vivo real-time wireless temperature sensing. Science Advances, 2021, 7, . | 4.7 | 59 | | 24 | Feasibility of Harmonic Motion Imaging Using a Single Transducer: In Vivo Imaging of Breast Cancer in a Mouse Model and Human Subjects. IEEE Transactions on Medical Imaging, 2021, 40, 1390-1404. | 5.4 | 10 | | 25 | Focused Ultrasound-Mediated Blood-Brain Barrier Opening Increases Delivery and Efficacy of Etoposide for Glioblastoma Treatment. International Journal of Radiation Oncology Biology Physics, 2021, 110, 539-550. | 0.4 | 44 | | 26 | Combining brain perturbation and neuroimaging in non-human primates. NeuroImage, 2021, 235, 118017. | 2.1 | 50 | | 27 | Cardiac Resynchronization Therapy Response Assessment with Electromechanical Activation Mapping within 24 Hours of Device Implantation: AÂPilot Study. Journal of the American Society of Echocardiography, 2021, 34, 757-766.e8. | 1.2 | 2 | | 28 | Safety evaluation of a clinical focused ultrasound system for neuronavigation guided blood-brain barrier opening in non-human primates. Scientific Reports, 2021, 11, 15043. | 1.6 | 42 | | 29 | Contrast-Free Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening Using Diffusion Tensor Imaging. IEEE Transactions on Biomedical Engineering, 2021, 68, 2499-2508. | 2.5 | 4 | | 30 | Cavitation-modulated inflammatory response following focused ultrasound blood-brain barrier opening. Journal of Controlled Release, 2021, 337, 458-471. | 4.8 | 42 | | 31 | Feasibility of longitudinal monitoring of atherosclerosis with pulse wave imaging in a swine model. Physiological Measurement, 2021, 42, 105008. | 1.2 | 4 | | 32 | Electromechanical Wave Imaging With Machine Learning for Automated Isochrone Generation. IEEE Transactions on Medical Imaging, 2021, 40, 2258-2271. | 5.4 | 9 | | 33 | Neurogenic Flare Response following Image-Guided Focused Ultrasound in the Mouse Peripheral
Nervous System in Vivo. Ultrasound in Medicine and Biology, 2021, 47, 2759-2767. | 0.7 | 4 | | 34 | Feasibility of Bilinear Mechanical Characterization of the Abdominal Aorta in a Hypertensive Mouse Model. Ultrasound in Medicine and Biology, 2021, 47, 3480-3490. | 0.7 | 4 | | 35 | Guest Editorial Introduction to the Special Issue on Recent Advances in Ultrasound Technology for Brain Imaging and Therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3-5. | 1.7 | 1 | | 36 | Modeling Pulse Wave Propagation Through a Stenotic Artery With Fluid Structure Interaction: A Validation Study Using Ultrasound Pulse Wave Imaging. Journal of Biomechanical Engineering, 2021, 143, . | 0.6 | 6 | | # | Article | IF | CITATIONS | |----|--|--------------|-----------| | 37 | Modeling of intensity-modulated focused ultrasound in pediatric brain tumors using acoustic holograms. , 2021, , . | | 1 | | 38 | Pre-clinical breast cancer the
rapeutic response monitoring using harmonic motion imaging and functional ultrasound.
, 2021, , . | | 2 | | 39 | Natural Aging Increases Focused Ultrasound-Induced Blood-Brain Barrier Opening in Wild-Type Mice. , 2021, , . | | 0 | | 40 | Machine learning assisted filtering of Focused Ultrasound pulse-induced interference in Harmonic Motion Imaging (HMI) derived displacement., 2021,,. | | 1 | | 41 | Transthoracic Cardiac Strain Imaging with Electromagnetic Six Degrees-of-Freedom Tracking for 3D Coregistration., 2021,,. | | 1 | | 42 | Iterative Curve Fitting of the Bioheat Transfer Equation for Thermocouple-Based Temperature Estimation \$In~ Vitro\$ and \$In~ Vivo\$. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 70-80. | 1.7 | 13 | | 43 | Adaptive Pulse Wave Imaging: Automated Spatial Vessel Wall Inhomogeneity Detection in Phantoms and in-Vivo. IEEE Transactions on Medical Imaging, 2020, 39, 259-269. | 5.4 | 19 | | 44 | A Clinical System for Non-invasive Blood–Brain Barrier Opening Using a Neuronavigation-Guided Single-Element Focused Ultrasound Transducer. Ultrasound in Medicine and Biology, 2020, 46, 73-89. | 0.7 | 91 | | 45 | Hyaluronidase reduced edema after experimental traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2026-2037. | 2.4 | 6 | | 46 | A comparison between unfocused and focused transmit strategies in cardiac strain imaging. Physics in Medicine and Biology, 2020, 65, 03NT01. | 1.6 | 5 | | 47 | Cardiovascular elastography. , 2020, , 67-107. | | 1 | | 48 | Arterial wall mechanical inhomogeneity detection and atherosclerotic plaque characterization using high frame rate pulse wave imaging in carotid artery disease patients <i>in vivo</i> . Physics in Medicine and Biology, 2020, 65, 025010. |
1.6 | 17 | | 49 | Atrophy associated with tau pathology precedes overt cell death in a mouse model of progressive tauopathy. Science Advances, 2020, 6, . | 4.7 | 14 | | 50 | Harmonic motion imaging of human breast masses: an in vivo clinical feasibility. Scientific Reports, 2020, 10, 15254. | 1.6 | 12 | | 51 | Monitoring Canine Myocardial Infarction Formation and Recovery via Transthoracic Cardiac Strain Imaging. Ultrasound in Medicine and Biology, 2020, 46, 2785-2800. | 0.7 | 7 | | 52 | Temporal Stability of Lipid-Shelled Microbubbles During Acoustically-Mediated Blood-Brain Barrier Opening. Frontiers in Physics, 2020, 8, . | 1.0 | 13 | | 53 | Displacement Imaging for Focused Ultrasound Peripheral Nerve Neuromodulation. IEEE Transactions on Medical Imaging, 2020, 39, 3391-3402. | 5 . 4 | 29 | | 54 | Ultrasound Neuromodulation: Mechanisms and the Potential of Multimodal Stimulation for Neuronal Function Assessment. Frontiers in Physics, 2020, 8, . | 1.0 | 60 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 55 | Noninvasive localization of cardiac arrhythmias using electromechanical wave imaging. Science Translational Medicine, 2020, 12, . | 5.8 | 14 | | 56 | Image-guided focused ultrasound modulates electrically evoked motor neuronal activity in the mouse peripheral nervous system <i>i>in vivo</i> . Journal of Neural Engineering, 2020, 17, 026026. | 1.8 | 33 | | 57 | Noninvasive Young's modulus visualization of fibrosis progression and delineation of pancreatic ductal adenocarcinoma (PDAC) tumors using Harmonic Motion Elastography (HME) <i>in vivo</i> Theranostics, 2020, 10, 4614-4626. | 4.6 | 33 | | 58 | Harmonic Motion Imaging of Pancreatic Tumor Stiffness Indicates Disease State and Treatment Response. Clinical Cancer Research, 2020, 26, 1297-1308. | 3.2 | 30 | | 59 | Catheter Ablation Lesion Visualization With Intracardiac Strain Imaging in Canines and Humans. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1800-1810. | 1.7 | 5 | | 60 | Focused ultrasound induced-blood–brain barrier opening in mouse brain receiving radiosurgery dose of radiation enhances local delivery of systemic therapy. British Journal of Radiology, 2020, 93, 20190214. | 1.0 | 6 | | 61 | DDEL-13. FOCUSED ULTRASOUND MEDIATED BLOOD BRAIN BARRIER DISRUPTION IN A MURINE MODEL OF PONTINE GLIOMA: A SAFETY AND FEASIBILITY STUDY. Neuro-Oncology, 2020, 22, iii286-iii286. | 0.6 | 0 | | 62 | Frequency dependence of inclusion characterization in harmonic motion imaging. , 2020, , . | | 0 | | 63 | In Vivo Demonstration of Single Transducer Harmonic Motion Imaging (ST-HMI) in a Breast Cancer
Mouse Model and Breast Cancer Patients. , 2020, , . | | 1 | | 64 | First in-vivo Demonstration of Bilateral Blood-Brain Barrier Opening Using Acoustic Holograms in Mice. , 2020, , . | | 1 | | 65 | 4D Pulse Wave Imaging with sub aperture compounding in the carotid artery in simulations, phantoms and human subjects. , 2020, , . | | 0 | | 66 | Targeting Accuracy of Transcranial Power Cavitation Imaging for Blood-Brain Barrier Opening Using a Theranostic Phased Array. , 2020, , . | | 3 | | 67 | Focused ultrasound median nerve stimulation can modulate nociceptive pain. , 2020, , . | | 1 | | 68 | Bioavailability and cytosolic kinases modulate response to deoxynucleoside therapy in TK2 deficiency. EBioMedicine, 2019, 46, 356-367. | 2.7 | 17 | | 69 | Unilateral Focused Ultrasound-Induced Blood-Brain Barrier Opening Reduces Phosphorylated Tau from The rTg4510 Mouse Model. Theranostics, 2019, 9, 5396-5411. | 4.6 | 63 | | 70 | Blood–brain barrier opening with focused ultrasound in experimental models of Parkinson's disease.
Movement Disorders, 2019, 34, 1252-1261. | 2.2 | 32 | | 71 | 4D cardiac electromechanical activation imaging. Computers in Biology and Medicine, 2019, 113, 103382. | 3.9 | 20 | | 72 | Effect of Local Neck Anatomy on Localized One-Dimensional Measurements of Arterial Stiffness: A Finite-Element Model Study. Journal of Biomechanical Engineering, 2019, 141, . | 0.6 | 1 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 73 | Fast qualitative two-dimensional mapping of ultrasound fields with acoustic cavitation-enhanced ultrasound imaging. Journal of the Acoustical Society of America, 2019, 146, EL158-EL164. | 0.5 | 6 | | 74 | Localization of Accessory PathwaysÂinÂPediatric Patients With Wolff-Parkinson-White Syndrome UsingÂ3D-Rendered Electromechanical Wave Imaging. JACC: Clinical Electrophysiology, 2019, 5, 427-437. | 1.3 | 12 | | 75 | Numerical modeling of ultrasound heating for the correction of viscous heating artifacts in soft tissue temperature measurements. Applied Physics Letters, 2019, 114, 203702. | 1.5 | 20 | | 76 | Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson's disease. Journal of Controlled Release, 2019, 303, 289-301. | 4.8 | 50 | | 77 | Intrinsic Cardiovascular Wave and Strain Imaging. Series in Bioengineering, 2019, , 163-190. | 0.3 | 0 | | 78 | Simultaneous Nerve Displacement Mapping for Human Peripheral Neuromodulation. , 2019, , . | | 0 | | 79 | Simultaneous Nerve Displacement Mapping for Human Peripheral Neuromodulation. , 2019, , . | | 0 | | 80 | Atherosclerotic plaque mechanical characterization coupled with vector Doppler imaging in atherosclerotic carotid arteries in-vivo., 2019, 2019, 6200-6203. | | 3 | | 81 | Imaging of pulse wave propagation coupled with vector flow and wall shear stress mapping in atherosclerotic plaque phantoms and in vivo. , 2019, , . | | 5 | | 82 | Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson's disease mouse model. Scientific Reports, 2019, 9, 19402. | 1.6 | 37 | | 83 | Transcranial Blood-Brain Barrier Opening and Power Cavitation Imaging Using a Diagnostic Imaging Array. , 2019, , . | | 4 | | 84 | 3D-rendered Electromechanical Wave Imaging for Localization of Accessory Pathways in Wolff-Parkinson-White Minors*., 2019, 2019, 6192-6195. | | 0 | | 85 | Focused ultrasound stimulation of median nerve modulates somatosensory evoked responses. , 2019, , | | 4 | | 86 | Pulse Wave Imaging in Carotid Artery Stenosis Human Patients in Vivo. Ultrasound in Medicine and Biology, 2019, 45, 353-366. | 0.7 | 24 | | 87 | 10.1121/1.5122194.1., 2019,,. | | 0 | | 88 | Optimization of Transmit Parameters in Cardiac Strain Imaging With Full and Partial Aperture Coherent Compounding. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 684-696. | 1.7 | 15 | | 89 | Cardiac Lesion Mapping <italic>In Vivo</italic> Using Intracardiac Myocardial Elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 14-20. | 1.7 | 8 | | 90 | Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery. Physics in Medicine and Biology, 2018, 63, 035002. | 1.6 | 42 | | # | Article | IF | CITATIONS | |-----|---|------------|-----------| | 91 | Cross-correlation analysis of pulse wave propagation in arteries: <i>in vitro</i> validation and <i>in vivo</i> feasibility. Physics in Medicine and Biology, 2018, 63, 115006. | 1.6 | 18 | | 92 | Focused Ultrasound Steering for Harmonic Motion Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 292-294. | 1.7 | 7 | | 93 | Non-invasive peripheral nerve stimulation via focused ultrasound <i>in vivo</i> . Physics in Medicine and Biology, 2018, 63, 035011. | 1.6 | 100 | | 94 | A Harmonic Motion Imaging (HMI)clinical System for Detection and Characterization of in Vivo Human Breast Masses - Initial Feasibility., 2018,,. | | 2 | | 95 | Real-Time Displacement and Cavitation Imaging of Non-Invasive Neuromodulation of the Peripheral Nervous System via Focused Ultrasound. , 2018, , . | | 4 | | 96 | Automated Spatial Mechanical Inhomogeneity Detection and Arterial Wall Characterization in Human Atherosclerotic Carotid Arteries In-Vivo. , 2018, , . | | 4 | | 97 | F4â€09â€01: NEURORESTORATION OF THE DOPAMINERGIC PATHWAY USING FOCUSED ULTRASOUNDâ€MEDIA
PROTEIN AND GENE DELIVERY IN A PARKINSONIAN MODEL. Alzheimer's and Dementia, 2018, 14, P1396. | TED
0.4 | 0 | | 98 | Focused Ultrasound Enhanced Intranasal Delivery of Neurotrophic Factors Exhibit Neurorestorative Effects in Parkinson's Disease Mouse Model., 2018,,. | | 2 | | 99 | Technical Note: <i>In vivo</i> Young's modulus mapping of pancreatic ductal adenocarcinoma during <scp>HIFU</scp> ablation using harmonic motion elastography (<scp>HME</scp>). Medical Physics, 2018, 45, 5244-5250. | 1.6 | 9 | | 100 | Efficient Blood-Brain Barrier Opening in Primates with Neuronavigation-Guided Ultrasound and Real-Time Acoustic Mapping. Scientific Reports, 2018, 8, 7978. | 1.6 | 84 | | 101 | Non-invasive Characterization of Focal Arrhythmia with Electromechanical Wave Imaging in Vivo.
Ultrasound in Medicine and Biology, 2018, 44, 2241-2249. | 0.7 | 8 | | 102 | Pulse inversion enhances the passive mapping of microbubble-based ultrasound therapy. Applied Physics Letters, 2018, 113, 044102. | 1.5 | 19 | | 103 | Modulation of Brain Function and Behavior by Focused Ultrasound. Current Behavioral Neuroscience Reports, 2018, 5,
153-164. | 0.6 | 27 | | 104 | Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood–brain barrier opening. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1236-1250. | 2.4 | 40 | | 105 | Direct brain infusion can be enhanced with focused ultrasound and microbubbles. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 706-714. | 2.4 | 30 | | 106 | Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics. Scientific Reports, 2017, 7, 39955. | 1.6 | 53 | | 107 | Pulse wave imaging using coherent compounding in a phantom and (i) in vivo (i). Physics in Medicine and Biology, 2017, 62, 1700-1730. | 1.6 | 37 | | 108 | 3D Myocardial Elastography <italic>In Vivo</italic> . IEEE Transactions on Medical Imaging, 2017, 36, 618-627. | 5.4 | 28 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 109 | Evaluation of Coronary Artery Disease Using Myocardial Elastography with Diverging Wave Imaging:
Validation against Myocardial Perfusion Imaging and Coronary Angiography. Ultrasound in Medicine
and Biology, 2017, 43, 893-902. | 0.7 | 13 | | 110 | Assessment of arterial stiffness in periodontitis using a novel pulse wave imaging methodology. Journal of Clinical Periodontology, 2017, 44, 502-510. | 2.3 | 3 | | 111 | Technical Note: A 3â€D rendering algorithm for electromechanical wave imaging of a beating heart. Medical Physics, 2017, 44, 4766-4772. | 1.6 | 12 | | 112 | Cardiac Strain Imaging With Coherent Compounding of Diverging Waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1212-1222. | 1.7 | 40 | | 113 | Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis. Optics and Lasers in Engineering, 2017, 97, 41-51. | 2.0 | 5 | | 114 | Noninvasive evaluation of varying pulse pressures in vivo using brachial sphymomanometry, applanation tonometry, and Pulse Wave Ultrasound Manometry. Artery Research, 2017, 18, 22. | 0.3 | 6 | | 115 | Targeting Effects on the Volume of the Focused Ultrasound-Induced Blood–Brain Barrier Opening in Nonhuman Primates <i>In Vivo</i> . IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 798-810. | 1.7 | 41 | | 116 | Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMlgFUS) <i>in vitro</i> and <i>in vivo</i> . Physics in Medicine and Biology, 2017, 62, 3111-3123. | 1.6 | 22 | | 117 | Pharmacokinetic analysis and drug delivery efficiency of the focused ultrasound-induced blood-brain barrier opening in non-human primates. Magnetic Resonance Imaging, 2017, 37, 273-281. | 1.0 | 26 | | 118 | Electromechanical wave imaging and electromechanical wave velocity estimation in a large animal model of myocardial infarction. Physics in Medicine and Biology, 2017, 62, 9341-9356. | 1.6 | 2 | | 119 | In vivo repeatability of the pulse wave inverse problem in human carotid arteries. Journal of Biomechanics, 2017, 64, 136-144. | 0.9 | 8 | | 120 | Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans. Ultrasound in Medicine and Biology, 2017, 43, 2256-2268. | 0.7 | 13 | | 121 | Feasibility and Validation of 4-D Pulse Wave Imaging in Phantoms and <i>In Vivo</i> . IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1305-1317. | 1.7 | 21 | | 122 | Imaging the Propagation of the Electromechanical Wave in Heart Failure Patients with Cardiac Resynchronization Therapy. PACE - Pacing and Clinical Electrophysiology, 2017, 40, 35-45. | 0.5 | 12 | | 123 | 3D Quasi-Static Ultrasound Elastography With Plane Wave <italic>In Vivo</italic> . IEEE Transactions on Medical Imaging, 2017, 36, 357-365. | 5.4 | 38 | | 124 | Notice of Removal: Pancreatic ductal adenocarcinoma detection and treatment monitoring in vivo and in post-surgical human specimens using Harmonic Motion Imaging (HMI)., 2017,,. | | 0 | | 125 | Notice of Removal: Mechanical effects of Cisplatin on Pancreatic Ductal Adenocarcinoma in a transgenic mouse model using Harmonic Motion Imaging. , 2017, , . | | 0 | | 126 | Notice of Removal: Comparison between fully and partially focused transmit strategies in transthoracic cardiac strain estimation. , 2017, , . | | 0 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 127 | Human Breast Tumor Characterization on Post-Surgical Mastectomy Specimens Using Harmonic Motion Imaging (HMI). , 2017 , , . | | 2 | | 128 | Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets. , 2017, , . | | 0 | | 129 | Toward a Cognitive Neural Prosthesis Using Focused Ultrasound. Frontiers in Neuroscience, 2017, 11, 607. | 1.4 | 23 | | 130 | Notice of Removal: Multi-2D reconstruction of electromechanical activation maps of a beating heart., 2017,,. | | 0 | | 131 | Focused ultrasound-facilitated molecular delivery to the brain using drug-loaded nanodroplets. , 2017, , . | | 0 | | 132 | The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements. Physics in Medicine and Biology, 2016, 61, 7427-7447. | 1.6 | 24 | | 133 | Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor.
Scientific Reports, 2016, 6, 28599. | 1.6 | 52 | | 134 | An inverse approach to determining spatially varying arterial compliance using ultrasound imaging. Physics in Medicine and Biology, 2016, 61, 5486-5507. | 1.6 | 24 | | 135 | Focused ultrasound neuromodulation of cortical and subcortical brain structures using 1.9 MHz. Medical Physics, 2016, 43, 5730-5735. | 1.6 | 112 | | 136 | P1â€095: Focused Ultrasound Using Neurotrophic Factors for the Treatment of Neurodegenerative Disease. Alzheimer's and Dementia, 2016, 12, P437. | 0.4 | 0 | | 137 | Energy-based constitutive modelling of local material properties of canine aortas. Royal Society Open Science, 2016, 3, 160365. | 1.1 | 8 | | 138 | Elasticity mapping of murine abdominal organs <i>in vivo</i> vusing harmonic motion imaging (HMI). Physics in Medicine and Biology, 2016, 61, 5741-5754. | 1.6 | 22 | | 139 | Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm. Heart Rhythm, 2016, 13, 2221-2227. | 0.3 | 22 | | 140 | Characterizing Focused-Ultrasound Mediated Drug Delivery to the Heterogeneous Primate Brain In Vivo with Acoustic Monitoring. Scientific Reports, 2016, 6, 37094. | 1.6 | 52 | | 141 | Electromechanical wave imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines <i>in vivo</i> . Physics in Medicine and Biology, 2016, 61, 8105-8119. | 1.6 | 20 | | 142 | Assessing the Stability of Aortic Aneurysms with Pulse Wave Imaging. Radiology, 2016, 281, 772-781. | 3.6 | 20 | | 143 | Tumor characterization and treatment monitoring of postsurgical human breast specimens using harmonic motion imaging (HMI). Breast Cancer Research, 2016, 18, 46. | 2.2 | 26 | | 144 | Longitudinal Motor and Behavioral Assessment of Blood–Brain Barrier Opening with Transcranial Focused Ultrasound. Ultrasound in Medicine and Biology, 2016, 42, 2270-2282. | 0.7 | 33 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 145 | Differential displacement of soft tissue layers from manual therapy loading. Clinical Biomechanics, 2016, 33, 66-72. | 0.5 | 14 | | 146 | High intensity focused ultrasound as a tool for tissue engineering: Application to cartilage. Medical Engineering and Physics, 2016, 38, 192-198. | 0.8 | 4 | | 147 | Piecewise Pulse Wave Imaging (pPWI) for Detection and Monitoring of Focal Vascular Disease in Murine Aortas and Carotids In Vivo. IEEE Transactions on Medical Imaging, 2016, 35, 13-28. | 5.4 | 49 | | 148 | Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica United With Acustica, 2016, 102, 876-892. | 0.8 | 22 | | 149 | Focused ultrasound facilitated adenoviral delivery for optogenetic stimulation. , 2015, , . | | 0 | | 150 | Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU). Journal of Visualized Experiments, 2015, , e53050. | 0.2 | 11 | | 151 | Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles. Scientific Reports, 2015, 5, 15076. | 1.6 | 81 | | 152 | Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling. AIP Conference Proceedings, 2015, , . | 0.3 | 0 | | 153 | Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and <i>in vitro</i> ilvers before and after HIFU ablation. Physics in Medicine and Biology, 2015, 60, 7499-7512. | 1.6 | 14 | | 154 | Noninvasive assessment of age-related arterial changes using the carotid stress-strain relationship in vivo: A pilot study. , 2015 , , . | | 1 | | 155 | Performance assessment of
pulse wave imaging using conventional ultrasound in canine aortas ex vivo and normal human arteries in vivo. Artery Research, 2015, 11, 19. | 0.3 | 14 | | 156 | Atrial electromechanical cycle length mapping in paced canine hearts in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1277-1287. | 1.7 | 8 | | 157 | Targeting effects on the volume of the focused-ultrasound-induced blood-brain barrier opening in Non-Human Primates in vivo. , 2015 , , . | | 2 | | 158 | Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1662-1673. | 1.7 | 33 | | 159 | Intracardiac myocardial elastography in canines and humans in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 337-349. | 1.7 | 26 | | 160 | Enhanced Delivery and Bioactivity of the Neurturin Neurotrophic Factor through Focused Ultrasoundâ€"Mediated Bloodâ€"Brain Barrier Opening ⟨i⟩in vivo⟨/i⟩. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 611-622. | 2.4 | 88 | | 161 | High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI). Physics in Medicine and Biology, 2015, 60, 5911-5924. | 1.6 | 24 | | 162 | Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain. Journal of Controlled Release, 2015, 212, 30-40. | 4.8 | 62 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 163 | Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using Harmonic Motion Imaging (HMI). Physics in Medicine and Biology, 2015, 60, 2853-2868. | 1.6 | 17 | | 164 | Assessing the atrial electromechanical coupling during atrial focal tachycardia, flutter, and fibrillation using electromechanical wave imaging in humans. Computers in Biology and Medicine, 2015, 65, 161-167. | 3.9 | 20 | | 165 | High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1308-1319. | 1.7 | 11 | | 166 | Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening. Physics in Medicine and Biology, 2015, 60, 9079-9094. | 1.6 | 80 | | 167 | Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task. PLoS ONE, 2015, 10, e0125911. | 1.1 | 141 | | 168 | Real-Time, Transcranial Monitoring of Safe Blood-Brain Barrier Opening in Non-Human Primates. PLoS ONE, 2014, 9, e84310. | 1.1 | 78 | | 169 | A New Brain Drug Delivery Strategy: Focused Ultrasound-Enhanced Intranasal Drug Delivery. PLoS
ONE, 2014, 9, e108880. | 1.1 | 40 | | 170 | Sparse Matrix Beamforming and Image Reconstruction for 2-D HIFU Monitoring Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) With In Vitro Validation. IEEE Transactions on Medical Imaging, 2014, 33, 2107-2117. | 5.4 | 33 | | 171 | Transcranial cavitation detection in primates during blood-brain barrier opening-a performance assessment study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 966-978. | 1.7 | 79 | | 172 | 3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications. 3D Printing and Additive Manufacturing, 2014, 1, 14-23. | 1.4 | 81 | | 173 | Emerging Engineering Technologies for Opening the BBB. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 545-570. | 0.2 | 0 | | 174 | Harmonic motion imaging in abdominal tumor detection and HIFU ablation monitoring: A feasibility study in a transgenic mouse model of pancreatic cancer. , 2014, , . | | 2 | | 175 | Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an <i>ex vivo</i> feasibility study. Physics in Medicine and Biology, 2014, 59, 1121-1145. | 1.6 | 25 | | 176 | The Size of Blood–Brain Barrier Opening Induced by Focused Ultrasound is Dictated by the Acoustic Pressure. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1197-1204. | 2.4 | 205 | | 177 | Monitoring and Staging Abdominal Aortic Aneurysm Disease With Pulse Wave Imaging. Ultrasound in Medicine and Biology, 2014, 40, 2404-2414. | 0.7 | 27 | | 178 | ExÂVivo Characterization of Canine Liver Tissue Viscoelasticity after High-Intensity Focused Ultrasound Ablation. Ultrasound in Medicine and Biology, 2014, 40, 341-350. | 0.7 | 17 | | 179 | Electromechanical Wave Imaging of Biologically and Electrically Paced Canine Hearts inÂVivo.
Ultrasound in Medicine and Biology, 2014, 40, 177-187. | 0.7 | 20 | | 180 | Microbubble Type and Distribution Dependence of Focused Ultrasound-Induced Blood–Brain Barrier Opening. Ultrasound in Medicine and Biology, 2014, 40, 130-137. | 0.7 | 80 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 181 | Quantification of arterial wall inhomogeneity size, distribution, and modulus contrast using FSI numerical pulse wave propagation. Artery Research, 2013, 8, 57. | 0.3 | 10 | | 182 | Dependence of the reversibility of focused- ultrasound-induced blood-brain barrier opening on pressure and pulse length in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 2257-2265. | 1.7 | 80 | | 183 | An experimental study on the stiffness of size-isolated microbubbles using atomic force microscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 524-534. | 1.7 | 31 | | 184 | Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. Journal of Controlled Release, 2013, 172, 795-804. | 4.8 | 121 | | 185 | Mapping the longitudinal wall stiffness heterogeneities within intact canine aortas using Pulse Wave Imaging (PWI) ex vivo. Journal of Biomechanics, 2013, 46, 1866-1874. | 0.9 | 23 | | 186 | Pulse wave imaging in normal, hypertensive and aneurysmal human aortas <i>in vivo</i> : a feasibility study. Physics in Medicine and Biology, 2013, 58, 4549-4562. | 1.6 | 60 | | 187 | A clinical feasibility study of atrial and ventricular electromechanical wave imaging. Heart Rhythm, 2013, 10, 856-862. | 0.3 | 59 | | 188 | Monitoring of focused ultrasound-induced blood-brain barrier opening in non-human primates using transcranial cavitation detection in vivo and the primate skull effect. , $2013, \ldots$ | | 0 | | 189 | Localized delivery of the Neurturin (NTN) neurotrophic factor through focused ultrasound - Mediated blood-brain barrier opening. , 2013, , . | | 1 | | 190 | Pulse-Wave Propagation in Straight-Geometry Vessels for Stiffness Estimation: Theory, Simulations, Phantoms and In Vitro Findings. Journal of Biomechanical Engineering, 2012, 134, 114502. | 0.6 | 41 | | 191 | Single-heartbeat electromechanical wave imaging with optimal strain estimation using temporally unequispaced acquisition sequences. Physics in Medicine and Biology, 2012, 57, 1095-1112. | 1.6 | 28 | | 192 | Pressure and microbubble size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo. , 2012 , , . | | 5 | | 193 | Non-human primate skull effects on the cavitation detection threshold of FUS-induced blood-brain barrier opening. , 2012, , . | | 2 | | 194 | Targeting accuracy and closing timeline of the microbubble-enhanced focused ultrasound blood-brain barrier opening in non-human primates. , 2012 , , . | | 0 | | 195 | Feasibility study of a single-element transcranial focused ultrasound system for blood-brain barrier opening. , 2012, , . | | 3 | | 196 | The bubble-dependent mechanism of FUS-induced blood-brain barrier opening in mice and in monkeys in vivo. , 2012 , , . | | 0 | | 197 | The safest parameters for FUS-induced blood-brain barrier opening without effects on the opening volume. , 2012, , . | | 0 | | 198 | Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates. , 2012, , . | | 1 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 199 | Performance assessment and optimization of Pulse Wave Imaging (PWI) in ex vivo canine aortas and in vivo normal human arteries., 2012, 2012, 3179-82. | | 8 | | 200 | Boiling effects on the performance of Harmonic Motion Imaging for Focused Ultrasound. , 2012, , . | | 0 | | 201 | An experimental study on the apparent stiffness of size-isolated microbubbles used for blood-brain barrier opening applications. , 2012, , . | | 0 | | 202 | Pulse wave imaging of the human carotid artery: an in vivo feasibility study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 174-181. | 1.7 | 121 | | 203 | Detection of aortic wall inclusions using regional pulse wave propagation and velocity in silico.
Artery Research, 2012, 6, 114. | 0.3 | 24 | | 204 | Activation of signaling pathways following localized delivery
of systemically administered neurotrophic factors across the blood–brain barrier using focused ultrasound and microbubbles. Physics in Medicine and Biology, 2012, 57, N65-N81. | 1.6 | 102 | | 205 | Electromechanical wave imaging for noninvasive mapping of the 3D electrical activation sequence in canines and humans in vivo. Journal of Biomechanics, 2012, 45, 856-864. | 0.9 | 33 | | 206 | Multi-parametric monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for focused ultrasound (HMIFU). , 2012, , . | | 1 | | 207 | Optimization of the Ultrasound-Induced Blood-Brain Barrier Opening. Theranostics, 2012, 2, 1223-1237. | 4.6 | 123 | | 208 | Harmonic Motion Imaging (HMI) for Tumor Imaging and Treatment Monitoring. Current Medical Imaging, 2012, 8, 16-26. | 0.4 | 36 | | 209 | A quantitative pressure and microbubbleâ€size dependence study of focused ultrasoundâ€induced bloodâ€brain barrier opening reversibility in vivo using MRI. Magnetic Resonance in Medicine, 2012, 67, 769-777. | 1.9 | 128 | | 210 | Ultrasound-Induced Blood-Brain Barrier Opening. Current Pharmaceutical Biotechnology, 2012, 13, 1332-1345. | 0.9 | 142 | | 211 | Mapping of cardiac electrical activation with electromechanical wave imaging: An in silico–in vivo reciprocity study. Heart Rhythm, 2011, 8, 752-759. | 0.3 | 53 | | 212 | Physiologic Cardiovascular Strain and Intrinsic Wave Imaging. Annual Review of Biomedical Engineering, 2011, 13, 477-505. | 5.7 | 38 | | 213 | The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. Journal of the Acoustical Society of America, 2011, 130, 3059-3067. | 0.5 | 154 | | 214 | Performance Assessment of HIFU Lesion Detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3-D Finite-Element-Based Framework with Experimental Validation. Ultrasound in Medicine and Biology, 2011, 37, 2013-2027. | 0.7 | 39 | | 215 | Aortic pulse wave velocity measured by pulse wave imaging (PWI): A comparison with applanation tonometry. Artery Research, 2011, 5, 65. | 0.3 | 29 | | 216 | Noninvasive, Transient and Selective Blood-Brain Barrier Opening in Non-Human Primates In Vivo. PLoS ONE, 2011, 6, e22598. | 1.1 | 125 | | # | Article | IF | CITATIONS | |-----|--|-----|------------| | 217 | Noninvasive and Localized Blood—Brain Barrier Disruption using Focused Ultrasound can be Achieved at Short Pulse Lengths and Low Pulse Repetition Frequencies. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 725-737. | 2.4 | 122 | | 218 | Electromechanical wave imaging for arrhythmias. Physics in Medicine and Biology, 2011, 56, L1-L11. | 1.6 | 79 | | 219 | Permeability dependence study of the focused ultrasoundâ€induced blood–brain barrier opening at distinct pressures and microbubble diameters using DCEâ€MRI. Magnetic Resonance in Medicine, 2011, 66, 821-830. | 1.9 | 83 | | 220 | Imaging of Wall Motion Coupled With Blood Flow Velocity in the Heart and Vessels in Vivo: A Feasibility Study. Ultrasound in Medicine and Biology, 2011, 37, 980-995. | 0.7 | 95 | | 221 | <i>In vivo</i> study of myocardial elastography under graded ischemia conditions. Physics in Medicine and Biology, 2011, 56, 1155-1172. | 1.6 | 56 | | 222 | Permeability and reversibility timeline study of the focused-ultrasound induced blood-brain barrier opening at distinct pressures and microbubble sizes in vivo., 2011,,. | | 2 | | 223 | A comprehensive framework for Harmonic Motion Imaging for Focused Ultrasound (HMIFU) with ex vivo validation. , $2011, , .$ | | 1 | | 224 | Pulse Wave Imaging (PWI) and arterial stiffness measurement of the human carotid artery: An in vivo feasibility study. , 2011 , , . | | 2 | | 225 | Non-invasive Electromechanical Wave Imaging of atrial, supraventricular and ventricular cardiac conduction disorders in canines and humans. , $2011, \ldots$ | | 0 | | 226 | Initial in vivo feasibility of a pre-clinical focused ultrasound system applied to blood-brain barrier opening in monkeys. , 2011 , , . | | 1 | | 227 | Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates. Applied Physics Letters, 2011, 98, 163704. | 1.5 | 99 | | 228 | Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16539-16544. | 3.3 | 130 | | 229 | Imaging the electromechanical activity of the heart in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8565-8570. | 3.3 | 71 | | 230 | Simultaneous imaging of wall motion and flow velocity in the hearts and vessels of mice in vivo: A feasibility study. , 2011 , , . | | 0 | | 231 | In Vivo Feasibility of Real-Time Monitoring of Focused Ultrasound Surgery (FUS) Using Harmonic Motion Imaging (HMI). IEEE Transactions on Biomedical Engineering, 2010, 57, 7-11. | 2.5 | 54 | | 232 | Microbubble-Size Dependence of Focused Ultrasound-Induced Blood–Brain Barrier Opening in Mice <i>In Vivo</i> IEEE Transactions on Biomedical Engineering, 2010, 57, 145-154. | 2.5 | 217 | | 233 | Electromechanical Wave Imaging of Normal and Ischemic Hearts <i>In Vivo</i> . IEEE Transactions on Medical Imaging, 2010, 29, 625-635. | 5.4 | 7 3 | | 234 | Noninvasive electromechanical wave imaging and conduction-relevant velocity estimation in vivo. Ultrasonics, 2010, 50, 208-215. | 2.1 | 44 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 235 | Identifying the Inertial Cavitation Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles. Ultrasound in Medicine and Biology, 2010, 36, 840-852. | 0.7 | 71 | | 236 | Molecules of Various Pharmacologically-Relevant Sizes Can Cross the Ultrasound-Induced Blood-Brain Barrier Opening in vivo. Ultrasound in Medicine and Biology, 2010, 36, 58-67. | 0.7 | 170 | | 237 | Multi-Modality Safety Assessment of Blood-Brain Barrier Opening Using Focused Ultrasound and Definity Microbubbles: A Short-Term Study. Ultrasound in Medicine and Biology, 2010, 36, 1445-1459. | 0.7 | 137 | | 238 | FEASIBILITY STUDY OF A CLINICAL BLOOD–BRAIN BARRIER OPENING ULTRASOUND SYSTEM. Nano LIFE, 2010, 01, 309-322. | 0.6 | 10 | | 239 | Simulation Study of Amplitude-Modulated (AM) Harmonic Motion Imaging (HMI) for Stiffness Contrast Quantification with Experimental Validation. Ultrasonic Imaging, 2010, 32, 154-176. | 1.4 | 22 | | 240 | In vivo validation of Myocardial Elastography under graded ischemia conditions. , 2010, , . | | 0 | | 241 | A fast motion and strain estimation method. , 2010, , . | | 3 | | 242 | Identifying the Inertial Cavitation Pressure Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles. , 2010, , . | | 1 | | 243 | Mechanism and Safety at the Threshold of the Blood-Brain Barrier Opening In Vivo. , 2010, , . | | 1 | | 244 | Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 2637-2653. | 1.7 | 92 | | 245 | A fast normalized cross-correlation calculation method for motion estimation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1347-1357. | 1.7 | 303 | | 246 | Pulse Wave Imaging for Noninvasive and Quantitative Measurement of Arterial Stiffness In Vivo. American Journal of Hypertension, 2010, 23, 393-398. | 1.0 | 137 | | 247 | <i>In vivo</i> transcranial cavitation threshold detection during ultrasound-induced blood–brain barrier opening in mice. Physics in Medicine and Biology, 2010, 55, 6141-6155. | 1.6 | 210 | | 248 | Simulation of HMIFU (Harmonic Motion Imaging for Focused Ultrasound) with in-vitro validation. , 2010, , . | | 3 | | 249 | Regional measurement of arterial stiffness using Pulse Wave Imaging (PWI): Phantom validation and preliminary clinical results. , 2010, , . | | 2 | | 250 | Harmonic Motion Imaging for Focused Ultrasound (HMIFU): Initial in vivo results. , 2009, , . | | 0 | | 251 | Non-invasive localization and quantification of graded ischemia using Electromechanical Wave Imaging in vivo. , 2009, , . | | О | | 252 | Key parameters for precise lateral displacement estimation in ultrasound elastography. , 2009, 2009, 4407-10. | | 2 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 253 | Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI). , 2009, , . | | 0 | | 254 | Characterization and Optimization of Trans-Blood-Brain Barrier Diffusion In Vivo., 2009,,. | | 4 | | 255 | The Dependence of the Ultrasound-Induced Blood-Brain Barrier Opening Characteristics on Microbubble Size In Vivo. , 2009, , . | | 3 | | 256 | Pulse Wave Imaging of Normal and Aneurysmal Abdominal Aortas <i>In Vivo</i> . IEEE Transactions on Medical Imaging, 2009, 28, 477-486. | 5.4 | 95 | | 257 | Effects of Various Parameters on Lateral Displacement Estimation in Ultrasound Elastography. Ultrasound in Medicine and Biology, 2009, 35, 1352-1366. | 0.7 | 64 | | 258 | Quantitative viscoelastic parameters measured by harmonic motion imaging. Physics in Medicine and Biology, 2009, 54, 3579-3594. | 1.6 | 108 | | 259 | Fundamental analysis of lateral
displacement estimation quality in ultrasound elastography., 2009,,. | | 4 | | 260 | Angle-independent and multi-dimensional myocardial elastography – From theory to clinical validation. Ultrasonics, 2008, 48, 563-567. | 2.1 | 21 | | 261 | Preliminary Validation of Angle-Independent Myocardial Elastography Using MR Tagging in a Clinical Setting. Ultrasound in Medicine and Biology, 2008, 34, 1980-1997. | 0.7 | 47 | | 262 | A composite high-frame-rate system for clinical cardiovascular imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 2221-2233. | 1.7 | 93 | | 263 | Noninvasive and Transient Blood-Brain Barrier Opening in the Hippocampus of Alzheimer's Double Transgenic Mice Using Focused Ultrasound. Ultrasonic Imaging, 2008, 30, 189-200. | 1.4 | 84 | | 264 | Delivery of fluorescent dextrans through the ultrasound-induced blood-brain barrier opening in mice. , 2008, , . | | 0 | | 265 | High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 240-248. | 1.7 | 72 | | 266 | Principles of Ultrasound Imaging Modalities. , 2008, , 129-149. | | 3 | | 267 | Theoretical Quality Assessment of Myocardial Elastography with In Vivo Validation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2233-2245. | 1.7 | 104 | | 268 | A Novel Noninvasive Technique for Pulse-Wave Imaging and Characterization of Clinically-Significant Vascular Mechanical Properties <i>In Vivo</i> . Ultrasonic Imaging, 2007, 29, 137-154. | 1.4 | 99 | | 269 | Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in Medicine and Biology, 2007, 33, 95-104. | 0.7 | 331 | | 270 | Myocardial Elastography at Both High Temporal and Spatial Resolution for the Detection of Infarcts. Ultrasound in Medicine and Biology, 2007, 33, 1206-1223. | 0.7 | 84 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 271 | ECG-gated, Mechanical and Electromechanical Wave Imaging of Cardiovascular Tissues In Vivo.
Ultrasound in Medicine and Biology, 2007, 33, 1075-1085. | 0.7 | 149 | | 272 | Imaging the mechanics and electromechanics of the heart. , 2006, Suppl, 6648-51. | | 15 | | 273 | An All-Ultrasound-Based System for Real-Time Monitoring and Sonication of Temperature Change and Ablation., 2006, 2006, 164-7. | | 3 | | 274 | Real-Time Monitoring Of Regional Tissue Elasticity During FUS Focused Ultrasound Therapy Using Harmonic Motion Imaging. AIP Conference Proceedings, 2006, , . | 0.3 | 3 | | 275 | Noninvasive Blood-Brain Barrier Opening in Live Mice. AIP Conference Proceedings, 2006, , . | 0.3 | 4 | | 276 | Single-Element Focused Ultrasound Transducer Method for Harmonic Motion Imaging. Ultrasonic Imaging, 2006, 28, 144-158. | 1.4 | 57 | | 277 | Detection of murine infarcts using myocardial elastography at both high temporal and spatial resolution. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , . | 0.5 | 0 | | 278 | Using ultrasound to understand acupuncture. IEEE Engineering in Medicine and Biology Magazine, 2005, 24, 41-46. | 1.1 | 26 | | 279 | Tissue displacements during acupuncture using ultrasound elastography techniques. Ultrasound in Medicine and Biology, 2004, 30, 1173-1183. | 0.7 | 99 | | 280 | Quo vadis elasticity imaging?. Ultrasonics, 2004, 42, 331-336. | 2.1 | 61 | | 281 | Estimating localized oscillatory tissue motion for assessment of the underlying mechanical modulus. Ultrasonics, 2004, 42, 951-956. | 2.1 | 30 | | 282 | The use of ultrasound-stimulated acoustic emission in the monitoring of modulus changes with temperature. Ultrasonics, 2003, 41, 337-345. | 2.1 | 35 | | 283 | Localized harmonic motion imaging: theory, simulations and experiments. Ultrasound in Medicine and Biology, 2003, 29, 1405-1413. | 0.7 | 181 | | 284 | Two-dimensional ultrasonic strain rate measurement of the human heart in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 281-286. | 1.7 | 164 | | 285 | Elastography: Imaging the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics (2001), 2002, 29, 155-171. | 0.6 | 286 | | 286 | The temperature dependence of ultrasound-stimulated acoustic emission. Ultrasound in Medicine and Biology, 2002, 28, 331-338. | 0.7 | 40 | | 287 | Myocardial elastography—a feasibility study in vivo. Ultrasound in Medicine and Biology, 2002, 28, 475-482. | 0.7 | 274 | | 288 | A focused ultrasound method for simultaneous diagnostic and therapeutic applications—a simulation study. Physics in Medicine and Biology, 2001, 46, 2967-2984. | 1.6 | 78 | | # | Article | lF | CITATIONS | |-----|--|-----|-----------| | 289 | Elastographic Imaging of the Normal Canine Prostate <i>In Vitro</i> . Ultrasonic Imaging, 1999, 21, 201-215. | 1.4 | 43 | | 290 | A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and poisson's ratios in tissues. Ultrasound in Medicine and Biology, 1998, 24, 1183-1199. | 0.7 | 436 |