Liliane Massade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7006496/publications.pdf

Version: 2024-02-01

414414 331670 1,103 42 21 32 h-index citations g-index papers 43 43 43 1573 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lipid Conjugated Oligonucleotides: A Useful Strategy for Delivery. Bioconjugate Chemistry, 2012, 23, 1091-1104.	3.6	131
2	Synthesis, Characterization, and in Vivo Delivery of siRNA-Squalene Nanoparticles Targeting Fusion Oncogene in Papillary Thyroid Carcinoma. Journal of Medicinal Chemistry, 2011, 54, 4067-4076.	6.4	75
3	Pro-atherogenic effect of interleukin-4 in endothelial cells: Modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein-1 expression. Atherosclerosis, 2006, 187, 285-291.	0.8	71
4	Polymorphisms of human aryl hydrocarbon receptor (AhR) gene in a French population: relationship with CYP1A1 inducibility and lung cancer. Carcinogenesis, 2001, 22, 1819-1824.	2.8	61
5	How can chemical compounds alter human fertility?. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2002, 100, 127-137.	1.1	47
6	Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine. Molecular Therapy - Nucleic Acids, 2017, 6, 315-326.	5.1	47
7	Small interfering RNA from the lab discovery to patients' recovery. Journal of Controlled Release, 2020, 321, 616-628.	9.9	42
8	Principal xenobiotic-metabolizing enzyme systems in human head and neck squamous cell carcinoma. Carcinogenesis, 1993, 14, 1279-1283.	2.8	41
9	Hypoxia Down-regulates CCAAT/Enhancer Binding Protein-α Expression in Breast Cancer Cells. Cancer Research, 2008, 68, 2158-2165.	0.9	40
10	Title is missing!. Pharmacogenetics and Genomics, 2003, 13, 339-347.	5.7	36
10	Title is missing!. Pharmacogenetics and Genomics, 2003, 13, 339-347. Transactivation of the Metallothionein Promoter in Cisplatin-Resistant Cancer Cells: a Specific Gene Therapy Strategy. Journal of the National Cancer Institute, 2000, 92, 642-647.	5.76.3	36
	Transactivation of the Metallothionein Promoter in Cisplatin-Resistant Cancer Cells: a Specific Gene		
11	Transactivation of the Metallothionein Promoter in Cisplatin-Resistant Cancer Cells: a Specific Gene Therapy Strategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Wnt/β-Catenin Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human	6.3	33
11 12	Transactivation of the Metallothionein Promoter in Cisplatin-Resistant Cancer Cells: a Specific Gene Therapy Strategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Wnt/β-Catenin Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human Papillary Thyroid Carcinoma Cells. PLoS ONE, 2011, 6, e22280. Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth	6.3 2.5	33
11 12 13	Transactivation of the Metallothionein Promoter in Cisplatin-Resistant Cancer Cells: a Specific Gene Therapy Strategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Wht/β-Catenin Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human Papillary Thyroid Carcinoma Cells. PLoS ONE, 2011, 6, e22280. Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth disease type 1 A. Communications Biology, 2021, 4, 317. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the	6.3 2.5 4.4	33 32 31
11 12 13	Transactivation of the Metallothionein Promoter in Cisplatin-Resistant Cancer Cells: a Specific Gene Therapy Strategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Wntstategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Wntstategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Wntstategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Wntstategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Squalenoyl Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human Papillary Thyroid Carcinoma Cells. PLoS ONE, 2011, 6, e22280. Squalenoyl signal PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth disease type 1 A. Communications Biology, 2021, 4, 317. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Translational Research, 2021, 227, 100-111. Significance and applications of nanoparticles in signal delivery for cancer therapy. Expert Review of	6.3 2.5 4.4 5.0	33 32 31 30
11 12 13 14	Transactivation of the Metallothionein Promoter in Cisplatin-Resistant Cancer Cells: a Specific Gene Therapy Strategy. Journal of the National Cancer Institute, 2000, 92, 642-647. Wnt β-Catenin Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human Papillary Thyroid Carcinoma Cells. PLoS ONE, 2011, 6, e22280. Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth disease type 1 A. Communications Biology, 2021, 4, 317. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Translational Research, 2021, 227, 100-111. Significance and applications of nanoparticles in siRNA delivery for cancer therapy. Expert Review of Clinical Pharmacology, 2012, 5, 403-412. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer. PLoS ONE,	6.3 2.5 4.4 5.0	33 32 31 30 26

#	Article	IF	Citations
19	Induction of TTF-1 or PAX-8 expression on proliferation and tumorigenicity in thyroid carcinomas. International Journal of Oncology, 2016, 49, 1248-1258.	3.3	25
20	Structure and polymorphisms of human aryl hydrocarbon receptor repressor (AhRR) gene in a French population: relationship with CYP1A1 inducibility and lung cancer. Pharmacogenetics and Genomics, 2003, 13, 339-47.	5.7	25
21	Effects of Silencing the <i>RET/PTC1 </i> Oncogene in Papillary Thyroid Carcinoma by siRNA-Squalene Nanoparticles With and Without Fusogenic Companion GALA-Cholesterol. Thyroid, 2014, 24, 327-338.	4.5	21
22	Hypoxia and estrogen co-operate to regulate gene expression in T-47D human breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2007, 104, 169-179.	2.5	20
23	New Formulation for the Delivery of Oligonucleotides Using "Clickable― siRNA-Polyisoprenoid-Conjugated Nanoparticles: Application to Cancers Harboring Fusion Oncogenes. Bioconjugate Chemistry, 2018, 29, 1961-1972.	3.6	17
24	Biclonal chromosome evolution of chronic myelomonocytic leukemia in a child. Cancer Genetics and Cytogenetics, 1990, 44, 131-137.	1.0	16
25	HMGA1 Enhances the Transcriptional Activity and Binding of the Estrogen Receptor to Its Responsive Elementâ€. Biochemistry, 2002, 41, 2760-2768.	2.5	15
26	Main Drug-Metabolizing Enzyme Systems in Human Non-Hodgkin's Lymphomas Sensitive or Resistant to Chemotherapy. Leukemia and Lymphoma, 1995, 18, 303-310.	1.3	14
27	Recruitment of the p160 coactivators by the glucocorticoid receptor: Dependence on the promoter context and cell type but not hypoxic conditions. Journal of Steroid Biochemistry and Molecular Biology, 2007, 104, 305-311.	2.5	14
28	ADH activity and ethanol tolerance in third chromosome substitution lines in Drosophila melanogaster. Heredity, 1989, 62, 35-44.	2.6	13
29	Effects of siRNA on RET/PTC3 Junction Oncogene in Papillary Thyroid Carcinoma: From Molecular and Cellular Studies to Preclinical Investigations. PLoS ONE, 2014, 9, e95964.	2.5	13
30	Effects of Silencing RET/PTC1 Junction Oncogene in Human Papillary Thyroid Carcinoma Cells. Thyroid, 2010, 20, 1053-1065.	4.5	12
31	Thymidylate synthase activity, folates, and glutathione system in head and neck carcinoma and adjacent tissues. Head and Neck, 1994, 16, 158-164.	2.0	11
32	Knocking Down TMPRSS2-ERG Fusion Oncogene by siRNA Could be an Alternative Treatment to Flutamide. Molecular Therapy - Nucleic Acids, 2016, 5, e301.	5.1	11
33	Unusual karyotypic evolution in subacute myelomonocytic leukemia in two monozygotic twins. Cancer Genetics and Cytogenetics, 1989, 38, 205-213.	1.0	9
34	Principal drug-metabolizing enzyme systems in L1210 leukemia sensitive or resistant to BCNU in vivo. Leukemia Research, 1994, 18, 829-835.	0.8	8
35	Effects of natural environment on reproductive histo-morphometric dynamics of female dromedary camel. Animal Reproduction Science, 2017, 181, 30-40.	1.5	8
36	A novel therapeutic approach to colorectal cancer in diabetes: role of metformin and rapamycin. Oncotarget, 2019, 10, 1284-1305.	1.8	8

#	Article	IF	CITATION
37	Newly identified LMO3-BORCS5 fusion oncogene in Ewing sarcoma at relapse is a driver of tumor progression. Oncogene, 2019, 38, 7200-7215.	5.9	7
38	The functional interaction between HMGA1 and the estrogen receptor requires either the N- or the C-terminal domain of the receptor. FEBS Letters, 2004, 559, 89-95.	2.8	4
39	A single d(GpG) cisplatin adduct on the estrogen response element decreases the binding of the estrogen receptor. FEBS Letters, 2000, 466, 49-53.	2.8	3
40	Supramolecular organization and biological interaction of squalenoyl siRNA nanoparticles. International Journal of Pharmaceutics, 2021, 609, 121117.	5.2	3
41	High catabolism of BrdU may explain unusual sister chromatid differentiation and replication banding patterns in cancer cells. Cancer Genetics and Cytogenetics, 1991, 53, 23-34.	1.0	2
42	Reply to Letter to the Editor from Frank Welsch. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2003, 106, 92-95.	1.1	1