Sebastien Biscans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7006171/publications.pdf

Version: 2024-02-01

36 papers 37,587 citations

201674 27 h-index 345221 36 g-index

36 all docs 36 docs citations

36 times ranked 16022 citing authors

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger < sup>*. Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
6	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
7	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
9	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11 , .	8.9	1,097
10	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
11	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^¼Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
12	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
13	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
14	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> ⊙</mml:mtext></mml:mrow></mml:math> . Physical Review	nml :n& text:	> <n®ark:msub></n
15	Letters, 2020, 125, 101102. Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
16	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
17	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
18	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394

#	Article	IF	CITATIONS
19	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	7.8	359
20	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	4.7	286
21	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	4.7	196
22	Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance. Classical and Quantum Gravity, 2015, 32, 185003.	4.0	141
23	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	4.7	72
24	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
25	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	12.6	59
26	Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 2: Experimental investigation and tests results. Precision Engineering, 2015, 40, 287-297.	3.4	44
27	Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity. Physical Review D, 2021, 103, .	4.7	37
28	Suppressing parametric instabilities in LIGO using low-noise acoustic mode dampers. Physical Review D, 2019, 100, .	4.7	27
29	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	7.8	24
30	Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors. Classical and Quantum Gravity, 2018, 35, 055004.	4.0	22
31	Limiting the effects of earthquakes on gravitational-wave interferometers. Classical and Quantum Gravity, 2017, 34, 044004.	4.0	17
32	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	2.5	16
33	Ground motion prediction at gravitational wave observatories using archival seismic data. Classical and Quantum Gravity, 2019, 36, 085005.	4.0	11
34	Improving the robustness of the advanced LIGO detectors to earthquakes. Classical and Quantum Gravity, 2020, 37, 235007.	4.0	11
35	Point Absorber Limits to Future Gravitational-Wave Detectors. Physical Review Letters, 2021, 127, 241102.	7.8	3
36	Method for determining damping properties of materials using a suspended mechanical oscillator. Journal of Sound and Vibration, 2018, 423, 118-125.	3.9	1