Christiane Charriaut-Marlangue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7004589/publications.pdf

Version: 2024-02-01

CHRISTIANE

#	Article	IF	CITATIONS
1	Specific caspase inhibitor Qâ€VDâ€OPh prevents neonatal stroke in P7 rat: a role for gender. Journal of Neurochemistry, 2007, 100, 1062-1071.	3.9	160
2	Gender-Related Differences in Apoptotic Pathways After Neonatal Cerebral Ischemia. Neuroscientist, 2008, 14, 46-52.	3.5	93
3	Sexually Dimorphic Outcomes after Neonatal Stroke and Hypoxia-Ischemia. International Journal of Molecular Sciences, 2018, 19, 61.	4.1	81
4	Endothelial S1P ₁ Signaling Counteracts Infarct Expansion in Ischemic Stroke. Circulation Research, 2021, 128, 363-382.	4.5	71
5	Inhaled Nitric Oxide Reduces Brain Damage by Collateral Recruitment in a Neonatal Stroke Model. Stroke, 2012, 43, 3078-3084.	2.0	67
6	Diabetic Microangiopathy: Impact of Impaired Cerebral Vasoreactivity and Delayed Angiogenesis After Permanent Middle Cerebral Artery Occlusion on Stroke Damage and Cerebral Repair in Mice. Diabetes, 2015, 64, 999-1010.	0.6	56
7	Sildenafil Mediates Blood-Flow Redistribution and Neuroprotection After Neonatal Hypoxia-Ischemia. Stroke, 2014, 45, 850-856.	2.0	54
8	Sildenafil, a cyclic GMP phosphodiesterase inhibitor, induces microglial modulation after focal ischemia in the neonatal mouse brain. Journal of Neuroinflammation, 2016, 13, 95.	7.2	47
9	Nitric oxide signaling in the brain: A new target for inhaled nitric oxide?. Annals of Neurology, 2013, 73, 442-448.	5.3	41
10	Impact of intracranial blood-flow redistribution on stroke size during ischemia–reperfusion in 7-day-old rats. Journal of Neuroscience Methods, 2011, 198, 103-109.	2.5	39
11	Inhaled NO prevents hyperoxia-induced white matter damage in neonatal rats. Experimental Neurology, 2014, 252, 114-123.	4.1	35
12	Distribution of Poly(ADP-ribosyl)ation and Cell Death After Cerebral Ischemia in the Neonatal Rat. Pediatric Research, 2003, 53, 776-782.	2.3	34
13	Early Sex Differences in the Immune-Inflammatory Responses to Neonatal Ischemic Stroke. International Journal of Molecular Sciences, 2019, 20, 3809.	4.1	31
14	Unilateral Blood Flow Decrease Induces Bilateral and Symmetric Responses in the Immature Brain. American Journal of Pathology, 2009, 175, 2111-2120.	3.8	30
15	Sex differences in the effects of PARP inhibition on microglial phenotypes following neonatal stroke. Brain, Behavior, and Immunity, 2018, 73, 375-389.	4.1	30
16	Astrocytic Demise in the Developing Rat and Human Brain after Hypoxic-Ischemic Damage. Developmental Neuroscience, 2009, 31, 459-470.	2.0	28
17	Early Collateral Recruitment After Stroke in Infants and Adults. Stroke, 2019, 50, 2604-2611.	2.0	26
18	Glial response to 17β-estradiol in neonatal rats with excitotoxic brain injury. Experimental Neurology, 2016, 282, 56-65.	4.1	25

CHRISTIANE

#	Article	IF	CITATIONS
19	Dual action of NO synthases on blood flow and infarct volume consecutive to neonatal focal cerebral ischemia. Experimental Neurology, 2012, 236, 50-57.	4.1	23
20	Dynamic Spatio-Temporal Imaging of Early Reflow in a Neonatal Rat Stroke Model. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 137-145.	4.3	16
21	A Model of Perinatal Ischemic Stroke in the Rat: 20 Years Already and What Lessons?. Frontiers in Neurology, 2018, 9, 650.	2.4	12
22	Cyclooxygenase-2-Derived Prostaglandins Mediate Cerebral Microcirculation in a Juvenile Ischemic Rat Model. Stroke, 2016, 47, 3048-3052.	2.0	11
23	Collateral Supply in Preclinical Cerebral Stroke Models. Translational Stroke Research, 2021, , 1.	4.2	11
24	Ischemic Postconditioning Fails to Protect against Neonatal Cerebral Stroke. PLoS ONE, 2012, 7, e49695.	2.5	8
25	Ischemic postconditioning in cerebral ischemia: Differences between the immature and mature brain?. International Journal of Developmental Neuroscience, 2015, 45, 39-43.	1.6	6
26	Prostaglandin E1-Mediated Collateral Recruitment Is Delayed in a Neonatal Rat Stroke Model. International Journal of Molecular Sciences, 2018, 19, 2995.	4.1	6
27	Poly(ADP-Ribose) Polymerase Inhibitor PJ34 Reduces Brain Damage after Stroke in the Neonatal Mouse Brain. Current Issues in Molecular Biology, 2021, 43, 301-312.	2.4	5
28	Cerebral Vasodilator Property of Poly(ADP-Ribose) Polymerase Inhibitor (PJ34) in the Neonatal and Adult Mouse Is Mediated by the Nitric Oxide Pathway. International Journal of Molecular Sciences, 2020, 21, 6569.	4.1	4
29	Controlled arterial reflow after ischemia induces better outcomes in the juvenile rat brain. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3091-3096.	4.3	3