
Lorenzo Borghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7004328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungicide Resistance Evolution and Detection in Plant Pathogens: Plasmopara viticola as a Case Study. Microorganisms, 2021, 9, 119.	3.6	73
2	Efficiency and bioavailability of new synthetic strigolactone mimics with potential for sustainable agronomical applications. Plant and Soil, 2021, 465, 109-123.	3.7	7
3	DMI-Fungicide Resistance in Venturia nashicola, the Causal Agent of Asian Pear Scab—How Reliable Are Mycelial Growth Tests in Culture?. Microorganisms, 2021, 9, 1377.	3.6	8
4	The Full-Size ABCG Transporter of Medicago truncatula Is Involved in Strigolactone Secretion, Affecting Arbuscular Mycorrhiza. Frontiers in Plant Science, 2020, 11, 18.	3.6	43
5	Petunia- and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation. Phytobiomes Journal, 2019, 3, 112-124.	2.7	37
6	Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway. IScience, 2019, 17, 144-154.	4.1	24
7	ABCC transporters mediate the vacuolar accumulation of crocins in saffron stigmas. Plant Cell, 2019, 31, tpc.00193.2019.	6.6	36
8	Filling the Gap: Functional Clustering of ABC Proteins for the Investigation of Hormonal Transport in planta. Frontiers in Plant Science, 2019, 10, 422.	3.6	29
9	Petunia PLEIOTROPIC DRUG RESISTANCE 1 Is a Strigolactone Short-Distance Transporter with Long-Distance Outcomes. Plant and Cell Physiology, 2019, 60, 1722-1733.	3.1	17
10	Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphateâ€poor soils. New Phytologist, 2018, 217, 784-798.	7.3	48
11	Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. Npj Microgravity, 2018, 4, 20.	3.7	13
12	Beneficial Services of Arbuscular Mycorrhizal Fungi – From Ecology to Application. Frontiers in Plant Science, 2018, 9, 1270.	3.6	337
13	The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta, 2016, 243, 1351-1360.	3.2	57
14	<i>Petunia hybrida</i> PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes. Plant, Cell and Environment, 2016, 39, 2725-2739.	5.7	34
15	Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2016, 2, 16074.	9.3	311
16	The role of ABCG-type ABC transporters in phytohormone transport. Biochemical Society Transactions, 2015, 43, 924-930.	3.4	104
17	Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport. Current Biology, 2015, 25, 647-655.	3.9	117
18	Arabidopsis replacement histone variant H3.3 occupies promoters of regulated genes. Genome Biology, 2014, 15, R62.	9.6	60

LORENZO BORGHI

#	Article	IF	CITATIONS
19	Emerging roles of RETINOBLASTOMA-RELATED proteins in evolution and plant development. Trends in Plant Science, 2012, 17, 139-148.	8.8	85
20	A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483, 341-344.	27.8	502
21	RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics, 2011, 12, 156.	2.8	260
22	RETINOBLASTOMA-RELATED PROTEIN controls the transition to autotrophic plant development. Development (Cambridge), 2011, 138, 2977-2986.	2.5	53
23	<i>Arabidopsis</i> RETINOBLASTOMA-RELATED Is Required for Stem Cell Maintenance, Cell Differentiation, and Lateral Organ Production Â. Plant Cell, 2010, 22, 1792-1811.	6.6	153
24	Inducible Gene Expression Systems for Plants. Methods in Molecular Biology, 2010, 655, 65-75.	0.9	48
25	Arabidopsis JAGGED LATERAL ORGANS Is Expressed in Boundaries and Coordinates KNOX and PIN Activity. Plant Cell, 2007, 19, 1795-1808.	6.6	133
26	Dynamic and Compensatory Responses of Arabidopsis Shoot and Floral Meristems to CLV3 Signaling. Plant Cell, 2006, 18, 1188-1198.	6.6	164
27	Polycomb-group proteins repressthe floral activator <i>ACL19</i> in the <i>FLC</i> -independent vernalization pathway. Genes and Development, 2006, 20, 1667-1678.	5.9	222
28	MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. Plant Cell, 2003, 15, 2603-2611.	6.6	499