Xiaodong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7002573/publications.pdf

Version: 2024-02-01

38	5,560	186265	315739
papers	citations	h-index	g-index
38	38	38	4701
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin Culn5S8 layers. Nature Energy, 2019, 4, 690-699.	39.5	948
2	Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn ₂ S ₄ Layers for Boosted Solar-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 7586-7594.	13.7	764
3	Efficient Visibleâ€Lightâ€Driven CO ₂ Reduction Mediated by Defectâ€Engineered BiOBr Atomic Layers. Angewandte Chemie - International Edition, 2018, 57, 8719-8723.	13.8	439
4	Partially Oxidized SnS ₂ Atomic Layers Achieving Efficient Visible-Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 18044-18051.	13.7	368
5	Efficient and Robust Carbon Dioxide Electroreduction Enabled by Atomically Dispersed Sn <i>^Î</i> ⁺ Sites. Advanced Materials, 2019, 31, e1808135.	21.0	321
6	Infrared Light-Driven CO2 Overall Splitting at Room Temperature. Joule, 2018, 2, 1004-1016.	24.0	258
7	Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO ₂ photoreduction. Chemical Society Reviews, 2020, 49, 6592-6604.	38.1	220
8	Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers. Angewandte Chemie - International Edition, 2017, 56, 9121-9125.	13.8	205
9	Photocatalytic Conversion of Waste Plastics into C ₂ Fuels under Simulated Natural Environment Conditions. Angewandte Chemie - International Edition, 2020, 59, 15497-15501.	13.8	198
10	Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers. Angewandte Chemie, 2017, 129, 9249-9253.	2.0	154
11	Ultrastable and Efficient Visibleâ€lightâ€driven CO ₂ Reduction Triggered by Regenerative Oxygenâ€Vacancies in Bi ₂ O ₂ CO ₃ Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 13840-13846.	13.8	152
12	Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chemical Society Reviews, 2022, 51, 1234-1252.	38.1	148
13	Ultrathin Conductor Enabling Efficient IR Light CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 423-430.	13.7	146
14	Asymmetric Triple-Atom Sites Confined in Ternary Oxide Enabling Selective CO ₂ Photothermal Reduction to Acetate. Journal of the American Chemical Society, 2021, 143, 18233-18241.	13.7	130
15	Progress and Perspective for In Situ Studies of CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 9567-9581.	13.7	125
16	Efficient Visibleâ€Lightâ€Driven CO ₂ Reduction Mediated by Defectâ€Engineered BiOBr Atomic Layers. Angewandte Chemie, 2018, 130, 8855-8859.	2.0	124
17	CVD synthesis of Mo _(1â^'x) W _x S ₂ and MoS _{2(1â^'x)} Se _{2x} alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale, 2015, 7, 13554-13560.	5 . 6	103
18	Efficient infrared light induced CO2 reduction with nearly 100% CO selectivity enabled by metallic CoN porous atomic layers. Nano Energy, 2020, 69, 104421.	16.0	88

#	Article	IF	CITATIONS
19	Industrial-Current-Density CO ₂ -to-C ₂₊ Electroreduction by Anti-swelling Anion-Exchange Ionomer-Modified Oxide-Derived Cu Nanosheets. Journal of the American Chemical Society, 2022, 144, 10446-10454.	13.7	87
20	Opportunity of Atomically Thin Two-Dimensional Catalysts for Promoting CO ₂ Electroreduction. Accounts of Chemical Research, 2020, 53, 2964-2974.	15.6	72
21	Selective CO ₂ Photoreduction into C ₂ Product Enabled by Charge-Polarized Metal Pair Sites. Nano Letters, 2021, 21, 2324-2331.	9.1	71
22	Efficient Photooxidation of Methane to Liquid Oxygenates over ZnO Nanosheets at Atmospheric Pressure and Near Room Temperature. Nano Letters, 2021, 21, 4122-4128.	9.1	60
23	Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Research, 2018, 11, 2897-2908.	10.4	55
24	Plastics-to-syngas photocatalysed by Co–Ga2O3 nanosheets. National Science Review, 2022, 9, .	9.5	42
25	Visible‣ightâ€Driven Overall Water Splitting Boosted by Tetrahedrally Coordinated Blende Cobalt(II) Oxide Atomic Layers. Angewandte Chemie - International Edition, 2019, 58, 3032-3036.	13.8	41
26	Nature-Mimic ZnO Nanoflowers Architecture: Chalcogenide Quantum Dots Coupling with ZnO/ZnTiO ₃ Nanoheterostructures for Efficient Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2017, 121, 21096-21104.	3.1	32
27	Dark energy and fate of the Universe. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1330-1334.	5.1	31
28	Metaln+-Metal \hat{l} + pair sites steer C-C coupling for selective CO2 photoreduction to C2 hydrocarbons. Nano Research, 2022, 15, 1882-1891.	10.4	31
29	In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4. Nano Research, 2021, 14, 4520-4527.	10.4	24
30	Testing modified gravity models with recent cosmological observations. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2244-2258.	5.1	20
31	Visibleâ€Lightâ€Driven Overall Water Splitting Boosted by Tetrahedrally Coordinated Blende Cobalt(II) Oxide Atomic Layers. Angewandte Chemie, 2019, 131, 3064-3068.	2.0	17
32	Photocatalytic Conversion of Waste Plastics into C ₂ Fuels under Simulated Natural Environment Conditions. Angewandte Chemie, 2020, 132, 15627-15631.	2.0	17
33	Mechanism of the Significant Acceleration of Polyethylene Terephthalate Glycolysis by Defective Ultrathin ZnO Nanosheets with Heteroatom Doping. ACS Sustainable Chemistry and Engineering, 2022, 10, 5476-5488.	6.7	15
34	Ultrastable and Efficient Visibleâ€lightâ€driven CO ₂ Reduction Triggered by Regenerative Oxygenâ€Vacancies in Bi ₂ O ₂ CO ₃ Nanosheets. Angewandte Chemie, 2021, 133, 13959-13965.	2.0	14
35	Probing reaction pathways for H2O-mediated HCHO photooxidation at room temperature. Nano Research, 2021, 14, 1471-1478.	10.4	12
36	Synergy of Fe dopants and oxygen vacancies confined in atomically-thin cobaltous oxide sheets for high-efficiency CO ₂ photoreduction. Journal of Materials Chemistry A, 2021, 9, 22353-22363.	10.3	12

XIAODONG LI

#	Article	IF	CITATIONS
37	Industrial-current-density CO2-to-formate conversion with low overpotentials enabled by disorder-engineered metal sites. Nano Research, 2022, 15, 6999-7007.	10.4	9
38	Constructing artificial mimic-enzyme catalysts for carbon dioxide electroreduction. Science China Chemistry, 2022, 65, 106-113.	8.2	7